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The evolution of charged quantum fields under the action of constant nonuniform electric fields is studied. To
this end we construct density operators of the quantum fields with different initial conditions. Then we study
some reductions of the density operators, for example, reductions to electron or positron subsystems, reduction
induced by measurements, and spatial reduction to the left or to the right subsystems of final particles. We
calculate von Neumann entropy for the corresponding reduced density operators, estimating in such a way an
information loss. We illustrate the obtained results by calculations in a specific background of a strong constant
electric field between two infinite capacitor plates separated by a finite distance L.
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I. INTRODUCTION

Problems of quantum field theory with external back-
grounds violating the vacuum stability have been studied
systematically for a long time. Recently, they have drawn
special attention due to new real possible applications in
astrophysics and physics of nanostructures. In these areas
one often encounters a situation where the effects of vacuum
instability (in particular, due to the presence of potential steps,
that is, inhomogeneous electric fields) and finite temperature
are combined. Astrophysical objects such as black holes and
neutron stars can generate huge electromagnetic fields in their
vicinity. The Coulomb barrier at the quark star surface of
a hot strange star may be a powerful source of e+e− pairs,
which are created in extremely strong constant electric fields
(dozens of times higher that the critical field Ec) of the barrier,
and they flow away from the star (see [1] for the review).
Such emission may be a good observational signature of
bare strange stars. The existence of critical electric fields on
the quark star surfaces was also predicted in Ref. [2] in the
transition at very high densities, from the normal nuclear
matter phase at the core to the color-flavor-locked phase of
quark matter at the inner core of hybrid stars. The possibility
of existence of critical electromagnetic fields at the core
surface of a neutron star was indicated in Ref. [3]. Critical
electric fields are expected to appear in the late phases of
gravitational collapse and from cosmological horizons, with
a consequent process of pair creation by vacuum polarization
(see, e.g., reviews in [4–6]). There is a close connection
between particle creation by strong electrostatic potentials, in
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particular, by steps and barriers, and the Unruh effect, which
is the phenomenon of particle emission from black holes and
cosmological horizons. Particle creation from the vacuum by
external fields (the generation of electron-hole pairs by the
electric field or Zener tunneling) has become an observable
effect in physics of graphene and similar nanostructures (e.g.,
in topological insulators and Weyl semimetals); this area is
currently under intense development (see the reviews in [7–9]
as well as the recent article [10] and references therein).

Note that the cases with homogeneous time-dependent
electric fields are considered in most of these articles. The
effect of pair production from the vacuum by time-dependent
electric fields was considered in a number of works, starting
with the pioneer work of Schwinger [11], followed by that of
Nikishov [12,13], Brezin and Itzykson [14], and many others.
Later a nonperturbative formulation of QED with so-called
t-electric potential steps (time-dependent potentials of special
form) was developed in Ref. [15] and applied to various
physical problems (see, e.g., Refs. [16–19]). In particular,
quantum entanglement in the Schwinger effect of Dirac or
the Klein-Gordon field due to the t-electric steps, between
a subsystem and the rest of the system, as measured by
the von Neumann entropy of the reduced density matrix,
was calculated [20] (see as well Refs. [21,22]). For more
information on the subject see recent reviews in [4,9,23,24],
where the progress on particle creation due to time-dependent
field configurations is described and a number of important
applications of such fields are considered.

However, the case where external backgrounds are repre-
sented by strong time-independent nonuniform electric fields
concentrated in restricted space areas is much closer to a
real experimental situation. We refer to such backgrounds
as x-electric potential steps. There are theoretical articles
where fields of this type are considered; see, for exam-
ple, Refs. [13,25–33]. In the recent work [34] a consistent
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nonperturbative (with respect to an external electric field
in zeroth order in the radiation interaction) formulation of
QED with x-electric potential steps strong enough to violate
the vacuum stability was constructed. In Refs. [34,35] some
quantum effects related to a violation of the vacuum instability
by x-electric potential steps were calculated. The particle
creation effect is crucial for understanding the conductivity
of graphene, especially in the so-called nonlinear regime. In
this regime it is natural to consider a constant voltage applied
between two electrodes. Possible experimental configurations
for testing the pair creation by a linear step of finite length
were proposed in Ref. [36]. For the case of a constant volt-
age between two electrodes the evidence of the existence
of electron-hole pair creation was obtained in graphene by
its indirect influence on the graphene conductivity [37]. The
first experimental observation of graphene optical emission
induced by the intense terahertz pulse was recently reported
[38]. The experimental data are in a good agreement with
the theory of Landau-Zener interband transitions. The im-
pact of Zener tunneling on the charge-transport properties
of graphene in the high-field regime was studied theoreti-
cally in Ref. [39]. It is shown that the inclusion of both
Zener tunneling and electron-electron relaxation improves the
agreement with the measurements performed in graphene in
the high-field regime at low doping. The p-n junctions and
sharp n-n junctions can also play the role of potential steps.
For these steps the Klein tunneling was observed by several
experimental groups (but only for the kinetic energies of
electron that exclude the possibility of pair production) (see,
e.g., the review in [7]). It should also be noted that in the
context of strong interactions and quantum chromodynamics,
a similar phenomenon may play a role in the discussion of
particle production in heavy-ion collisions or in the decay of
hadronic strings in the process of hadronization (see Ref. [9]
for a review).

In this article we study the evolution of different initial
states of charged quantum fields in x-electric critical potential
steps, using the above-mentioned formulation of QED [34].
To this end, we construct density operators for different initial
states of the system of quantum fields. We consider pure
initial states and thermal (mixed) initial states. Correspond-
ing final states are studied using three types of reductions.
Since x-electric potential steps cause a natural division of
created particles in subsystems of electrons and positrons
substantially separated spatially, we first consider reductions
to electron or positron subsystems. In the background under
consideration, it is interesting to calculate reductions to the
left and right parts of the whole system and compare the
obtained states with states resulting from the previously men-
tioned reductions. Finally, we study reductions due to possible
measurements of a number of final particles. The latter kind
of reductions can also occur due to some decoherence pro-
cesses, such as collisions with some external sources (e.g.,
with impurities in the graphene). To study the loss of the
information in all the reductions, we calculate von Neumann
entropy for reduced density operators. In two first reduction
cases this entropy can also be identified with a measure of
quantum entanglement between the corresponding quantum
subsystems.

The article is organized as follows. In Sec. II we recall ba-
sic points of QED with x-electric potential steps. In Sec. III we
present density operators for different initial states of charged
quantum fields. All the above-mentioned reductions are pre-
sented in Sec. IV. The corresponding von Neumann entropy is
calculated in Sec. V. Special generating functionals allow us
to construct density matrices for different initial conditions by
choosing appropriate sources presented in Sec. III, and their
normal forms are placed in Appendix A. In Appendix B we
briefly consider the case when the initial state of the system is
given by a pure state with a definite number of particles. Some
useful operatorial relations are given in Appendix C.

II. QED WITH x-ELECTRIC POTENTIAL STEPS

The general theory of quantization of charged fields in the
presence of critical potential steps that we use was formulated
by Gitman and Gavrilov in Ref. [34]. They constructed a
special self-consistent QED with x-electric potential steps
utilizing the so-called generalized Furry picture. In the frame-
work of this QED it is possible to take into account the
external electric field exactly in zeroth order in the radiation
interaction when the analytical solutions of the Dirac equation
in the corresponding field are known. Here we repeat some
crucial moments of this theory. In this article we generally
adapt the notation used in Ref. [34]; we utilize the system of
units where c = h̄ = 1.

We work in (d = D + 1)-dimensional Minkowski space-
time parametrized by coordinates X ,

X = (X μ, μ = 0, 1, . . . , D) = (t, x, r⊥),

X 0 = t, x = X 1, r⊥ = (X 2, . . . , X D), (1)

which correspond to an x-electric potential step of the form

Aμ(X ) = (A0(x), Aj = 0, j = 1, 2, . . . , D), (2)

so that the magnetic field B is zero and the electric field E
reads

E(X ) = E(x) = (Ex(x), 0, . . . , 0),

Ex(x) = −A′
0(x) = E (x). (3)

The electric field (3) is directed along the x axis, is inhomoge-
neous in the x direction, and does not depend on time t . The
main property of any x-electric potential step is

A0(x)
x→±∞−→ A0(±∞), E (x)

|x|→∞−→ 0, (4)

where A0(±∞) are constant quantities, which means that the
electric field under consideration is switched off at spatial
infinity. In addition, it is supposed that the first derivative of
the scalar potential A0(x) does not change its sign for any
x ∈ R and that there exist points xL and xR (xR > xL) such that
for x ∈ SL = (−∞, xL] and for x ∈ SR = [xR,∞) the electric
field is already switched off, so

A0(x)|x∈SL = A0(−∞), E (x)|x∈SL = 0,

A0(x)|x∈SR = A0(+∞), E (x)|x∈SR = 0, (5)

whereas the electric field is not zero in the region Sint =
(xL, xR ) (note that both xL and xR can tend to infinity). An
example of an x-potential step can be found in Fig. 1. There
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FIG. 1. Example of an x-electric potential step.

are two types of electric steps, noncritical and critical, which
are distinguished by their magnitudes

U =
{
U < 2m, noncritical steps
U > 2m, critical steps, (6)

where U = UR − UL, UL (R) is the left (right) asymptotic
potential energy, UL = U (x → −∞), UR = U (x → +∞),
U (x) = −eA0(x) is the potential energy of the electron in the

x-electric potential step, and m is the electron mass. We are
mostly interested in critical steps, which can produce pairs
from the vacuum.

One of the most important points of QED with critical
potential steps is that the whole space of quantum numbers
n ∈ � [which are the full energy of particle p0, momenta p,
and spin σ , n = (p0, p, σ )] can be divided into five different
ranges �i, i = 1, . . . , 5, ni ∈ �i, where the solutions of the
corresponding Dirac equation have similar forms. The full
operator of the Dirac field can be presented as a sum of
operators defined for each particular range �i,

�̂(X ) =
5∑

i=1

�̂i(X ). (7)

The explicit forms of operators �̂i(X ) are given in
Appendix A and a graphical representation of the quantum
ranges �i can be found in Fig. 2. Detailed consideration
of each range �i was carried out in Ref. [34]; here we
repeat only the most important points. In these ranges there
exist two types of solutions of the Dirac equation, ζ ψn(X )
and ζψn(X ), ζ = ±. Those solutions satisfy the following
asymptotic conditions:

ζψn(X ) = exp(−ip0t+ip⊥r⊥) ζ ϕn(x), ζ ϕn(x) = ζ ϕ
L
n (x), x ∈ SL,

[
p̂2

x−(p0 − UL)2 + π2
⊥
]

ζ ϕ
L
n (x) = 0, π2

⊥ = m2 + p2
⊥,

ζψn(X ) = exp(−ip0t + ip⊥r⊥) ζ ϕn(x), ζ ϕn(x) = ζ ϕR
n (x), x ∈ SR,

[
p̂2

x − (p0 − UR)2 + π2
⊥
]

ζ ϕR
n (x) = 0, p̂x = −i∂x.

(8)

Nontrivial solutions ζ ψn(X ) and ζψn(X ) exist only for quantum numbers n that obey the relations

(p0 − UR)2 > π2
⊥ for ζ ψn(X ), (9)

(p0 − UL)2 > π2
⊥ for ζ ψn(X ) (10)

and correspond to states with definite momenta pR and pL,

p̂x ζ ψn(X ) = pL
ζ ψn(X ), x → −∞, pL = ζ

√
(p0 − UL)2 − π2

⊥,

p̂x
ζ ψn(X ) = pR ζψn(X ), x → +∞, pR = ζ

√
(p0 − UR)2 − π2

⊥. (11)

The ranges �1 and �5 exist for any step, critical or noncritical, and are defined by the inequalities

p0 � UR + π⊥ if n ∈ �1,

p0 � UL − π⊥ if n ∈ �5 (12)

for a given π⊥. Solutions ζψn(X ) can be interpreted as either a wave function of an electron for n ∈ �1 or a wave function
of a positron for n ∈ �5 with the momenta pR along the x axis, whereas solutions ζψn(X ) can be interpreted as either
a wave function of an electron for n ∈ �1 or a wave function of a positron for n ∈ �5 with momenta pL along the x
axis.

The ranges �2 and �4 also exist for any step and include the quantum numbers n ∈ �2 that obey the inequalities

UR − π⊥ < p0 < UR + π⊥, p0 − UL > π⊥ if 2π⊥ < U,

UL + π⊥ < p0 < UR + π⊥ if 2π⊥ < U (13)

and the quantum numbers n ∈ �4 that obey the inequalities

UL − π < p0 < UL + π, p0 − UR < −π⊥ if 2π⊥ < U,

UL − π < p0 < UR − π if 2π⊥ < U. (14)
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FIG. 2. Graphical representation of the quantum ranges �i show-
ing the potential energy of the electron U (x) = −eA0(x) in the
electric field.

As a consequence of these inequalities there exist solutions
ζψn(X ), n ∈ �2, with definite left asymptotics and ζψn(X ),
n ∈ �4, with definite right asymptotics. Solutions ζψn(X ),
n ∈ �2, and ζψn(X ), n ∈ �4, can be interpreted as wave
functions of the electron and positron, respectively. Nontrivial
solutions ζψn(X ), n ∈ �2, and ζ ψn(X ), n ∈ �4, do not exist,
as the inequality (13) contradicts Eq. (9) and the inequality
(14) contradicts Eq. (10).

The range �3, the Klein zone, exists only for critical steps.
The quantum numbers p⊥ are restricted by the inequality
2π⊥ < U and for any of such π⊥ quantum numbers p0 obey
the double inequality

UL + π � p0 � UR − π. (15)

In the range �3 there exist the following sets of solutions:

{ζψn(X )}, {ζ ψn(X )}, n ∈ �3, ζ = ±. (16)

However, the one-particle interpretation of these solutions
based on the energy spectrum in a similar way as has been
done in the ranges �1 and �5 becomes inconsistent. Indeed,
it is enough to see the following contradiction: From the point
of view of the left asymptotic area SL, only electron states are
possible in the range �3, whereas from the point of view of
the right asymptotic area SR, only positron states are possible
in this range. For the detailed consideration of this fact in the
framework of QED, see Sec. VII of Ref. [34].

In what follows, operators an and a†
n, and bn and b†

n denote
operators of creation and annihilation of particles (electrons)
and antiparticles (positrons), respectively, for each range �i.
Operators

−an(in) = −an, +an(in) = +an,

−b†
n(in) = −b†

n,
+bn(in) = +bn (17)

and their conjugates correspond to the initial electrons and
positrons, while operators

+an(out) = +an, −an( out) = −an,

+bn(out) = +bn,
−bn( out) = −bn (18)

correspond to the final electrons and positrons.

The formalism developed in Ref. [34] is applicable to
any one-dimensional x-electric potential step as long as the
condition (4) is satisfied. When the solutions ζψn(X ) and
ζ ψn(X ) of the corresponding Dirac equation with such a
potential can be found analytically in each spatial region SL,
SR, and Sint, it is possible to use border conditions (gluing
conditions) to calculate all main characteristics of vacuum
instability (the number of particles created from the vacuum,
the probability of the vacuum to remain a vacuum, etc.).
The general procedure of such calculations can be found in
Refs. [34,40,41], where several examples of exactly solvable
cases are considered: the so-called L-constant field [40], the
Sauter-like field [34], and the peak electric field given by an
exponential step [41].

III. DENSITY OPERATORS WITH DIFFERENT
INITIAL CONDITIONS

To obtain the density operators for the system under con-
sideration, we introduce the special generating functionals
R(J ), which are given in Appendix A. Choosing the appro-
priate sources J , we are able to obtain the explicit form for the
density operators for different initial conditions.

A. Initial vacuum state

To obtain the density operator with an initial vacuum state,
we set all J = 0 in R(J ), i.e., we set J (i)

±,n = J (i)
n = 0 in every

partial generating functional R(i)(J ). In this case, the general
density operator with a vacuum initial state takes the form

R(J = 0) = ρ̂v = ⊗
5∏

i=1

ρ̂ (i)
v , ρ̂ (i)

v =
∏
n∈�i

ρ̂ (i)
v,n, (19)

where the one-mode partial density operators ρ̂ (i)
n,v are (in

terms of an in set of creation and annihilation operators1)

ρ̂ (1)
v,n = : exp[−+a†

n +an − −a†
n

−an]:,

ρ̂ (5)
v,n = : exp[−+b†

n
+bn − −b†

n −bn]:,

ρ̂ (3)
v,n = : exp[−−a†

n
−an −− b†

n −bn]:,

ρ̂ (2)
v,n = : exp[−a†

nan]:, ρ̂ (4)
v,n = : exp[−b†

nbn]:. (20)

Taking into account the well-known Berezin formula [42]

|0〉〈0| = : exp[−a†a]:, (21)

one can see that the operators ρ̂ (i)
v,n are in fact partial vacuum

projectors for the initial particles:

ρ̂ (i)
v,n = |0, in〉(i)

n
(i)
n 〈0, in|, i = 1, 3, 5,

ρ̂ (2,4)
v,n = |0〉(2,4)

n
(2,4)
n 〈0|. (22)

One can show that the differential numbers of initial electrons
and positrons [see Eqs. (17) and (18) for reference] in the state

1Here and in what follows colons : · · · : always denote the normal
form with respect to the creation and annihilation operators inside
them.

052116-4



STATES OF CHARGED QUANTUM FIELDS AND THEIR … PHYSICAL REVIEW A 99, 052116 (2019)

described by the operator ρ̂v vanish for all n,

trρ̂v
−a†

n
−an = trρ̂v +a†

n +an = trρ̂v −b†
n −bn

= trρ̂v
+b†

n
+bn = 0, n ∈ �1,3,5,

trρ̂v a†
nan = trρ̂vb†

nbn = 0, n ∈ �2,4. (23)

The mean differential numbers of final electrons and positrons
are different from zero in the range �3. These numbers are
equal to the number of pairs created from vacuum,

Na
n = Nb

n = Ncr
n = trρ̂v

+a†
n

+an = |g(−|+)|−2, n ∈ �3,

(24)

where g(−|+) are mutual decomposition coefficients of the
solutions −ψn(X ) and +ψn(X ) [see Eqs. (A17) and (A18)].

B. Initial thermal state

Before writing the expressions for the density operator, we
must recall that we consider the situation when the electric
field is not zero only in the finite region Sint = (xL, xR ) situ-
ated between the planes x = xL and x = xR. Outside of Sint

for x ∈ SL = (−∞, xL] and for x ∈ SR = [xR,∞) particles
are free (i.e., their movement is unbounded at least in one
direction). It should be noted that usually quantum field theory
deals with physical quantities that are presented by volume
integrals on the hyperplane t = const. The main contribution
to these integrals is from regions SL and SR, where particles
are free. This fact allows one to obtain the explicit form of
kinetic energies for all particles (see details in Ref. [34]) and
is used in what follows.

To obtain the density operator with the initial thermal state,
we need to set the sources J as

J (i)
±,n = e−E±

n∈�i , E±
n = β(ε±

n − μ±), β = 
−1, n ∈ �1,3,5,

J (i)
n = e−En∈�i , En = β(εn − μ), n ∈ �2,4, (25)

where ε±
n and εn are the kinetic energies of particles and

antiparticles with quantum numbers n; μ± and μ are the
corresponding chemical potentials and 
 is the absolute
temperature.2 For the sake of simplicity, in what follows we
will suppose that all chemical potentials for electrons and
positrons are equal. The density operator ρ̂β can be written
as

ρ̂β = ⊗
5∏

i=1

ρ̂
(i)
β , ρ̂

(i)
β =

∏
n∈�i

ρ̂
(i)
β,n, (26)

where the one-mode density operators ρ̂
(i)
β,n have the form

ρ̂
(1)
β,n = [

Z (1)
n

]−1
exp[−+a†

nE+
n +an − −a†

nE−
n

−an],

ρ̂
(5)
β,n = [

Z (5)
n

]−1
exp[−+b†

nE+
n

+bn−,− b†
nE−

n −bn],

ρ̂
(3)
β,n = [

Z (3)
n

]−1
exp[−−a†

nE+
n

−an − −b†
nE−

n −bn],

ρ̂
(2)
β,n = [

Z (2)
n

]−1
exp[−a†

nEnan],

ρ̂
(4)
β,n = [

Z (4)
n

]−1
exp[−b†

nEnbn]. (27)

2Here and later in the definition of von Neumann entropy we omit
the Boltzmann constant kB for the sake of convenience.

The statistical sums Z (i)
n have the form

Z (1,3,5)
n = (1 + e−E+

n )(1 + e−E−
n ), Z (2,4)

n = (1 + e−En ).

(28)

Note that the operators (27) can also be presented as

ρ̂
(i)
β,n = [

Z (i)
n

]−1
exp

{−β
[
Ĥ (i)

n − μN̂ (i)
n

]}
, (29)

where for i = 1, 3, 5 we have

Ĥ (i)
n =

⎧⎪⎨
⎪⎩

+a†
nε

+
n +an + −a†

nε
−
n

−an, n ∈ �1
−a†

nε
+
n

−an + −b†
nε

−
n −bn, n ∈ �3

+b†
nε

+
n

+bn + −b†
nε

−
n −bn, n ∈ �5,

μN̂ (i)
n =

⎧⎪⎨
⎪⎩

μ+ +a†
n +an + μ− −a†

n
−an, n ∈ �1

μ+ −a†
n

−an + μ− −b†
n −bn, n ∈ �3

μ+ +b†
n

+bn + μ− −b†
n −bn, n ∈ �5,

(30)

while for i = 2, 4 these operators take the form

Ĥ (i)
n =

{
a†

nεnan, n ∈ �2

b†
nεnbn, n ∈ �4,

μN̂ (i)
n =

{
μa†

nan, n ∈ �2

μb†
nbn, n ∈ �4.

(31)

The density operators (29) in each range �i are the density
operators of the grand canonical ensemble at temperature

 and with chemical potentials μ± and μ. The differential
mean distributions N (i)

n , calculated with the help of density
matrices ρ̂

(i)
β,n, are well-known Fermi-Dirac and Bose-Einstein

distributions. For example, the differential number of initial
electrons in the range �3 can be found as

N (3)
n,β,−(in)= trρ̂ (3)

β,nN̂ (3)
n,β,−(in)= trρ̂ (3)

β,n
−a†

n
−an = (eE−

n + 1)−1,

n ∈ �3. (32)

Other differential distributions can be calculated in the same
way using the corresponding creation and annihilation opera-
tors and partial density operators.

IV. REDUCED DENSITY OPERATORS

A. Reduced density operators for electron
and positron subsystems

In the general case, the states of the system under con-
sideration at the final time instant contain both particles and
antiparticles due to the pair creation by external fields and
the structure of the initial state. However, we are often inter-
ested in physical quantities F± that describe only electrons
(+) or positrons (−) at the final state of the system. The
corresponding operators F̂± are functions of either electron
creation and annihilation operators a and a† or positron ones
b and b†. The mean values of these operators can be obtained
from the so-called reduced density operators ρ̂±, defined as
reduced traces of the general density matrix ρ̂ over one of the
subsystems (the positron or electron one, respectively):

ρ̂± = tr∓ρ̂, ρ̂ = ⊗
5∏

i=1

ρ̂ (i), ρ̂ (i) =
∏
n∈�i

ρ̂ (i)
n . (33)
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In the latter expression, the reduced traces tr∓ of the operator
ρ̂ are defined as

tr+ρ̂ =
∞∑

M=0

∑
{m}

1

M!

〈
�a

{m}M

∣∣ρ̂∣∣�a
{m}M

〉
,

tr−ρ̂ =
∞∑

M=0

∑
{m}

1

M!

〈
�b

{m}M

∣∣ρ̂∣∣�b
{m}M

〉
, (34)

where |�a (b)
{m}M

〉 are state vectors for electron (positron) states,

∣∣�a
{m}M

〉 = a†
m1

· · · a†
mM

|0, out〉a,∣∣�b
{m}M

〉 = b†
m1

· · · b†
mM

|0, out〉b. (35)

Here |0, out〉a and |0, out〉b are partial electron and positron
vacua. Note that in the ranges �1 and �2 (where only electron

states exist) |0, out〉(1,2)
a = |0, out〉(1,2); similarly to this, in the

ranges �4 and �5 we have |0, out〉(4,5)
b = |0, out〉(4,5). In the

Klein zone �3, where both electron and positron states exist,
the total vacuum is a a product of electron and positron partial
vacua |0, out〉(3)

a ⊗ |0, out〉(3)
b = |0, out〉(3). Every partial elec-

tron and positron vacuum can be presented in turn as a product
in quantum modes

|0, out〉(i)
a =

∏
n∈�i

|0, out〉(i)
a,n, |0, out〉(i)

b =
∏
n∈�i

|0, out〉(i)
b,n.

(36)

For this reason it is obvious enough that the reduced trace
tr+ completely traces out partial density operators ρ̂ (1,2) and
leaves partial operators ρ̂ (4,5) unaffected. In the same manner
the reduced trace tr− traces out operators ρ̂ (4,5) and leaves
ρ̂ (1,2) unchanged. Therefore, the reduced density operators ρ̂±
can be presented as

ρ̂+ = ρ̂ (1) ⊗ ρ̂ (2) ⊗ ρ̂
(3)
+ , ρ̂

(3)
+ = tr− ρ̂ (3),

ρ̂
(3)
+ =

∞∑
M=0

∑
{m}

(M!)−1 (3)
b 〈0, out| +bmM · · · +bm1 ρ̂

(3) +b†
m1

· · · +b†
mM

|0, out〉(3)
b ,

ρ̂− = ρ̂ (4) ⊗ ρ̂ (5) ⊗ ρ̂
(3)
− , ρ̂

(3)
− = tr+ρ̂ (3),

ρ̂
(3)
− =

∞∑
M=0

∑
{m}

(M!)−1 (3)
a 〈0, out| +amM · · · +am1 ρ̂

(3) +a†
m1

. . . +a†
mM

|0, out〉(3)
a . (37)

The reduced density operators ρ̂
(3)
± can be obtained from the reduced generating functionals R(3)

± ,

R(3)
± = tr∓R(3), (38)

where the partial traces are defined in the same way as in Eq. (37).
Using the path-integral representation for traces (C6) in the representation (A50) for R(3), we obtain that

R(3)
+ =

∏
n∈�3

[
Z (3)

+,n

]−1
: exp{−+a†

n[1 − K+(J )] +an}:,

R(3)
− =

∏
n∈�3

[
Z (3)

−,n

]−1
: exp{−+b†

n[1 − K−(J )] +bn}:,

K±(J ) = D± + C†(1 + D∓)−1C,
[
Z (3)

±,n

]−1 = |wn(−|−)|−2(1 + AB)(1 + D∓),

(39)

where A, B, C, and D± are some functions of sources J and relative elementary amplitudes wn given by Eq. (A50); wn(−|−) is
the relative amplitude of the electron transition. The explicit form of the elementary amplitudes wn is given by Eq. (A47).
Choosing appropriate sources J in the same manner as it was done in Sec. III, we can obtain the corresponding partial
density operators ρ̂

(3)
± for different initial conditions.

B. Measurement-induced reduction

We can also consider a reduction of density operators, which occurs due to measurement of a physical quantity, namely, the
number of final particles, by some classical tool. This kind of reduction can also occur due to some decoherence processes,
such as collisions with some external sources (e.g., with impurities in graphene). For us, there is no difference which of the
mechanisms is implemented, so in what follows we talk about an intermediate measurement by a classical tool as a source of the
decoherence.

We study the measurement-induced deformation of the density matrix for two initial conditions, namely, when the initial state
of the system is a pure state and when the system initially is in a thermal equilibrium. Suppose that we are measuring the number
of final particles (electrons or positrons) N in the state ρ̂ of the system under consideration. According to von Neumann [43],
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the density operator ρ̂ after this measurement is reduced to the operator ρ̂N of the form

ρ̂N =
∑
{s}

WsP̂s, P̂s = |s, out〉〈s, out|, Ws = 〈s, out|ρ̂|s, out〉, (40)

where |s, out〉 are eigenstates of the operator N̂ with the eigenvalues s that represent the total number of electrons and positrons
in the state |s, out〉,

N̂ (out)|s, out〉 = s|s, out〉, |s, out〉 =
∏

n∈�1

[+a†
n]ln,1 [−a†

n]kn,1
∏

n∈�2

[a†
n]ln,2

×
∏

n∈�4

[b†
n]ln,4

∏
n∈�5

[+b†
n]ln,5 [−b†

n]kn,5
∏

n∈�3

[+a†
n]ln,3 [+b†

n]kn,3 |0, out〉,

s =
∑
n∈�1

(ln,1 + kn,1) +
∑
n∈�2

(ln,2) +
∑
n∈�4

(ln,4) +
∑
n∈�5

(ln,5 + kn,5) +
∑
n∈�3

(ln,3 + kn,3). (41)

Note that for Dirac particles ln,i, kn,i = (0, 1). It is convenient to introduce partial density operators for each range �i:

ρ̂
(i)
N =

∏
n∈�i

ρ̂
(i)
N,n, ρ̂

(i)
N,n =

∑
{si}

W (i)
s,n P̂(i)

s,n,

P̂(i)
s,n = |si, out〉(i)

n
(i)
n 〈si, out|, W (i)

s,n = (i)〈si, out|ρ̂ (i)|si, out〉(i). (42)

This way the general density operator of the system can be presented as

ρ̂N = ⊗
5∏

i=1

ρ̂
(i)
N . (43)

The state vectors |si, out〉(i)
n introduced in Eq. (42) are different for each range �i:

|s1, out〉(1)
n = [+a†

n]ln,1 [−a†
n]kn,1 |0, out〉(1)

n , s1 = ln,1 + kn,1,

|s3, out〉(3)
n = [+a†

n]ln,3 [+b†
n]kn,3 |0, out〉(3)

n , s3 = ln,3 + kn,3,

|s5, out〉(5)
n = [+b†

n]ln,5 [−b†
n]kn,5 |0, out〉(5)

n , s5 = ln,5 + kn,5,

|s2, out〉(2)
n = [a†

n]ln,2 |0〉(2)
n , |s4, out〉(4)

n = [b†
n]ln,4 |0〉(4)

n , s2 (4) = ln,2 (4). (44)

The sum of all eigenvalues is equal to the total number of particles in the state |s, out〉, i.e.,
∑5

i=1

∑
n∈�i

si = s. In what follows
we also use the following notation for partial vacuum projectors for the Klein zone:

P(3)
v,n (in) = |0, in〉(3)

n
(3)
n 〈0, in|, P(i)

v,n(out) = |0, out〉(i)
n

(i)
n 〈0, out|. (45)

1. Initial vacuum state

Vacuum states in ranges �1,2,4,5 remain in vacuum and the measurement of the number of particles does not deform the partial
density operators with vacuum initial conditions in these ranges. It is easy to show that in the Klein zone �3 the initial vacuum
state evolves as

|0, in〉(3)
n = cv,n[1 − +a†

nwn(+ − |0)+b†
n]|0, out〉(3)

n , cv,n = (3)
n 〈0, out|0, in〉(3)

n , (46)

where wn(+ − |0) is a relative amplitude of pair production. The corresponding partial density operator ρ̂ (3)
v,n with an initial

vacuum state can be written as

ρ̂ (3)
v,n = P(3)

v,n (in) = |cv,n|2[1 − +a†
nwn(+ − |0) +b†

n]P(3)
v,n (out)[1 − +bnwn(+ − |0)∗ +an]. (47)

Performing a reduction procedure (40), we obtain

ρ̂
(3)
N,n = |cv,n|2P(3)

v,n (out) + |cv,n|2|wn(+ − |0)|2 +a†
n +b†

nP(3)
v,n (out) +bn

+an. (48)

The first term of this expression corresponds to the situation where we find a vacuum state after the measurement and the
second one corresponds to the situation where we find the state with an electron-positron pair. The coefficients |cv,n|2 and
|cv,n|2|wn(+ − |0)|2 are classical probabilities for each of the outcomes.

2. Initial thermal state

We can consider the measurement-induced reduction for the thermal initial state of the system. The partial density operators
ρ̂ (i)

n are obtained from the generating functionals R(i) by setting the sources J as in Eq. (25). The following are the nonvanishing
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weights W (i) from Eq. (42): the range �1,

W (1)
1,n = (1)

n 〈0, out|ρ̂ (1)
β,n|0, out〉(1)

n = [
Z (1)

n

]−1
,

W (1)
2,n = (1)

n 〈0, out| +anρ̂
(1)
β,n

+a†
n|0, out〉(1)

n = [
Z (1)

n

]−1
C̃++, C̃++ = 1 + C++,

W (1)
3,n = (1)

n 〈0, out|−anρ̂
(1)
β,n −a†

n|0, out〉(1)
n = [

Z (1)
n

]−1
C̃−−, C̃−− = 1 + C−−,

W (1)
4,n = (1)

n 〈0, out| +an −anρ̂
(1)
β,n −a†

n
+a†

n|0, out〉(1)
n = [

Z (1)
n

]−1
[C̃++C̃−− − C+−C−+]; (49)

the range �5,

W (5)
1 = (5)

n 〈0, out|ρ̂ (5)
β,n|0, out〉(5)

n = [
Z (5)

n

]−1
,

W (5)
2 = (5)

n 〈0, out| +bnρ̂
(5)
β,n +b†

n|0, out〉(5)
n = [

Z (5)
n

]−1
D̃++, D̃++ = 1 + D++,

W (5)
3 = (5)

n 〈0, out| −bnρ̂
(5)
β,n

−b†
n|0, out〉(5)

n = [
Z (5)

n

]−1
D̃−−, D̃−− = 1 + D−−,

W (5)
4 = (5)

n 〈0, out| +bn
−bnρ̂

(5)
β,n

−b†
n +b†

n|0, out〉(5)
n = [

Z (5)
n

]−1
[D̃++D̃−− − D+−D−+]; (50)

and the range �3,

W (3)
1 = (3)

n 〈0, out|ρ̂ (3)
β,n|0, out〉(3)

n = Z̃ (3)
n , Z̃ (3)

n = [
Z (3)

n

]−1|cv,n|2(1 + AB),

W (3)
2 = (3)

n 〈0, out| +anρ̂
(3)
β,n

+a†
n|0, out〉(3)

n = Z̃ (3)
n D+,

W (3)
3 = (3)

n 〈0, out| +bnρ̂
(3)
β,n +b†

n|0, out〉(3)
n = Z̃ (3)

n D−,

W (3)
4 = (3)

n 〈0, out| +an +bnρ̂
(3)
β,n +b†

n
+a†

n|0, out〉(3)
n = Z̃ (3)

n (D+D− + C†C). (51)

C. Spatial reduction (left and right subsystems)

The x-electric potential steps provide the spatial separation of the whole system in two subsystems, the left subsystem and
right subsystem, i.e., final particles to the left of potential step and final particles to the right of potential step. It is easy to imagine
a situation when we are interested in measuring physical values only in left and right asymptotic areas. For example, we can
suppose that measuring tools are situated only to the left of the potential step. In this case the general density operator must be
averaged (reduced) over all unavailable states of the final right particles.

From the general theory [34] we know the following. In the range �3 all the electrons (initial and final) are located on the left
side of the potential step and all the positrons are on the right side. Therefore, one can see that a reduction over the left and right
subsystems in the range �3 coincides with a reduction over electron and positron subsystems, respectively, i.e.,

ρ̂
(3)
left = ρ̂

(3)
+ , ρ̂

(3)
right = ρ̂

(3)
− . (52)

In the range �2 there are only electrons on the left side of potential step, so ρ̂
(2)
left = ρ̂ (2). Similarly, there are only right

positrons in the range �4; therefore ρ̂
(4)
right = ρ̂ (4).

The range �1 contains left and right electrons; the range �5 contains left and right positrons. In these ranges we need to
consider the reduction of partial generating functionals over the left or right final particles. Let us start with the range �1. It is
convenient to use the expression for the generating functional R(1) given by Eq. (A39) to calculate the partial (right and left)
trace over states with right electrons, i.e., states constructed with creation and annihilation operators +a† and +a, or −a† and −a,
thus creating spatially reduced partial generating functionals as

R(1)
left = tr(1)

rightR
(1), R(1)

right = tr(1)
leftR

(1),

trrightÂ =
∞∑

M=0

∑
{m}

(M!)−1
〈
�

right
{m}M

∣∣A∣∣�right
{m}M

〉
, (53)

trleftÂ =
∞∑

M=0

∑
{m}

(M!)−1
〈
� left

{m}M

∣∣A∣∣� left
{m}M

〉
,
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where |�right
{m}M

〉 and |� left
{m}M

〉 are state vectors for right and left electrons, respectively,∣∣�right
{m}M

〉 = +a†
m1

· · · +a†
mM

|0, out〉(1)
right,∣∣� left

{m}M

〉 = −a†
m1

· · · −a†
mM

|0, out〉(1)
left,

|0, out〉(1)
right ⊗ |0, out〉(1)

left = |0, out〉(1).

(54)

Note that partial left and right electron vacua can be factorized in quantum modes n and therefore generating functionals (53)
can be factorized as well. Taking this into account and calculating the trace, we obtain

R(1)
left, n = (1 + C̃++): exp{−a†

nL− −an}:, L− = C−− − C+−(1 + C̃++)−1C−+,

R(1)
right, n = (1 + C̃−−): exp{+a†

nL+ +an}:, L+ = C++ − C+−(1 + C̃−−)−1C−+. (55)

Similar results can be obtained for the range �5:

R(5)
right, n = (1 + D̃−−): exp{+b†

nK+ +b†
n}:, K+ = D++ − D+−(1 + D̃−−)−1D−+,

R(5)
left, n = (1 + D̃++): exp{−b†

nK− −bn}:, K− = D−− − D+−(1 + D̃++)−1D−+. (56)

Now setting the sources J as discussed in Sec. III, one can
obtain the density operators ρ̂

(1,5)
left (right) with different initial

conditions.

V. ENTROPY OF REDUCED DENSITY OPERATORS

It is known that the electron-positron pair is always pro-
duced in an entangled state. The process of pair production
does not change the entropy of the whole system since its
evolution is unitary. It is easy, however, to imagine a situa-
tion in which only a certain quantum subsystem is available
for measurements; in this case, we must reduce the total
density matrix over the states of the inaccessible subsystem.
Reduction over one of the quantum subsystems makes part
of the information unavailable [44]. Thus, the reduced den-
sity operators we have introduced in the preceding section
always describe mixed states even when the initial state of
the system is pure. This means that the entropy of particular
subsystems can change as the subsystems become entangled
due to pair creation. This entropy change can be used as a
measure of information loss due to reduction or as a measure
of entanglement between those subsystems. In what follows
we show that the above-mentioned entropy change due to pair
production can be quantified via the corresponding numbers
of final particles, which depend on the choice of initial state
and on the type of reduction, or, in other words, on the
choice of quantum subsystem. By controlling the strength and
duration of the electric field applied to the system, we have
the theoretical ability to change the average number of pairs
generated by the field and thus their entanglement. Another
important task is to understand how a measurement of a
physical value (for example, a measurement of the final mean
number of particles) can change the entropy of the system.
To address all these questions we calculate the entropy, corre-
sponding to different reductions of the general density matrix
for different initial conditions. As a measure of information
loss due to reduction, we use the von Neumann entropy,
defined as

S(ρ̂) = −trρ̂ ln ρ̂. (57)

A. Entropy corresponding to reduction over the subsystems
of electrons and positrons

First, we calculate von Neumann entropy for reduced den-
sity matrices (37),

S(ρ̂±) = −trρ̂± ln ρ̂±, (58)

where tr denotes the full trace of the operator, trÂ = tr−tr+Â.
Using the definitions (37), let us transform the operator ln ρ̂±
as follows:

ln ρ̂+ = ln ρ̂ (1) + ln ρ̂ (2) + ln ρ̂
(3)
+ ,

ln ρ̂− = ln ρ̂ (5) + ln ρ̂ (4) + ln ρ̂
(3)
− . (59)

Due to the fact that partial density matrices ρ̂ (i) and ρ̂
(3)
±

are normalized (trρ̂ (i) = trρ̂ (3)
± = 1), it is easy to show that

Eq. (58) transforms into the sum of entropies

S(ρ̂+) = S(ρ̂ (1) ) + S(ρ̂ (2) ) + S(ρ̂ (3)
+ ),

S(ρ̂−) = S(ρ̂ (5) ) + S(ρ̂ (4) ) + S(ρ̂ (3)
− ). (60)

We recall that in each range �i the partial density operators
ρ̂ (i) and ρ̂

(3)
± can be factorized in quantum modes n and

each one-mode operator is also normalized. This allows us
to further simplify the expressions (60) and write

S(ρ̂ (i) ) =
∑
n∈�i

S(ρ̂ (i)
n ) = −

∑
n∈�i

trρ̂ (i)
n ln ρ̂ (i)

n , i = 1, 2, 4, 5,

S(ρ̂ (3)
± ) =

∑
n∈�3

S(ρ̂ (3)
±,n) = −

∑
n∈�3

trρ̂ (3)
±,n ln ρ̂

(3)
±,n. (61)

Now one can calculate the entropy for the density operators
with different initial conditions.

1. Initial vacuum state

In this case partial density operators ρ̂ (i)
n , i = 1, 2, 4, 5, are

given by Eq. (20). It is easy to see that the corresponding en-
tropies vanish, i.e., S(ρ̂ (1,2,4,5)

n ) = 0. The entropies of density
operators ρ̂

(3)
±,n are equal and can be calculated [35] to have the

form

S
(
ρ̂

(3)
±,n

) = −[(
1 − Ncr

n

)
ln

(
1 − Ncr

n

) + Ncr
n ln Ncr

n

]
, (62)
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where Ncr
n is the mean differential number of pairs created from vacuum by the electric field (24). The total entropy can be found

as a sum over all quantum numbers in �3,

S(ρ̂ (3)
± ) = −

∑
n∈�3

[(
1 − Ncr

n

)
ln

(
1 − Ncr

n

) + Ncr
n ln Ncr

n

]
. (63)

2. Initial thermal state

The entropies corresponding to partial density operators ρ̂
(i)
β,n are

S
(
ρ̂

(1,5)
β,n

) = −
∑
ζ=±

{[
1 − N (1,5)

n,β,ζ (in)
]

ln
[
1 − N (1,5)

n,β,ζ (in)
] + N (1,5)

n,β,ζ (in) ln N (1,5)
n,β,ζ (in)

}
, (64a)

S
(
ρ̂

(2,4)
β,n

) = −{[
1 − N (2,4)

n,β (in)
]

ln
[
1 − N (2,4)

n,β (in)
] + N (2,4)

n,β (in) ln N (2,4)
n,β (in)

}
, (64b)

S
(
ρ̂

(3)
β,±,n

) = −{[
1 − N (3)

n,β,±(out)
]

ln
[
1 − N (3)

n,β,±(out)
] + N (3)

n,β,±(out) ln N (3)
n,β,±(out)

}
, (64c)

where the mean differential numbers of particles from Eqs. (64a) and (64b) are given by

N (1)
n,β,ζ (in) = (

eE ζ
n + 1

)−1
, ζ = ±, n ∈ �1,5,

Nn,β (in) = (eEn + 1)−1, n ∈ �2,4, (65)

and N (3)
n,β,±(out) are the differential mean numbers of final electrons (+) and positrons (−) in the range �3,

N (3)
n,β,+(out) = trρ̂ (3)

+,n,β
+a†

n
+an = Ncr

n

[
1 − N (3)

n,β,−(in)
] + (

1 − Ncr
n

)
N (3)

n,β,+(in),

N (3)
n,β,−(out) = trρ̂ (3)

−,n,β +b†
n +bn = Ncr

n

[
1 − N (3)

n,β,+(in)
] + (

1 − Ncr
n

)
N (3)

n,β,−(in). (66)

The differential mean numbers N (3)
n,β,±(in) in Eq. (66) can be calculated similarly to Eq. (32) using the corresponding creation

and annihilation operators.

B. Entropy corresponding to measurement-induced reduction

The measurement reduced density operators ρ̂
(i)
N with different initial conditions are given by Eq. (42). Similarly to the

preceding section, it is easy to show that von Neumann entropy can be presented as the sum over quantum modes n of partial
entropies

S
(
ρ̂

(i)
N

) =
∑
n∈�i

S
(
ρ̂

(i)
N,n

) = −
∑
n∈�i

trρ̂ (i)
N,n ln ρ̂

(i)
N,n. (67)

Therefore, to obtain the total entropy it is sufficient to calculate only the entropies S(ρ̂ (i)
N,n) corresponding to partial density

operators ρ̂
(i)
N,n and then perform the summation over all quantum numbers n ∈ �i.

1. Initial vacuum state

Let us calculate von Neumann entropy corresponding to density operator ρ̂
(3)
N,n. We can show that the entropy for this case

takes the form

S
(
ρ̂

(3)
N,n

) = −[|cv,n|2 ln |cv,n|2 + |cv,n|2|wn(+ − |0)|2 ln |cv,n|2|wn(+ − |0)|2],

|cv,n|2 = 1 − Ncr
n , |wn(+ − |0)|2 = Ncr

n

(
1 − Ncr

n

)−1
, (68)

which leads us to the result

S
(
ρ̂

(3)
N,n

) = −[(
1 − Ncr

n

)
ln

(
1 − Ncr

n

) + Ncr
n ln Ncr

n

]
. (69)

2. Initial thermal state

For this case the density operators ρ̂
(1)
N,n, ρ̂

(3)
N,n, and ρ̂

(5)
N,n have the form (42) with the weights W given by Eq. (49) in �1, by

Eq. (50) in �5, and by Eq. (51) in �3. It can be shown that entropies S(ρ̂ (i)
N,n) take the form

S
(
ρ̂

(i)
N,n

) = −
4∑

l=1

W (i)
l ln W (i)

l . (70)
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Sources J , given in Eq. (25) for the case of the thermal initial state are connected to differential mean numbers of initial particles
by the relation

J (i)
±,n = e−E±

n∈�i = N (i)
n,β,±(in)

[
1 − N (i)

n,β,±(in)
]−1

. (71)

Using then Eqs. (A41)–(A43) and (A50), it is possible to present weights W (i)
l via differential mean numbers of initial particles,

reflection |Rn|2 and transition |Tn|2 probabilities, and the number of particles created from vacuum Ncr
n .

C. Entropy corresponding to spatial reduction (left and right)

We can also calculate von Neumann entropy for the left and right reduced density operators, found in Eqs. (55) and (56). For
the reduced generating functionals from �1 this entropy has the form

S
(
R(1)

left

) = −trR(1)
leftlnR(1)

left =
∑
n∈�1

[
ln Z (1)

n − ln(1 + C̃++) − N (1)
n,−(out) ln(1 + L−)

]
,

S
(
R(1)

right

) = −trR(1)
rightlnR(1)

right =
∑
n∈�1

[
ln Z (1)

n − ln(1 + C̃−−) − N (1)
n,+(out) ln(1 + L+)

]
, (72)

where N (1)
n,−(out) and N (1)

n,+(out) are the differential mean numbers of left and right final electrons in �1,

N (1)
n,−(out) = trR(1)

left −a†
n −an = [

Z (1)
n

]−1
[(1 + C̃++)C̃−− − C+−C−+],

N (1)
n,+(out) = trR(1)

right
+a†

n
+an = [

Z (1)
n

]−1
[(1 + C̃−−)C̃++ − C+−C−+]. (73)

Using the fact that reduced generating functionals R(1)
left are normalized, trR(1)

left = 1, one can show that the following relations hold
true:

1 + L− = N (1)
n,−(out)

1 − N (1)
n,−(out)

,

1 + L+ = N (1)
n,+(out)

1 − N (1)
n,+(out)

,

1 + C̃±±
Z (1)

n

= (2 + L∓)−1.

(74)

Using these expressions, we can represent Eq. (72) as

S
(
R(1)

left

) = −∑
n∈�1

{[
1 − N (1)

n,−(out)
]

ln
[
1 − N (1)

n,−(out)
] + N (1)

n,−(out) ln N (1)
n,−(out)

}
,

S
(
R(1)

right

) = −∑
n∈�1

{[
1 − N (1)

n,+(out)
]

ln
[
1 − N (1)

n,+(out)
] + N (1)

n,+(out) ln N (1)
n,+(out)

}
. (75)

For the reduced generating functionals from �5 the result reads

S
(
R(5)

left

) = −trR(5)
leftlnR(5)

left =
∑
n∈�5

[
ln Z (5)

n − ln(1 + D̃++) − N (5)
n,+(out) ln(1 + K+)

]
,

S
(
R(5)

right

) = −trR(5)
rightlnR(5)

right =
∑
n∈�5

[
ln Z (5)

n − ln(1 + D̃−−) − N (5)
n,−(out) ln(1 + K−)

]
, (76)

where N (5)
n,+(out) and N (5)

n,−(out) are the differential mean numbers of final positrons,

N (5)
n,+(out) = trR(5)

left +b†
n +bn = [

Z (5)
n

]−1
[(1 + D̃++)D̃−− − D+−D−+],

N (5)
n,−(out) = trR(5)

right
−b†

n
−bn = [

Z (5)
n

]−1
[(1 + D̃−−)D̃++ − D+−D−+]. (77)

The entropies (76) in terms of mean differential numbers (77) take the form

S
(
R(5)

left

) = −
∑
n∈�5

{[
1 − N (5)

n,+(out)
]

ln
[
1 − N (5)

n,+(out)
] + N (5)

n,+(out) ln N (5)
n,+(out)

}
,

S
(
R(5)

right

) = −
∑
n∈�5

{[
1 − N (5)

n,−(out)
]

ln
[
1 − N (5)

n,−(out)
] + N (5)

n,−(out) ln N (5)
n,−(out)

}
. (78)
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D. Loss of information due to electron-positron reduction in the L-constant field

Here we illustrate some of the obtained formulas by considering the deformation of the quantum vacuum between two infinite
capacitor plates separated by a finite distance L. Several aspects of particle creation by the constant electric field between such
plates (this field is also called the L-constant electric field) were studied in Ref. [40]. The latter field is a particular case of
the x-electric potential step. Thus, we consider the L-constant electric field in d = D + 1 dimensions. We choose E(x) = Ei

(i = 1, . . . , D), E1 = Ex(x), E2,...,D = 0, and

Ex(x) =

⎧⎪⎨
⎪⎩

0, x ∈ (−∞,−L/2]

E = const > 0, x ∈ (−L/2, L/2)

0, x ∈ [L/2,∞).

We consider a particular case with a sufficiently large length L between the capacitor plates,
√

eEL 
 max{1, Ec/E}. (79)

Here Ec = m2/e is the critical Schwinger field. We conditionally call this approximation as large work approximation when
�U = eEL 
 2m. Such an x-electric step represents a regularization for a constant uniform electric field and is suitable for
imitating a small-gradient field.

1. Initial vacuum state

Let us calculate von Neumann entropy corresponding to subsystems of electrons and positrons created from vacuum in �3.
The leading asymptotic contributions to the differential and total number of those created from the vacuum particles in the large
work approximation have the form [40]

Ncr
n ≈ exp

[
−π

π2
⊥

eE

]
, Ncr ≈ J(d )TV (eE )d/2

(2π )d−1
exp

(
−π

Ec

E

)
, (80)

where V = LV⊥ is the volume inside the capacitor (the volume occupied by the electric field, L is the distance between capacitor
plates, and V⊥ is the transversal volume of capacitor), J(d ) = 2[d/2]−1 is a spin summation factor,3 and e > 0 is an absolute value
of electron charge.

Let us estimate the information loss of the reduced electron and positron subsystems, which can be calculated as entropies
(63) of these states. Performing summation over quantum modes n (for the details of this operation see Refs. [35,40]), we obtain
the expression

S
(
ρ̂

(3)
±

) ≈ J(d )TV (eE )d/2

(2π )d−1
exp

(
−π

Ec

E

)
A(d, Ec/E ) if d > 2, (81)

where the factor A(d, Ec/E ) has the form

A(d, Ec/E ) =
[

(πEc/E + d/2 − 1) +
∞∑

l=1

[l−d/2 − l−1(l + 1)(2−d )/2 exp(−πEc/E )] exp[−π (l − 1)Ec/E ]

]
. (82)

Comparing Eqs. (81) and (80), one can see that the entropy is
proportional to the total number of particles created, i.e.,

S
(
ρ̂

(3)
±

) ≈ NcrA(d, Ec/E ). (83)

The result coincides with that obtained for the T -constant
electric field in Ref. [20], i.e., we reproduce exactly the same
expression for the entropy of the electron-positron subsystem
for the vacuum initial state. This result shows that despite
the fact that L-constant and T -constant electric fields are
physically distinct, they can be considered as two different
regularizations of the uniform constant electric field in the
limit T , L → ∞.

3Here [· · · ] denotes the integer part of the expression.

2. Initial thermal state

Here we only consider the Klein zone �3 as well, as for the
case of the electron-positron subsystem reduction the density
operators of the other quantum ranges �i either are com-
pletely traced out and do not contribute to the von Neumann
entropy, or are undisturbed by the reduction and therefore
their initial entropy does not change after the reduction.

We take the Fermi distributions as those of the initial
particles. They depend on particle energy and are given by
Eq. (25). In the Klein zone these distributions have the form

N (3)
n,β,±(in) = {exp[β(ε±

n − μ±)] + 1}−1. (84)

At any given p⊥ the available quantum numbers p0 in the
Klein zone for the L-constant field are restricted by the
definition of the Klein zone [34]

UL + π⊥ � p0 � UR − π⊥, UR = −UL = �U/2 = eEL/2

(85)
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such that

ε±
n = ±p0 + �U

2

[
1 − Ncr

n

]
. (86)

Here UL = −eA0(x → −∞) and UR = −eA0(x → +∞) are
the left and right asymptotic potential energies, respectively.

Let us analyze Eq. (84) for initial electrons. The number
Ncr

n is even with respect to the change p0 → −p0 and has
the form (80) for the large range if |p0|, π⊥ � �U/2. At
the left (right) edge of the Klein zone asymptotic longitudinal
momenta |pL| (|pR|),

|pL (R)| =
√

[±p0 + �U/2]2 − π2
⊥,

tends to zero and one of the following limits holds true: N cr
n ∼

|pL|/√eE → 0 or Ncr
n ∼ |pR|/√eE → 0, respectively. We

see that kinetic energies ε±
n tend to the minimum, given by

transversal energy ε±
n → π⊥. Therefore, it is more likely to

find a particle with a lower kinetic energy ∼π⊥, just as one
would expect.

For further analysis it is convenient to rewrite the expres-
sions (66) for the final differential number of electrons and
positrons as

N (3)
n,β,+(out) = N (3)

n,β,+(in) + Ncr
n

[
1 − N (3)

n,β,−(in) − N (3)
n,β,+(in)

]
,

N (3)
n,β,−(out) = N (3)

n,β,−(in) + Ncr
n

[
1 − N (3)

n,β,−(in) − N (3)
n,β,+(in)

]
.

(87)

Note that if μ+ = μ− = μ, the sum N (3)
n,β,−(in) + N (3)

n,β,+(in) is
even with respect to the change p0 → −p0. Further consider-
ation can be easily extended to the case when, for example,
N (3)

n,β,+(in) = 0 or N (3)
n,β,−(in) = 0, i.e., when only one type of

initial particle is present. We can sum these expression over
quantum numbers n ∈ �3 as

N (3)
β,±(out) =

∑
n∈�3

N (3)
n,β,±(out)

= J(d )TV⊥
(2π )d−1

∫
p⊥,p0∈�3

dd−2 p⊥d p0N (3)
n,β,±(out).

(88)

It was shown in Ref. [40] that a leading contribution to Ncr
n ,

given by Eq. (80), comes from the inner subrange D, defined
as

π⊥√
eE

< K⊥, |p0|/
√

eE <
√

eEL/2 − K,

√
eEL/2 
 K 
 K2

⊥ 
 max{1, m2/eE}. (89)

For the second terms of Eqs. (87) Ncr
n acts as a cutoff factor, so

we can integrate over subrange D only. Note that for quantum
modes n′ where Ncr

n′ is small enough, i.e., the number of
particles created is small enough, distributions N (3)

n,β,±(out) are

only slightly differ from initial distributions N (3)
n,β,±(in). In this

situation, the corresponding entropy will almost coincide with
the initial entropy of each subsystem,

S
(
ρ̂

(3)
±,n′

) ≈ − {[
1 − N (3)

n′,β,±(in)
]

ln
[
1 − N (3)

n′,β,±(in)
]

+ N (3)
n′,β,±(in) ln N (3)

n′,β,±(in)
}
. (90)

To calculate the impact of a pair creation we can rewrite
Eq. (88) as

N (3)
β,±(out) ≈ J(d )TV⊥

(2π )d−1

∫
p⊥,p0∈D

dd−2 p⊥d p0N (3)
n,β,±(out). (91)

Let us consider, for example, the case Ncr
n � 1. Taking the

relation (86) and integrating N (3)
n,β,±(in) over p0, we obtain that

the leading term is∫
D

d p0N (3)
n,β,+(in) = N (3)

⊥,β,±(in),

N (3)
⊥,β,±(in) ≈ 1

β
ln

1 + exp[−β(
√

eEK − μ)]

1 + exp[−β(eEL − μ)]
. (92)

In particular, for low temperature and not very large μ,√
eEK 
 μ, we have β(eEL − μ) 
 β(

√
eEK − μ) 
 1

and then

N (3)
⊥,β,±(in) ≈ 1

β
ln |1 + exp[−β(

√
eEK − μ)]|

≈ 1

β
exp[−β(

√
eEK − μ)]. (93)

For high temperature, 1 
 β(eEL − μ) 
 β(
√

eEK − μ),

N (3)
⊥,β,±(in) ≈ 1

2 (eEL −
√

eEK ). (94)

Integrating it over the transversal momentum, we get

N (3)
β,±(in) ≈ J(d )TV⊥

(2π )d−1
(2K⊥)d−2(eE )d/2−1N (3)

⊥,β,±(in)

≈ J(d )TV (eE )d/2

2(2π )d−1
(2K⊥)d−2. (95)

The second terms of (87) can be integrated in a similar way,∫
D

dd−2 p⊥d p0Ncr
n

[
1 − N (3)

n,β,−(in) − N (3)
n,β,+(in)

]
=

∫
D

dd−2 p⊥Ncr
n

[
eEL − 2

√
eEK − N (3)

⊥,β,+(in)

− N (3)
⊥,β,−(in)

]
. (96)

Note that for high temperature, the second terms of (87)
vanish. This means that for this particular case N (3)

β,±(out) ≈
N (3)

β,±(in), and the starting entropy of the system does not
change significantly due to pair creation and subsequent re-
duction over one of the subsystems.

The corresponding entropy for the general case is not
difficult to write,

S
(
ρ̂

(3)
±

) = −
∑
n∈D

{[
1 − N (3)

n,β,±(out)
]

ln
[
1 − N (3)

n,β,±(out)
]

+ N (3)
n,β,±(out) ln N (3)

n,β,±(out)
}
, (97)

where the summation over the quantum numbers can be done
in the same manner as in Eq. (88). However, unlike the case
of the vacuum initial state, the expression (97) is complicated.
To obtain further results from it one must utilize numerical
calculations with definite parameters of a particular system
configuration: temperature 
 = β−1, field strength E , and
capacitor length L.
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We can see that for very low temperatures, β → ∞, and
N (3)

n,β,±(in) → 0, we reproduce the result obtained for the
vacuum initial condition. Similar to the case of a vacuum
initial state, Eq. (97) reproduces the one that can be obtained
for the case of a T -constant electric field in the first order of
magnitude, supporting the conclusion that both fields can be
considering the two different regularizations of the uniform
constant electric field in the limit T , L → ∞.

We also note that there is the following difference when
considering the thermal initial state for an x-electric potential
step. Unlike the case of time-dependent electric fields, the
initial left and right subsystems are spatially separated and
may in principle have different temperatures.

VI. CONCLUSION

In this work, we have considered the deformation of dif-
ferent initial states by constant nonuniform electric fields and
statistical properties of the resulting states. We introduced
a special generating functional that allows us to construct
density operators for different initial conditions. In graphene
and similar materials any electric field can be considered as
critical due to the fact that charge carriers are massless. Be-
cause of this, a significant number of carrier pairs is produced.
Possible dissipative processes lead to a loss of coherence of
the states arising from vacuum and it becomes necessary to
study the statistical properties of the state generated by the
field. For this reason, we considered two cases of initial states
of the system other than vacuum: the case when the system
was initially in thermodynamic equilibrium at an absolute
temperature 
 = β−1 and the case of a pure state with a
certain number of particles with fixed quantum numbers. In
the framework of QED with x-electric potential steps, we have
to introduce five partial generating functionals for each range
of quantum numbers �. To simplify further calculations, we
construct the normal form of these generating functionals in
terms of creation and annihilation operators corresponding to
final particles. Setting appropriate sources in these generating
functionals, we obtain density operators for different initial
states of the system: the vacuum state, pure states with a
definite number of particles with fixed quantum numbers,
and the thermal initial state. We also note that it is formally
possible to construct the generating functional for a system
with different initial conditions in different areas of quantum
numbers �. For example, choosing J (3)

±,n = J (2)
n = J (4)

n = 0
and J (1)

±,n = J (5)
±,n = e−E±

n , we can construct the following den-
sity operator:

ρ̂mix =
∏

n∈�1

ρ̂
(1)
β,n ⊗

∏
n∈�2

ρ̂ (2)
v,n ⊗

∏
n∈�3

ρ̂ (3)
v,n ⊗

∏
n∈�4

ρ̂ (4)
v,n ⊗

∏
n∈�5

ρ̂
(5)
β,n.

(98)

This density operator corresponds to the case when there are
particles with quantum numbers n from ranges �1 and �5

in thermal equilibrium at the initial time instant, but there
are no particles that belong to the Klein zone �3 (i.e., the
initial state in this range was the vacuum state) as well as
in the ranges �2 and �4. Moreover, the functionals R(i)(J )
permit factorization in quantum modes n and each of those
modes evolve separately. This fact allows one to assemble

the general density operator as a product of partial opera-
tors R(i)

n (J ), setting their initial conditions individually for
each mode n. Sometimes there are situations when only part
of the system is available for observation; in this case we
need to construct reduced density operators that describe this
available part only. Another possible scenario for reduction
is a measurement with the classical tool, which causes de-
coherence and deforms the general density operator of the
system. We considered three types of reduction: the reduction
over electron and positron subsystems, the reduction due to
measurement of the number of final particles, and the spatial
reduction over left or right final particles. We note that the
latter kind of reduction is of interest when considering the
types of fields that are concentrated in restricted space areas.
We can compare the situation at hand to the case of QED
with t-electric potential steps [15]: For time-dependent uni-
form fields spatial reduction always coincides with reduction
over electron or positron subsystems, as formulation of the
problem suggests that the field occupies the entire space.
Therefore, for a field acting for a sufficiently long time period
all the final electrons, regardless of their initial state, move in
the direction of the field (and all the final positrons move in
the opposite direction). The same can be said about electron-
positron pairs created from vacuum by an external field. For
this reason the electron subsystem always coincides with the
left spatial subsystem and the positron subsystem coincides
with the right spatial subsystem in uniform time-dependent
electric fields. However, for x-potential electric steps [34] the
electric field is restricted in a finite area of space. Thus, there
exist initial particles in ranges �1 and/or �5, which can go
through the potential barrier and end up at the opposite side
of the potential barrier as free final particles. Taking that
into account, we can conclude that the spatial reduction is
different from electron-positron subsystem reduction in the
general case. However, this difference exists only when there
are initial particles in ranges �1 and �5. When there are
no initial particles in these ranges, e.g., for the case of the
initial vacuum state, spatial reduction coincides with electron-
positron subsystem reduction. We have constructed reduced
density operators corresponding to each of the three types
of reduction. We have calculated von Neumann entropy for
the reduced density operators. Using the so-called L-constant
field as an example, we have shown that for the reduced
density operators of electron and positron subsystems this
entropy is proportional to the total number of pairs created.
Comparing the result obtained for the L-constant field to
that obtained for the T -constant electric field in Ref. [20],
we reproduced exactly the same expressions for the entropy
of the electron-positron subsystem. This result shows that,
despite the fact that L-constant and T -constant electric fields
are physically distinct, they can be considered as two different
regularizations of the uniform constant electric field in the
limit T , L → ∞.
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APPENDIX A

In this Appendix we present some more results regarding
QED with x-electric potential steps, which may be useful
for the reader. The operators �̂i(X ) for each particular range
�i can be decomposed using the specific sets of solutions
of the Dirac equation with quantum numbers n ∈ �i. These
decompositions have the form

�̂1(X ) =
∑
n∈�1

M−1/2
n [+an(in) +ψn(X ) + −an(in) −ψn(X )]

=
∑
n∈�1

M−1/2
n [+an(out) +ψn(X ) + −an(out) −ψn(X )],

�̂3(X ) =
∑
n∈�3

M−1/2
n [−an(in) −ψn(X ) + −b†

n(in) −ψn(X )]

=
∑
n∈�3

M−1/2
n [+an(out) +ψn(X ) + +b†(out) +ψn(X )],

�̂5(X ) =
∑
n∈�5

M−1/2
n [+b†

n(in) +ψn(X ) + −b†
n(in) −ψn(X )]

=
∑
n∈�5

M−1/2
n [+b†

n(out) +ψn(X ) + −b†
n(out) −ψn(X )]

(A1)

in the ranges �i, i = 1, 3, 5, and

�̂2(X ) =
∑
n∈�2

M−1/2
n anψn(X ),

�̂4(X ) =
∑
n∈�4

M−1/2
n b†

nψn(X ) (A2)

in the ranges �i, i = 2, 4.
Operators (17) and (18) obey the following anticommu-

tation relations. All operators with different sets of quantum
numbers n anticommute. This implies that all operators from
different ranges �i anticommute. Existing inside each range
�i are the nonzero anticommutation relations

[+an, +a†
n′ ]+ = [−an,

−a†
n′ ]+ = [−an, −an′† ]+ = [+an,

+a†
n′ ]+ = δ′

nn, n ∈ �1

[−an,
−a†

n′ ]+ = [−bn, −b†
n′ ]+ = [+an,

+a†
n′ ]+ = [+bn, +b†

n′ ]+ = δnn′ , n ∈ �3 (A3)

[+bn,
+b†

n′ ]+ = [−bn, −b†
n′ ]+ = [+bn, +b†

n′ ]+ = [−bn,
−b†

n′ ]+ = δnn′ , n ∈ �5

in the ranges �i, i = 1, 3, 5, and

n ∈ �2 : [an, a†
n′ ]+ = δnn′ ,

n ∈ �4 : [bn, b†
n′ ]+ = δnn′ , (A4)

in the ranges �i, i = 2, 4. Initial and final vacuum vectors are
defined as state vectors annihilated by operators of initial and
final particles

+an|0, in〉 = −an|0, in〉 =− bn|0, in〉 = +bn|0, in〉 = 0,

−an|0, out〉 = +an|0, out〉 = +bn|0, out〉 = −bn|0, out〉 = 0

(A5)

for quantum numbers from ranges �i, i = 1, 3, 5, and

an|0, in〉 = an|0, out〉 = 0, n ∈ �2

bn|0, in〉 = bn|0, out〉 = 0, n ∈ �4 (A6)

in ranges �2 and �4. Since all operators from different �i

anticommute, the total initial and final vacua vectors can be
represented as the tensor product

|0, in〉 = ⊗
∏
1,3,5

|0, in〉(i) ⊗ |0〉(2) ⊗ |0〉(4),

|0, out〉 = ⊗
∏
1,3,5

|0, out〉(i) ⊗ |0〉(2) ⊗ |0〉(4), (A7)

where |0, in〉(i) and |0, out〉(i) denote partial in and out vacua
in ranges �i, i = 1, 3, 5, and |0〉(2) and |0〉(4) partial vacua in

ranges �2 and �4, respectively,

|0〉(2) = |0, in〉(2) =|0, out〉(2), |0〉(4) = |0, in〉(4) = |0, out〉(4).

(A8)

In addition, inside each range �i the partial vacua can be
presented in turn as the tensor products in quantum modes:

|0, in〉(i) =
∏
n∈�i

|0, in〉(i)
n ,

|0, out〉(i) =
∏
n∈�i

|0, out〉(i)
n ,

|0〉(2,4) =
∏

n∈�2,4

|0〉(2,4)
n .

(A9)

Each of these partial vacuum vectors is destroyed only by an-
nihilation operators with the corresponding quantum numbers
n. The in and out sets of operators of creation and annihila-
tion of electrons and positrons as well as in and out vacua
are connected via the special unitary evolution operators V
(VV † = I), |0, in〉 = V |0, out〉,

{a(in), a†(in), b(in), b†(in)}
= V {a(out), a†(out), b(out), b†(out)}V †. (A10)

This in particular implies that

F̂ (in) = V F̂ (out)V †, (A11)

where F̂ (in) is an operator-valued function written in terms
of the in set of the operators of creation and annihilation
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operators while F̂ (out) is the same function written in terms
of the out set. The explicit form of the operator V is given in
Ref. [34]. The initial partial vacuum states remain vacua [34]
in ranges �1,2,4,5 (i.e., the vacuum is stable in these ranges).
In other words,

|0, in〉(i) = |0, out〉(i), i = 1, 2, 4, 5. (A12)

We can also define the vacuum-to-vacuum transition ampli-
tude as

cv = 〈0, out|0, in〉 = (3)〈0, out|0, in〉(3). (A13)

Taking into account relations (A9), we can also introduce
partial transition amplitudes for each quantum mode n,

cv,n = (3)
n 〈0, out|0, in〉(3)

n , cv =
∏

n∈�3

cv,n. (A14)

The connection between in and out operators can be pre-
sented also via the linear canonical transformation (also called
Bogoliubov transformation), which has the following form in
different ranges of quantum numbers �i. In the range �1 for
electrons the transformation reads

+an = ηRg(+|+)−1 +an + g(−|−)−1g(+|−) −an,

−an = g(+|+)−1g(−|+) +an − ηLg(−|−)−1 −an,

+an = g(−|−)−1g(+|−) −an + ηLg(+|+)−1 +an,

−an = −ηRg(−|−)−1 −an + g(+|+)−1g(−|+) +an. (A15)

The parameters ηL (R) = sgn(p0 − UL (R)) denote the signs
of asymptotic particle kinetic energy. Canonical transforma-
tions between the initial and final pairs of creation opera-
tors of positrons in �5 can be derived from the expression
(A15) by replacing ±an → ±b†

n, ±an → ±b†
n, and ηL � ηR.

In the Klein zone �3, the canonical transformation takes the
form

+an = −g(−|+)−1 −b†
n + g(−|+)−1g(+|+) −an,

+b†
n = g(−|+)g(+|+)−1 −b†

n + g(−|+)−1 −an,

−b†
n = g(+|−)−1g(−|−) +b†

n − g(+|−)−1 +an,

−an = g(+|−)−1 +b†
n + g(+|−)−1g(−|−) +an. (A16)

The functions g are mutual decomposition coefficients of
Dirac equation solutions,

ηL
ζ ψn(X ) = +ψn(X )g(+|ζ ) − −ψn(X )g(−|ζ ),

ηR ζ ψn(X ) = +ψn(X )g(+|ζ ) − −ψn(X )g(−|ζ ), (A17)

with respect to the inner product on the x-constant hyperplane
(see Ref. [34] for details), and have the following properties:

(ζψn,
ζ ′
ψn′ )x = δn,n′g(ζ |ζ ′

), g(ζ |ζ ′
) = g(ζ

′ |ζ )∗,

|g(−|+)|2 = |g(+|−)|2, |g(+|+)|2 = |g(−|−)|2,

g(+|−)

g(−|−)
= g(+|−)

g(+|+)
. (A18)

1. Generating functionals for density operators

We introduce special generating functionals that allow us
to obtain the explicit forms of density operators (matrices)

for different initial states by choosing an appropriate set of
sources. Note that the results of this section are valid for any
x-electric potential step. As we mentioned in the preceding
section, all the creation and annihilation operators (17) from
different ranges �i anticommute. The density operator ρ̂ of
the system under consideration is a function of quadratic
combinations of these creation and annihilation operators.
This fact allows us to present the density operator ρ̂ as
a tensor product of partial density operators ρ̂ (i) for each
range �i,

ρ̂ = ⊗
5∏

i=1

ρ̂ (i). (A19)

One can see that due to Eqs. (A3) and (A4), the operators
ρ̂ (i) anticommute and can be considered separately. Thus,
it is convenient to introduce the separate partial generating
functional for each range of quantum numbers �i. We will
refer to each of these generating functionals as R(i)(J ), and
J = {Jn}n∈�i is a complete set of sources in each range which
fully describes (parametrizes) the initial state of the system in
each range �i. The total generating functional can be obtained
as a direct tensor product of functionals R(i)(J ),

R(J ) = ⊗
5∏

i=1

R(i)(J ). (A20)

a. Generating functionals in �1 and �5

In �1 the generating functional R(1)(J ) has the form

R(1)(J ) =
∏

n∈�1

R(1)
n , R(1)

n = [
Z (1)

n

]−1
R(1)

n , trR(1)
n = 1,

R(1)
n = : exp

[
+a†

n

(
J (1)
+,n − 1

)
+an + −a†

n

(
J (1)
−,n − 1

) −an
]
:.

(A21)

In �5 the generating functional R(5)(J ) has the form

R(5)(J ) =
∏

n∈�5

R(5)
n , R(5)

n = [
Z (5)

n

]−1
R(5)

n , trR(5)
n = 1,

R(5)
n = : exp

[+
b†

n

(
J (5)
+,n − 1

) +bn + −b†
n

(
J (5)
−,n − 1

)
−bn

]
:.

(A22)

Here Z (1)
n and Z (5)

n are normalization factors (statistical sums);
colons : · · · : always denote the normal form with respect
to creation and annihilation operators inside them. Using
Eq. (C6), one can calculate each of them as

Z (1,5)
n = (

J (1,5)
+,n + 1

)(
J (1,5)
−,n + 1

)
. (A23)

b. Generating functionals in �2 and �4

In these ranges the corresponding generating functionals
R(2,4)(J ) have the following structure:

R(2)(J ) =
∏

n∈�2

R(2)
n , R(2)

n = [
Z (2)

n

]−1
: exp

[
a†

n

(
J (2)

n − 1
)
an

]
:,

R(4)(J ) =
∏

n∈�4

R(4)
n , R(4)

n = [
Z (4)

n

]−1
: exp

[
b†

n

(
J (4)

n − 1
)
bn

]
:.

(A24)
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Here J (2)
n and J (4)

n are the corresponding sources in �2 and �4, and the corresponding normalization factors are

Z (2,4)
n = (

J (2,4)
n + 1

)
. (A25)

The structure of operators R(2,4)(J ) are trivial as there is no particle production in these ranges and all initial particles are
subjected to total reflection [34]. For this reason we often omit the consideration of ranges �2 and �4 throughout the article.

c. Generating functional in the Klein zone

In the Klein zone �3, the corresponding generating functional R(3)(J ) has the form

R(3)(J ) =
∏

n∈�3

R(3)
n , R(3)

n = [
Z (3)

n

]−1
R(3)

n , trR(3)
n = 1,

R(3)
n = : exp

[−
a†

n

(
J (3)
+,n − 1

) −an + −b†
n

(
J (3)
−,n − 1

)
−bn

]
:, (A26)

where the normalization factor Z (3)
n has the form

Z (3)
n = (

J (3)
+,n + 1

)(
J (3)
−,n + 1

)
. (A27)

2. Normal form of generating functional

The problem of calculating the mean value F (out) of an operator F̂ (out) at the final state of the system is related to the
problem of calculating the quantity tr[F̂ (out)ρ̂], which is

tr[F̂ (out)ρ̂] =
∞∑

M,N=0

∑
M!N!

〈�{m}M ;{n}N (out)|F̂ (out)ρ̂|�{m}M ;{n}N (out)〉,

|�{m}M ;{n}N (out)〉 = a†
m1

· · · a†
mM

b†
n1

· · · b†
nN

|0, out〉. (A28)

For this reason, it is convenient to have the expression for generating functionals R(i)(J ) (and subsequently for density
operators ρ̂) in terms of the out set of creation and annihilation operators. According to (A11),

R(J ) = VU (J )V †,

where U (J ) are operators R(J ) with creation and annihilation operators from the in set replaced by corresponding operators from
the out set. Taking into account Eq. (A20) and the fact that the evolution operator V can also be factorized as [34]

V = ⊗
5∏

i=1

V (i),

we can write that

R(i)(J ) = V (i)U (i)(J )V (i)†, (A29)

where U (i)(J ) are operators R(i)(J ) with creation and annihilation operators from the in set replaced by the corresponding
operators from the out set for each range �i. Utilizing the explicit forms of operators V (i), i = 1, 3, 5, found in Ref. [34], we can
construct the expression for generating functionals R(i)(J ) in terms of the out set. It should be noted that the unitary evolution
operators V (i) have the same functional form in terms of the in and out sets of operators of particle creation and annihilation due
to the properties (A10) and (A11).

a. Ranges �1 and �5

In �1 the partial evolution operator V (1) = ∏
n∈�1

V (1)
n has the form

V (1)
n = exp[+a†

nS4 −an] exp[−a†
nS3 −an] exp[+a†

nS2
+an] exp[−a†

nS1
+an],

S4 = g(−|+)−1, S3 = ln[g(−|−)−1g(−|+)], S2 = ln[g(+|+)g(−|+)−1], S1 = −g(−|+)−1. (A30)

In �5 the operator V (5) = ∏
n∈�5

V (5)
n is

V (5)
n = exp[+b†

nS′
4

−bn] exp[−b†
nS′

3
−bn] exp[+b†

nS′
2 +bn] exp[−b†

nS′
1 +bn],

S′
4 = −g(+|−)−1, S′

3 = ln[g(−|−)−1g(+|−)], S′
2 = ln[g(+|+)g(+|−)−1], S′

1 = g(+|−)−1. (A31)

Then one can write that

R(1)
n = V (1)

n U (1)
n V (1)†

n , (A32)
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where U (1)
n is the operator that can be obtained from R(1)

n by simultaneous replacements +an → +an and −an → −an. Similarly,
we have that

R(5)
n = V (5)

n U (5)
n V (5)†

n , (A33)

where U (5)
n is the operator that can be obtained from R(5)

n by simultaneous replacements −bn → −bn and +bn → +bn. Let us
calculate the normal form of the operator R(1)

n . This can be done using the relation (C3). Utilizing the anticommutation relations
for the creation and annihilation operators (A3), one can find that

exp[+a†
nS2

+an] exp[−a†
nS1

+an] = exp[−a†
nS1e−S2 +an] exp[+a†

nS2
+an],

exp[−a†
nS3 −an] exp[−a†

nS1e−S2 +an] = exp[−a†
neS3 S1e−S2 +an] exp[−a†

nS3 −an]. (A34)

Then partial operators V (1)
n with the help of relation (C2) can be presented as

V (1)
n = YnṼn, Yn = exp[+a†

nS4 −an] exp[−a†
neS3 S1e−S2 +an],

Ṽn = : exp[+a†
n(eS2 − 1) +an + −a†

n(eS3 − 1) −an]:. (A35)

Using the relation (C4), one can present the product ṼnU (1)
n Ṽ †

n as follows:

ṼnU
(1)
n Ṽ †

n = : exp[+a†
nA++ +an + −a†

nA−− −an]:,

A++ = J (1)
n,+|eS2 |2 − 1, A−− = J (1)

n,−|eS3 |2 − 1. (A36)

On the other hand, with the help of the relation (C5), the operator Yn can be presented as

Yn = : exp[+a†
nS4 −an + −a†

nS̃1
+an + +a†

nS4S̃1
+an]:, S̃1 = eS3 S1e−S2 . (A37)

Then one can calculate YnṼnU (1)
n Ṽ †

n to be

YnṼnU
(1)
n Ṽ †

n = : exp[+a†
nB+− −an + −a†

nB−+ +an + +a†
nB++ +an + −a†

nB−− −an]:,

B++ = A++ + (1 + A++)S4S̃1, B−− = A−−, B+− = S4(1 + A−−), B−+ = (1 + A++)S̃1. (A38)

Finally, we can attach the last remaining operator Y †
n from the right side to obtain

R(1)
n = : exp[+a†

nC+− −an + −a†
nC−+ +an + +a†

nC++ +an + −a†
nC−− −an]:,

C++ = S∗
4 S̃∗

1 + B+−S∗
4 + B++(1 + S∗

4 S̃∗
1 ), C−− = B−− + B−+S̃∗

1 , (A39)

C−+ = S∗
4 + B−+ + B−+S∗

4 S̃∗
1 + B−−S∗

4 , C+− = S̃∗
1 + B+− + B++S̃∗

1 .

Substituting Bζ ζ ′ and A±± into the expression (A39), we find the explicit form of the operator R(1) in terms of out operators to be

C++ = −1 + J (1)
n,−|S4|2|eS3 |2 + J (1)

n,+(1 + S4S̃1)(1 + S∗
4 S̃∗

1 )|eS2 |2,
C−− = −1 + J (1)

n,−|eS3 |2 + J (1)
n,+|S̃1|2|eS2 |2,

C−+ = J (1)
n,+S̃1(1 + S∗

4 S̃∗
1 )|eS2 |2 + J (1)

n,−S∗
4 |eS3 |2,

C+− = J (1)
n,−S4|eS3 |2 + J (1)

n,+S̃∗
1 (1 + S4S̃1)|eS2 |2. (A40)

In ranges �1 and �5 the matrices g are connected [34] to the relative amplitudes of an electron and positron reflection R± and
transmission T± as

R+,n = g(+|+)−1g(−|+), T+,n = ηLg(+|+)−1,

R−,n = g(−|−)−1g(+|−), T−,n = −ηRg(−|−)−1. (A41)

One can use these definitions and the properties of matrices g given by (A18) to present the coefficients from Eq. (A40) as

1 + S4S̃1 = 1 − |g(−|−)|−2 |g(−|+)|2

|g(+|−)|2 = 1 − |g(−|−)|−2 = |R+,n|2,

|S4|2 = |g(−|+)|−2 = |T+,n|2/|R+,n|2,
|eS2 |2 = |g(+|+)|2|g(−|+)|2 = |R+,n|−2,

|eS3 |2 = |g(−|−)|−2|g(+|−)|2 = |R+,n|2. (A42)
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Thus coefficients C in Eq. (A40) take the compact form

C++ = −1 + J (1)
n,−|Tn|2 + J (1)

n,+|Rn|2,
C−− = −1 + J (1)

n,−|Rn|2 + J (1)
n,+|Tn|2,

C−+ = J (1)
n,−g(+|−)−1|Rn|2 − J (1)

n,+g(−|+)|Tn|2,
C+− = J (1)

n,−g(−|+)−1|Rn|2 − J (1)
n,+g(+|−)|Tn|2, (A43)

where we introduced the notation

|Tn|2 = |T−,n|2 = |T+,n|2, |Rn|2 = |R−,n|2 = |R+,n|2, (A44)

where |Tn|2 and |Rn|2 are the absolute probability of electron transmission and the absolute probability of electron reflection,
respectively, so |Tn|2 + |Rn|2 = 1. The normal form of the operator R(5)

n can be constructed in the same manner and has the
form

R(5)
n = : exp[+b†

nD++ +bn + +b†
nD+− −bn + −b†

nD−+ +bn + −b†
nD−− −bn]:,

D++ = −1 + J (1)
n,−|Tn|2 + J (1)

n,+|Rn|2, D−+ = −J (1)
n,−g(−|+)−1|Rn|2 + J (1)

n,+g(+|−)|Tn|2, (A45)

D−− = −1 + J (1)
n,−|Rn|2 + J (1)

n,+|Tn|2, D+− = −J (1)
n,−g(+|−)−1|Rn|2 + J (1)

n,+g(−|+)|Tn|2.

b. Range �3

The unitary evolution operator V (3) has the form

V (3) =
∏

n∈�3

V (3)
n , V (3)

n = wn(−|−)−1v
(3)
4 v

(3)
3 v

(3)
2 v

(3)
1 ,

v
(3)
4 = exp{−+a†

nwn(+ − |0) +b†
n}, v

(3)
3 = exp{+b†

n ln wn(−|−) +bn}, (A46)

v
(3)
2 = exp{+an ln wn(+|+) +an}, v

(3)
1 = exp{−+bnwn(0| − +) +an},

where wn(ζ |ζ ′) are elementary amplitudes of scattering and pair creation processes, defined as

wn(−|−) = c−1
v 〈0, out| +bn −b†

n|0, in〉, wn(+|+) = c−1
v 〈0, out| +an

−a†
n|0, in〉,

wn(+ − |0) = c−1
v 〈0, out| +an +bn|0, in〉, wn(0| − +) = c−1

v 〈0, out| −b†
n

−a†
n|0, in〉. (A47)

All these amplitudes are diagonal in quantum numbers due to Eq. (A3) and can be expressed in terms of the coefficients g(ζ |ζ ′ )
as follows:

wn(−|−) = g(−|+)g(−|−)−1 = g(−|+)g(+|+)−1,

wn(+|+) = g(+|−)g(−|−)−1 = g(+|−)g(+|+)−1,

wn(+ − |0) = g(+|+)−1, wn(0| − +) = −g(−|−)−1.

(A48)

The relative amplitude of pair creation wn(+ − |0) is also connected with the differential number of pairs created from
vacuum,

Ncr
n = |g(−|+)|−2 = |wn(+ − |0)|2

1 + |wn(+ − |0)|2 , |wn(+ − |0)|2 = Ncr
n

1 − Ncr
n

, |cv,n|2 = 1 − Ncr
n . (A49)

We note that the structure of the operator V (3) can be formally identified with the structure of the unitary evolution operator V for
QED with time-dependent uniform electric potential steps [17] with the formal replacements an → +a†

n and bn → +b†
n. Thus,

the normal form of the operator R(3)
n can be obtained in the exact same way as in Ref. [17] and has the form

R(3)
n = |wn(−|−)|−2(1 + AB): exp[−+a†

n(1 − D+) +an − +b†
n(1 − D−) +bn − +a†

nC† +b†
n − +bnC

+an]:,

D+ = |wn(+|+)|2(1 + AB)−1J (3)
+,n, B = wn(0| − +),

D− = |wn(−|−)|2J (3)
−,n(1 + AB)−1, A = J (3)

+,nB∗J (3)
−,n,

C = wn(−|−)∗A∗(1 + AB)−1wn(+|+)∗ + wn(+ − |0)∗. (A50)
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APPENDIX B

In this Appendix, we consider the case of pure initial states other than vacuum, namely, initial states with a definite number
of particles.

1. Generating functionals

The generating functionals R(i) also allow us to construct the partial density operators ρ̂
(i)
{m}M ;{n}N

of the system which is
initially found in a pure state with a definite number of particles with fixed sets of quantum numbers {m}M = {m1, m2, . . . , mM}
and {n}N = {n1, n2, . . . , nN } as follows. In the ranges �1, �3, and �5,

ρ̂
(i)
{m}M ;{n}N

= ∂M+N R(i)(J )

∂
(
J (i)
+,m1

· · · J (i)
+,mM

J (i)
−,n1

· · · J (i)
−,nN

) ∣∣∣∣
J=0

= |�{m}M ;{n}N (in)〉(i) (i)〈�{m}M ;{n}N (in)|, m, n ∈ �i, (B1)

where the states |�{m}M ;{n}N (in)〉(i) are defined as

|�{m}M ;{n}N (in)〉(1) = +a†
m1

· · · +a†
mM

−a†
n1

· · · −a†
nN

|0, in〉(1),

|�{m}M ;{n}N (in)〉(3) = −a†
m1

· · · −a†
mM −b†

n1
· · · −b†

nN
|0, in〉(3),

|�{m}M ;{n}N (in)〉(5) = +b†
m1

· · · +b†
mM −b†

n1
· · · −b†

nN
|0, in〉(5).

(B2)

In the ranges �2 and �4,

ρ̂
(i)
{n}N

= ∂N R(i)(J )

∂
(
J (i)

n1 · · · J (i)
nN

) ∣∣∣∣
J=0

= |�{n}N (in)〉(i) (i)〈�{n}N (in)|, n ∈ �i, (B3)

with the states |�{n}N (in)〉(i) having the form

|�{n}N (in)〉(2) = a†
n1

· · · a†
nN

|0〉(2), |�{n}N (in)〉(4) = b†
n1

· · · b†
nN

|0〉(4). (B4)

2. Reduced density operators and entropy production

First, we consider the reduction due to the measurement of the number of final particles. It should be stressed that the fact
that quantum modes evolve separately substantially simplifies the technical side of the consideration. Suppose that the initial
particles are present in only one quantum mode m ∈ �i. In this case, the partial density operator ρ̂ (i) for the range �i can be
presented as

ρ̂ (i) = ρ̂ (i)
m ⊗

∏
n �=m∈�i

ρ̂ (i)
v,n, (B5)

where ρ̂ (i)
m is the partial density operator for the quantum mode m corresponding to the initial state with a definite number of

particles in question. Due to the structure of the operator ρ̂ (i) given by Eq. (B5), the operator ρ̂
(i)
N takes the form

ρ̂
(i)
N = ρ̂

(i)
N,m ⊗

∏
n �=m∈�i

ρ̂
(i)
N,n. (B6)

One can see that the procedure of reduction for the case under consideration differs from the deformation of the vacuum initial
state only in the quantum mode m, where initial particles are present. One can also see that it is not difficult to generalize
the consideration for the case when initial particles are present in more than one quantum mode. Let us first consider the
deformations for the range �1. It is easy to verify that the only nonzero weights W (1)

s,n , n �= m, in Eq. (B6) are those where
|si, out〉(1)

n = |0, out〉(1)
n , i.e., partial density operators for vacuum quantum modes do not change due to measurement of

the number of particles; it is possible to write that

ρ̂
(1)
N = ρ̂

(1)
N,m ⊗

∏
n �=m∈�i

ρ̂ (1)
v,n. (B7)

Then, all that is left is to deal with is the quantum mode m where initial particles are present. Constructing the pure states with
(a) a single right initial electron −a†

m in mode m, (b) a single left initial electron +a†
m, and (c) with both left and right electrons in

the initial state, it is easy to obtain the measurement-reduced density operators

ρ̂
(1)
N,m = |T−,m|2 −a†

mρ̂ (1)
v,m −am + |R−,m|2 +a†

mρ̂ (1)
v,m

+am for (a),

ρ̂
(1)
N,m = |R+,m|2 −a†

mρ̂ (1)
v,m −am + |T+,m|2 +a†

mρ̂ (1)
v,m

+am for (b),

ρ̂
(1)
N,m = [|Rm|2 + |Tm|2]2 +a†

m −a†
mρ̂ (1)

v,m −am
+am

= +a†
m −a†

mρ̂ (1)
v,m −am

+am for (c). (B8)
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From the expression (B8) one can see that for the case of a single initial electron we have two terms: the first term corresponds to
the reflection of the initial electron, while the second term corresponds to the transition of the electron through the barrier. When
there are two electrons in the initial state, we see that they can be either simultaneously reflected or simultaneously transmitted
through the barrier. One can show that

S
(
ρ̂

(1)
N,n

) = −[|Rn|2 ln |Rn|2 + |Tn|2 ln |Tn|2] for (a) and (b), (B9)

where the notation in (A44) for the reflection and transmission coefficients has been used. Entropy for case (c) vanishes, i.e.,
S(ρ̂ (1)

N,n) = 0, as ρ̂
(1)
N,n corresponding to case (c) describes the pure state, despite the fact that a measurement has been performed

in the system. Taking into account that for this case the differential numbers of final particles are

Nn,−(out) = trρ̂ (1)
N,n −a†

n −an = |Tn|2, |Rn|2 = 1 − Nn,−(out),

Nn,+(out) = trρ̂ (1)
N,n

+a†
n

+an = |Tn|2, |Rn|2 = 1 − Nn,+(out), (B10)

we can represent entropies (B9) as

S
(
ρ̂

(1)
N,n

) = −{[1 − Nn,−(out)] ln[1 − Nn,−(out)] + Nn,−(out) ln Nn,−(out)} for (a),

S
(
ρ̂

(1)
N,n

) = −{[1 − Nn,+(out)] ln[1 − Nn,+(out)] + Nn,+(out) ln Nn,+(out)} for (b). (B11)

The entropies for the range �5 have the same form

S
(
ρ̂

(5)
N,n

) = −{[1 − Nn,+(out)] ln[1 − Nn,+(out)] + Nn,+(out) ln Nn,+(out)},
S
(
ρ̂

(5)
N,n

) = −{[1 − Nn,−(out)] ln[1 − Nn,−(out)] + Nn,−(out) ln Nn,−(out)} (B12)

for the cases of single left and single right initial positrons. In a similar way and with the same result one can consider the range
�5.

In ranges �2, �3, and �4 all initial particles are subjected to total reflection; for this reason the consideration of modes with
only one initial particle (electron or positron) is trivial. The only exception is the case when we have an initial electron-positron
pair in mode m ∈ �3. In this situation one can show, using Eqs. (A10), (A16), and (A46) and relations (A48) and (A18), that the
initial state evolves as follows:

−a†
m −b†

m|0, in〉(3)
m = w∗

m(+|+)−1[+a†
m +b†

m − w∗
m(+ − |0)]|0, out〉(3)

m . (B13)

In this expression, the first term on the right-hand side is the state vector corresponding to the situation when both initial particles
are reflected from the potential step and the second is the vacuum state vector corresponding to the situation when the initial
pair is annihilated. The partial density operator reduced by measurement of the number of particles with an initial pair in mode
m ∈ �3 has the form

ρ̂
(3)
N,m = |cv,m|2|wm(+ − |0)|2P(3)

v,n (out) + |cv,m|2 +a†
m +b†

mP(3)
v,n (out) +bm

+am, (B14)

where |cv,m|2|wm(+ − |0)|2 and |cv,m|2 are the probabilities of pair annihilation and pair scattering, respectively. The von
Neumann entropy for the density operator ρ̂

(3)
N,m is

S
(
ρ̂

(3)
N,m

) = −[|cv,m|2 ln |cv,m|2 + |cv,m|2|wm(+ − |0)|2 ln |cv,m|2|wm(+ − |0)|2]

= −[(
1 − Ncr

n

)
ln

(
1 − Ncr

n

) + Ncr
n ln Ncr

n

]
, (B15)

the same as for the case of the density operator with the vacuum initial condition, reduced by the measurement of final particles.
Now let us consider a reduction over the subsystems of electrons or positrons. Due to the nature of this reduction, the partial

density operators ρ̂ (i)
n , i = 1, 2, 4, 5, either are not affected by the reduction or are completely traced out. The states with a

definite number of initial particles with fixed quantum numbers n are pure states. This means that the corresponding entropies
vanish, S(ρ̂ (1,2,4,5)

n ) = 0. In the range �3 initial electrons and positrons are subjected to total reflection [34], i.e., states with a
single initial electron or a single initial positron remain pure states. Then, by applying the procedure given by Eq. (B1) to the
normal form of the generating functional (A50) it is a simple matter to show that the corresponding entropies S(ρ̂ (3)

±,n) vanish. The
only interesting result arises when we consider a mode with an initial electron-positron pair in �3. The partial density operator
ρ̂ (3)

n then takes the form

ρ̂ (3)
n = |�〉n n〈�|, |�〉n = w∗

n (+|+)−1[+a†
n +b†

n − w∗
n (+ − |0)]|0, out〉(3)

n (B16)

and the reduced partial density operators ρ̂
(3)
±,n can be calculated as

ρ̂
(3)
+,n = |wn(+|+)|−2

[+
a†

nP(3)
+,n(out) +an + |wn(+ − |0)|2P(3)

+,n(out)
]
,

ρ̂
(3)
−,n = |wn(+|+)|−2

[
+b†

nP(3)
−,n(out) +bn + |wn(+ − |0)|2 P(3)

−,n(out)
]
, (B17)
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where |wn(+|+)|−2 = |cv,n|2 and projectors P(3)
±,n(out) are

P(3)
+,n(out) = |0, out〉(3)

a,n
(3)
a,n〈0, out|,

P(3)
−,n(out) = |0, out〉(3)

b,n
(3)
b,n〈0, out|. (B18)

The corresponding von Neumann entropies can be calculated,

S
(
ρ̂

(3)
±,n

) = −[|cv,n|2 ln |cv,n|2 + |cv,n|2|wn(+ − |0)|2

× ln |cv,n|2|wn(+ − |0)|2]. (B19)

Using the relations (A49), we can present it as

S
(
ρ̂

(3)
±,n

) = −[(
1 − Ncr

n

)
ln(1 − Ncr

n ) + Ncr
n ln Ncr

n

]
. (B20)

One can see that this result coincides with the one obtained for
the case of the initial vacuum state, Eq. (62), i.e., with the case
when an electron-positron pair is produced from the vacuum,
and with the entropy for the density operator ρ̂

(3)
N,m given by

Eq. (B15).

APPENDIX C

Here we provide several relations that we have used during
the calculations. For both the Fermi and Bose cases the
relations [17]

aea†Da = ea†DaeDa, a†ea†Da = ea†Daa†e−D, (C1)

ea†Da = : exp{a†(eD − 1)a}: (C2)

hold, where in the general case D is an arbitrary matrix. Note
that in the case under consideration all products are diagonal

in quantum numbers n, a†Da = a†
nDnnan, and the matrices Dnn

are diagonal and single rank, i.e., are just c-numbers. One can
also easily see that the following generalization of Eq. (C1)
holds:

ea†Daa = e−Daea†Da, ea†Daa† = eDa†ea†Da. (C3)

For the product of two normal-form operators the relation

:ea†Da: :ea†D̃a: = :ea†(D+D̃+DD̃)a: (C4)

is useful, where D and D̃ are matrices, and its simple general-
ization

:eb†Da: :ea†D̃c: = : exp[b†Da + a†D̃c + b†DD̃c]:, (C5)

where for the case of Fermi operators the decomposition of
the exponent is finite and has the form

: exp[b†Da + a†D̃c + b†DD̃c]:

= 1 + b†Da + a†D̃c + b†DD̃c − b†a†Dac.

The trace of a normal product of creation and annihilation
operators can be calculated by using the following path-
integral representation. Suppose that X (a†, a) is an operator
expression of creation and annihilation operators. Then the
trace of its normal form can be expressed as [17]

tr{:X (a†, a):}
= 〈0|

∫
exp{λ∗λ + λ∗a}:X (a†, a): exp{a†λ}

∏
dλ∗dλ|0〉.

(C6)
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