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Generation of quantum states by the dynamics of spin chains: Analytical solution

Morteza Moradi and Vahid Karimipour*

Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran

(Received 22 February 2019; published 17 May 2019)

We design a quasi-one-dimensional spin chain with engineered coupling strengths such that the natural
dynamics of the spin chain evolves a single excitation localized at the left-hand site to any specified single-
particle state on the whole chain. Our treatment is an exact solution to a problem which has already been
addressed in approximate ways. As two important examples, we study the W states and Gaussian states of
arbitrary width.
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I. INTRODUCTION

Quantum spin chains, apart from being an indispensable
tool for understanding a large variety of phenomena in con-
densed matter physics, have also been a large laboratory for
the investigation of exactly solvable models in many-body
quantum systems. One of the main goals in these disciplines
has been to find specific quantum spin chains for which
the ground state and correlation functions can be found in
closed form. With the upsurge of quantum computation and
information theory, it has now been almost a decade that the
dynamics of spin chains has attracted attention in connection
with quantum information processing tasks [1–9,12,14–19].
Starting with [1], spin chains turned out to be excellent
carriers of quantum states at short distances either with very
high or with perfect fidelity [3–9]. Since then the plethora
of quantum information tasks for quantum spin chains has
considerably expanded, including entanglement distribution
[10–12], measurement-based quantum computation [13–15],
perfect routings [16–18], and, quite recently, state generation
[19], which is the subject of the present paper. The importance
of this problem, that is, the capability of initializing a quan-
tum register to any given state, cannot be overemphasized.
This problem will have many applications, i.e., in quantum
simulations among other domains. Here the goal is to design
a specific Hamiltonian which can evolve a single excitation
that is completely localized at one site to a given desired state
which is distributed over all spins.

More precisely, given a state

|ψ〉 =
N∑

k=1

ψk|k〉, (1)

the idea is to design a Hamiltonian such that, after a time t0,
we have

|ψ〉 = e−iHt0 |1〉.
Here |k〉 means the state |0, . . . , 0, 1, 0 . . . 0〉, where only the
spin at site k is excited. The states {|k〉, k = 1 . . . N} span the
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one-excitation sector of the Hilbert space. Naturally here we
have in mind those Hamiltonians which conserve the number
of excitations and hence commute with the total spin operator,
i.e., [H, Sz] = 0. A prototype of these Hamiltonians is the XY
Hamiltonian given by

H =
N∑

n=1

Bn

2
(1 − Zn) +

N−1∑
n=1

Jn(XnXn+1 + YnYn+1),

where Xn, Yn, and Zn are the Pauli matrices acting at site n.
Recently this problem was posed and investigated in Ref. [19],
where it was shown that provided that no two consecutive
amplitudes of |ψ〉 are 0, the local magnetic fields Bn and the
local couplings Jn can be engineered in such a way that |ψ〉
can be generated with arbitrary precision. However, the actual
values of couplings Bn and Jn had to be found numerically
and by iteratively tuning the Hamiltonian. As admitted in
Ref. [19] the disadvantage of this numerical method was that
the time t0 scaled as N2, making the process rather slow.
To remedy this, the author of [19] proposed an alternative
analytical method which could produce only a very limited
number of states. One could then hope that by using various
perturbative techniques one could deform these states so that
the given state can be approximated.

Our goal in this paper is to solve the problem of state gen-
eration analytically for all one-particle states in an exact way.
To this aim, we utilize the quasi-one-dimensional chain shown
in Fig. 1(a). The crucial point for this kind of geometry is that
the chain decomposes into a direct sum of virtual chains of
two spins for which the evolution of an excitation is extremely
simple. It is this decomposition and the subsequent simplicity
of the dynamics which allow an exact determination of the
couplings for all kinds of states. While in Ref. [19] this
problem is connected to an inverse eigenvalue problem which
is solved iteratively, here we solve the problem by exactly and
simultaneously following the evolution of the particles (more
precisely, the probability amplitudes of a single particle) on
all the small chains. This leads to a set of coupled nonlinear
equations for the couplings which we solve in closed form. We
should remember that there are quasi-one-dimensional chains
[16] which have a simple apparent geometry other than the
one shown in Fig. 1(a). However, they decompose into virtual
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FIG. 1. (a) A spin network containing two one-dimensional chains with regular interaction between them. The vertices represent qubits, and
the edges show XX coupling between qubits of strength Jk . (b) N virtual spin chains of length 2 equivalent to the spin network in (a). Coupling
strengths are shown on the edges. In our examples, we use the lower part of the network, the sites with an odd index, only as ancillary qubits.
That is, the amplitude at all these sites is 0 and the state is supported only on the leg above it in the chain, i.e., on the even-numbered spins.

chains of lengths 2 and 3 and it is not easy to simultaneously
follow the dynamics of the particles as described above and
solve the subsequent nonlinear equations.

In summary, for any state of the form (1), we exactly
determine the coupling constants Jn and the times tn for
applying the single-qubit Zn gates. As examples, we consider
the generation of W states and Gaussian states of various
widths on chains of different lengths. The results for these
examples are shown in Figs. 3 and 5.

Remark. We should emphasize that, compared to the
method in Ref. [19], which uses a time-independent Hamilto-
nian and generates a limited class of single-particle states, the
price that we pay for this exact generation of all single-particle
states is that we need to apply local single-qubit Z gates at
specific times. This substitutes the tuning of local, albeit static,
magnetic fields at all sites proposed in Ref. [19]. The extent to
which the timing of these pulses is crucial for the success of
the scheme is discussed in Sec. V.

The structure of the paper is as follows: in Sec. II we sim-
ply analyze the structure of the quasi-one-dimensional chain
and its equivalence to the virtual 2-chains and examine the
dynamics of the chain. In Sec. III we determine the coupling
constants and the times for applying the Z pulses. Section IV
is devoted to examples where we study two important classes
of examples, namely, W states and Gaussian states. We end
the paper with an outlook in Sec. VI.

II. THE SPIN NETWORK STRUCTURE

We introduce the spin network shown in Fig. 1(a), where
each link entails a Hamiltonian, h := 1

2 (X ⊗ X + Y ⊗ Y ),

with strength J written on the link. As is shown in each
block all the interactions of horizontal and oblique links are
equal modulo the signs. It is known that in architectures
based on Josephson junction superconducting qubits, which
are modeled by XX Hamiltonians, it is possible to implement
couplings with negative signs [20]. The main point is that
in the one-particle sector the Hamiltonian h is nothing but
a simple hopping term. In fact, it is well known and easily
verified that

hi, j = 1
2 (XiXj + YiYj ) = |i〉〈 j| + | j〉〈i|. (2)

Therefore h|0, 0〉 = h|1, 1〉 = 0, h|0, 1〉 = |1, 0〉, and
h|1, 0〉 = |0, 1〉.

As the XX Hamiltonian commutes with Zn,[
H,

N∑
i=1

Zi

]
= 0,

if we start from a single excitation at site 1 or any other site,
the dynamics will be confined to the one-particle sector. One
can now consider an arbitrary block like the one containing
spins 2, 3, 4, and 5. The part of the Hamiltonian pertaining to
these spins can be rewritten as

H1 = J2(|2〉〈4| + |2〉〈5| − |3〉〈4| − |3〉〈5|) + H.c.

= J2(|2〉 − |3〉)(〈4| + 〈5|) + H.c.

= 2J2(|2, 3−〉〈4, 5+|) + H.c., (3)

where ∀i, j ∈ {1, 2, . . . , 2N} : |i, j±〉 := 1√
2
(|i〉 ± | j〉). The

same analysis applies to the next block, whose Hamiltonian
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is rewritten as

H2 = J3(|4〉〈6| + |4〉〈7| − |5〉〈6| − |5〉〈7|) + H.c.

= J3(|4〉 − |5〉)(〈6| + 〈7|) + H.c.

= 2J3(|4, 5−〉〈6, 7+|) + H.c. (4)

Noting that all the states written on the right-hand side of
(3) and (4) are orthogonal to each other, it turns out that
the chain decomposes into the collection of spin chains of
length 2 shown in Fig. 1(b). With the definitions |0, 1−〉 :=
|1〉, |2N, 2N + 1+〉 := |2N〉, the final Hamiltonian can be
written as a collection of independent 2-spin chains, as in
Fig. 1(b):

H =
N∑

n=1

2Jn|2n − 2, 2n − 1−〉〈2n, 2n + 1+| + H.c. (5)

III. DYNAMICS IN THE SPIN NETWORK

If we were to use this chain for perfect state transfer, our
task would be more straightforward. We only needed to move
a single excitation from site 1 to site 23+ and then apply a Z
pulse to site 3 to move the excitation from site 23+ to 23− and
put it at the beginning of the next chain, which automatically
goes over to the end of this site after a certain time, and then
repeat the process until the excitation reached the other end
of the total chain. However, in generating states we want to
distribute the excitation with prescribed probabilities all over
the chain and hence also all over the virtual chains. This is
a much harder task than state transfer in which, when the
excitation leaves a virtual 2-spin chain, we no longer need to
take it into account. Here as times passes we have to know
how all the excitations in all the 2-chains (more precisely
the probabilities of a single excitation in all the 2-chains)
evolve in time. This is where the dynamics of a 2-spin chain,
compared with a 3-spin chain, plays a crucial role. Denoting
the two sites of a 2-chain simply 1 and 2, we have

H = JX1 · X2 ≡ J

2
(X1 ⊗ X2 + Y1 ⊗ Y2)

= J (|1〉〈2| + |2〉〈1|) =
[

0 J
J 0

]
,

and hence

e−iHt |1〉 = cos(Jt )|1〉 − i sin(Jt )|2〉. (6)

Let us start from state |1〉. The dynamics of the chain
evolves this state after time t1 within the leftmost chain:

e−iHt1 |1〉 = cos(2J1t1)|1〉 − i sin(2J1t1)|2, 3+〉.
Applying the Z3 gate at time t1 turns this into

Z3e−iHt1 |1〉 = cos(2J1t1)|1〉 − i sin(2J1t1)|2, 3−〉.
The excitation is now at both site 1 of the first 2-chain and
site 23− of the second 2-chain, with the indicated amplitudes.
After time t2 both amplitudes evolve and after the pulse Z5 we
have

Z5e−iHt2 Z3e−iHt1 |1〉
= cos(2J1t1)[cos(2J1t2)|1〉 − i sin(2J1t2)|2, 3+〉]

− i sin(2J1t1)[cos(2J2t2)|2, 3−〉 − i sin(2J2t2)|4, 5−〉].

We can continue in this manner to find the state of the chain
under the following dynamics:

|ψ〉 = e−iHt |1〉 := e−iHtN Z2N−1e−iHtN−1 . . .

Z5e−iHt2 Z3e−iHt1 |1〉. (7)

To find the amplitudes more simply, a descriptive way is very
effective: After the pulse Z3, which is applied at t1, a fraction
−i sin(2J1t1) is at the beginning of the second chain, namely,
at site 23−. After the pulse Z5, which is applied at t2, a fraction
−i sin(2J2t2) of this amplitude moves to the beginning of the
third chain, namely, site 4, 5−. Continuing in this way, after
the pulse Z2k−1, which is applied at time tk−1, the excitation
has reached site (2k − 2, 2k − 1)− with the amplitude

(−i sin(2J1t1))(−i sin(2J2t2)) . . . (−i sin(2Jk−1tk−1))

=: (−i)k−1Ak−1.

With the next pulse at site Z2k+1 a fraction −i sin(2Jktk )
of this amplitude leaves this chain and a fraction cos(2Jktk )
remains in the chain. It is now important that all the other
applied pulses at sites 2k + 3, 2k + 5, . . . do not affect this
amplitude, which hereafter changes only by the internal dy-
namics of the short chain [(2k − 2, 2k − 1)−, (2k, 2k + 1)+].
Thus the explicit form of the wave function is given by

|ψ〉 =
N∑

k=1

(−i)k−1Ak−1 cos(2Jk (τk − τk+1))

× cos(2Jkτk+1)|2k − 2, 2k − 1−〉

+
N∑

k=1

(−i)kAk−1 cos(2Jk (τk − τk+1))

× sin(2Jkτk+1)|2k, 2k + 1+〉, (8)

where

τk :=
N∑

i=k

tk, τN+1 := tN , (9)

and

Ak :=
k∏

i=1

sin(2Jiti ), A0 := 1. (10)

Now, we have to calculate the times and coupling strengths
such that our intended arbitrary state, (1), will be generated.
For the time being, we focus on the absolute squares of all
the coefficients in Eq. (1) as positive. Once the state with the
required probabilities is generated on the chain, we can apply
phase gates eiZkφk to tune also the local phases.

Calculating the times and coupling strengths

Consider now a state |ψ〉 with some given amplitudes on
the virtual chains. In this section, we first calculate the times
tk and coupling strengths Jk to create this state. We then
relate both these amplitudes and the corresponding times and
coupling strengths to the actual quasi-one-dimensional chain
in Fig. 1(a).
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FIG. 2. Site probabilities on the actual chain are denoted pk ; those on the virtual chains, qk . The probabilities at the virtual sites are
determined from the probabilities at the actual sites above them, i.e., q2 and q3 are determined by p2 and p3, and so on, as in Eqs. (23) and
(24).

1. Given probability amplitudes in the virtual spin chains

We first consider the virtual chain. The probabilities at the
sites of this chain are denoted {qk} and those on the actual
chain are denoted {pk} (Fig. 2). Suppose that q2k+1 and q2k are,
respectively, the probabilities that |2k, 2k + 1−〉 and |2k, 2k +
1+〉 are excited. Thus from Eq. (8),

q2k−1 = [Ak−1 cos(2Jk (τk − τk+1)) cos(2Jkτk+1)]2,

q2k = [Ak−1 cos(2Jk (τk − τk+1)) sin(2Jkτk+1)]2, (11)

where Ak is given in Eq. (10). From this set of coupled
nonlinear equations, we should determine all the times tk
and all the coupling constants Jk . First, we divide the second
Eq. (11) by the first to obtain tan2(2Jkτk+1) = q2k

q2k−1
, or

cos2(2Jkτk+1) = q2k−1

q2k−1 + q2k
. (12)

Remark. In the case where two consecutive probabilities
q2k−1 and q2k are 0, we only need to set 2Jk (τk − τk+1) =
π
2 + mπ and choose the parameter 2Jkτk+1 = Nπ ; see the
explanation before Eq. (17). Therefore, in contrast to the
method in Ref. [19], such states can also be generated by our
method.

Second, the sum of the two Eqs. (11) leads to

q2k−1 + q2k = A2
k−1 cos2(2Jk (τk − τk+1)). (13)

Using (13) we find

A2
k =

k∏
i=1

sin2(2Ji(τi − τi+1)) = A2
k−1 sin2(2Jk (τk − τk+1))

= A2
k−1(1− cos2(2Jk (τk−τk+1)))=A2

k−1−(q2k−1+q2k ).

By repeating this argument and using

A2
1 = 1 − q1 − q2,

we find

A2
k = 1 −

2k∑
i=1

qi =
2N∑

i=2k+1

qi.

This already leads to a very simple result: despite its
appearance as indicated in Eq. (10), Ak is a time-independent
quantity which is solely determined by the probabilities. From
(13), we obtain

cos2(2Jk (τk − τk+1)) = q2k−1 + q2k

A2
k−1

. (14)

Equations (12) and (14) give the sequence of ratios τk+1

τk
which,

finally, leads to the determination of all τk’s in terms of τ1

and then to the determination of all the coupling constants Jk .
There are some important details, due to the multiple solutions
of these equations, which we describe below.

Equation (11) gives

2Jkτk+1 = nkπ + cos−1
√

q2k−1

q2k−1 + q2k
, nk ∈ Z,

k = 1, . . . N, (15)

where integers nk are arbitrary. Also, from (13) one finds

2Jk (τk − τk+1) = mkπ + cos−1

√
q2k−1 + q2k

A2
k−1

, mk ∈ Z,

k = 1, . . . N, (16)
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where, again, the integers mk have to be chosen judiciously.
We later argue that it is best to set the integers mk = 0 and
nk = N to keep the couplings Jk bounded. Summing (16) and
(15) and setting k = 1, we find

2J1τ1 = Nπ + cos−1 √
q1 + q2 + cos−1

√
q1

q1 + q2
. (17)

Naturally, this single equation does not yield the values of J1

and τ1 independently since, after all, the time scale of the full

dynamics can be tuned by the strength of the first coupling
constant. However, from the two equations, all the other times
and coupling constants can be determined. Dividing (15) by
(16) and rearranging, one finds

τk+1

τk
=

Nπ + cos−1
√

q2k−1

q2k−1+q2k

Nπ + cos−1
√

q2k−1+q2k

A2
k−1

+ cos−1
√

q2k−1

q2k−1+q2k

,

which, after repeating and using (17), yields

τk+1 = 1

2J1

∏k
i=1

[
Nπ + cos−1

√
q2i−1

q2i−1+q2i

]
∏k−1

i=1

[
Nπ + cos−1

√
q2i+1+q2i+2

A2
i

+ cos−1
√

q2i+1

q2i+1+q2i+2

] . (18)

From (15) we can now determine all the coupling strengths:

Jk = J1

k−1∏
i=1

⎡
⎣Nπ + cos−1

√
q2i+1+q2i+2

A2
i

+ cos−1
√

q2i+1

q2i+1+q2i+2

Nπ + cos−1
√

q2i−1

q2i−1+q2i

⎤
⎦.

(19)

We now determine the order of magnitude of couplings Jk .
Since cos−1()̇ ∈ [0, π/2] according to Eq. (19) for large N,

Jk

J1
�

k−1∏
i=1

[
Nπ + π

2 + π
2

Nπ

]
=

(
1 + 1

N

)k−1

<

(
1 + 1

N

)N

	 e

(20)

and

Jk

J1
�

k−1∏
i=1

[
Nπ

Nπ + π
2

]
= 1(

1 + 1
2N

)k−1 >
1(

1 + 1
2N

)N 	 1√
e
.

(21)

In deriving these bounds, the choice mk = 0, nk = π has
played a crucial role and the result is that the orders of
magnitude for Jk and J1 are the same. Thus there is no
exponential increase in the value of coupling constants or
exponential decrease in the time interval between the pulses.

2. Given probabilities in the spin network

The evolution of the spin network could be obtained from
the evolution of the virtual spin chains. By inserting Eq. (11)
into Eq. (8) we have

e−iHt |1〉 =
N∑

k=1

[(−i)k−1√q2k−1|2k − 2, 2k − 1−〉

+ (−i)k√q2k|2k, 2k + 1+〉].

Using the definitions of |i, j±〉 := 1√
2
(|i〉 ± | j〉) this state is

equivalent to the following state on the actual chain:

e−iHt |1〉 =
N∑

k=1

(−i)k

√
2

(
√

q2k + √
q2k+1)|2k〉

+
N−1∑
k=0

(−i)k

√
2

(
√

q2k − √
q2k+1)|2k + 1〉. (22)

Since we want to generate a state |ψT 〉 = ∑2N
n=1 αn|n〉, where

|αn|2 = Pn, this gives

P2k = 1
2 (

√
q2k + √

q2k+1)2,

P2k+1 = 1
2 (

√
q2k − √

q2k+1)2 (23)

FIG. 3. Coupling strengths for generating the W states on chains of length N = 10 and N = 100.
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FIG. 4. Time sequence of Zk pulses for generating W states on chains of length N = 10 and N = 100 sites. tk is the time lapse between the
kth pulse and the (k + 1)th pulse.

or, equivalently,

q2k = P2k + P2k+1

2
+ √

P2kP2k+1,

q2k+1 = P2k + P2k+1

2
− √

P2kP2k+1. (24)

Therefore for any set of given probabilities on the actual chain,
one can immediately determine the probabilities on the virtual
chain and then from (19) and (18) tune the coupling strengths
and the pulse times to generate that given state. A minor sim-
plification arises if we demand that the state has support only
on the lower or upper branch of the quasi-one-dimensional
chain, i.e., on the chain consisting of even-numbered qubits
or odd-numbered qubits. In these cases where we use one of
the branches as the main chain and the other branch as the
ancilla chain, we are in fact dealing with a one-dimensional
chain, and in these cases we have P2kP2k+1 = 0, and from (24)
we have q2k = q2k+1.

IV. EXAMPLES

In this section use the above mechanism to generate some
well-known states: (A) W states with an equal probability of
having an excited spin in each site and (B) Gaussian states of
different widths.

Remark. In our examples, we use the lower part of the
network, the sites with an odd index, only as ancillary qubits.
That is, the amplitudes at all these sites are 0 and the state is

supported only on the leg of the chain above it, i.e., on the
even-numbered spins. So in both examples, the lower chain
is empty and the state is generated on the above chain of
even-numbered qubits.

A. W states

For W states the probabilities in the upper chain are equal
and those in the lower chain are 0:

∀k ∈ {1, 2, . . . , N} : P2k−1 = 0, P2k = 1

N
.

Therefore, we can find the probabilities in the virtual chains:

q1 = 0, ∀k ∈ {1, 2, . . . , N − 1} :

q2k = q2k+1 = 1

2N
, q2N = 1

N
.

The coupling strengths are found from (19), and the times
from (18). The results are shown in Figs. 3 and 4 for chains of
lengths 10 and 100.

B. Gaussian states

To generate a Gaussian state of a given width on the upper
chain, we fix

∀k ∈ {1, 2, . . . , N} : P2k−1 = 0, P2k = e− (k− N+1
2 )2

2σ2

√
2πσ 2

,

(25)

FIG. 5. Coupling strengths for generating the Gaussian states for n = 10 and n = 100.
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FIG. 6. Time sequence of Zk pulses for generating Gaussian states of various widths. tk is the time lapse between the kth pulse and the
(k + 1)th pulse. It is shown that after a while all the pulses can be applied simultaneously, especially for wave packets of small width. The
reason is that after the localized packet has been generated, the excitation is effectively confined in the virtual chains in the middle of the chain.
Hereafter, all the pulses on the empty chains at the right have no effect on the state.

from which we find

q1 = 0, ∀k ∈ {1, 2, . . . , N − 1} :

q2k = q2k+1 = e− (k− N+1
2 )2

2σ2

2
√

2πσ 2
, q2N = e− ( N−1

2 )2

2σ2

√
2πσ 2

.

The coupling strengths and time sequences of pulses are
shown in Figs. 5 and 6 for N = 10 and N = 100 and for
different values of σ .

By comparing Figs. 3 and 5, we can see that the cou-
pling strengths for generating W states are very similar to
the coupling strengths for generating Gaussian states with a
large standard deviation σ . This meets our expectation since
Gaussian states lead to W states in the limit of a large standard
deviation. By choosing the integers mk = 0 and nk = N in
Eqs. (15) and (16), we have kept all the coupling constants
finite and within the bounds provided in Eqs. (20) and (21).

V. THE SENSITIVITY OF THE SCHEME
TO THE TIMING OF PULSES

As Eq. (18) shows, it seems that the exact states which
are produced depend very much on the precise timing of the

applied pulses. It is thus natural to ask how sensitive this
scheme is with respect to this timing. What happens if the
pulses are not applied exactly at the times demanded by
Eq. (18). We have done a detailed analytical treatment of
this problem. However, reporting the details is not very illu-
minating, and instead, we report the basic idea and the final
numerical results. To simplify the analysis, let us assume that
the times of free dynamics in all virtual 2-chains are dilated
or contracted by an amount ε. This means that there is a
cumulative error in the time of all pulses; that is, the first pulse
is applied with an offset error of ε, the second pulse with an
offset error of 2ε, the third pulse with an offset error of 3ε, and
so on. Our intuitive reasoning that this type of error, instead of
a random error taken from a distribution, is the worst error that
may happen is the following. The whole purpose of the pulses
is to transfer an excitation from a virtual chain to the next
virtual chain at the right time, and if this transfer is delayed in
each virtual chain, there comes a time where no excitation is
in the middle of the chain to be transferred to the right end
of the chain. In this case, the excitation will be trapped in
some part of the left-hand side of the chain and go back and
forth in the virtual chains by the natural dynamics of these
short chains. In this way, consecutive delays in these transfers

FIG. 7. Fidelity of the generated W state with the ideal W state for chains of different lengths. The blue line separates the plane into
regions of fidelity higher than 0.99 (below the curve) and lower than 0.99 (above the curve). This shows, for example, that for chains of length
N = 10 and 20 there is a tolerance of J1ε approximately equal to 0.010 and 0.005, respectively. For lower fidelities (green and red curves), this
tolerance naturally becomes higher. Note the nice scaling of the tolerance with the length of the chain, shown at the right. Note that J1ε is the
dimensionless quantity which should be tuned in order to attain a fidelity.
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FIG. 8. Same as Fig. 7, but with the replacement of the W state with Gaussian states with σ = 1. Only the curves for σ = 1 are shown;
curves for other values of σ are similar in shape, with slightly different numerical factors.

hinder the desirable distribution of the excitation on the whole
chain. We have calculated the fidelity of the resulting state
with the ideal state generated by exactly applied pulses. The
results are shown in Fig. 7 for the W state and in Fig. 8 for
the Gaussian state. The interesting point is the 1

N scaling of
the required precision ε with the length of the chain for both
types of states.

VI. CONCLUSION

In this work, and inspired by a technique first introduced in
Ref. [16] and further developed in Ref. [17], we could exactly
determine the coupling constants of a quasi-one-dimensional
chain which is capable of generating any arbitrary single exci-
tation state. Instead of local magnetic fields Bk , which should
be tuned along with the coupling constants Jk in Ref. [19], we
had to use local pulses which have to be applied at definite
times. By decomposing the chain into noninteracting virtual

chains of length 2 whose dynamics is a simple rotation, we
could exactly generate any single excitation state. Examples
of W states and Gaussian states were studied, the results of
which are shown in Figs. 3 and 5. Although the chain seems
to be quasidimensional and of a particular geometry, we can
confine the state entirely to the upper chain and use the lower
chain as an ancillary chain which is empty at the end of the
process.
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