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Classical limit of entangled states of two angular momenta
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We consider a system of two particles, each with large angular momentum j, in the singlet state. The
probabilities of finding projections of the angular momenta on selected axes are determined. The generalized
Bell inequalities involve these probabilities and we study them using statistical methods. We show that most
of Bell’s inequalities cannot be violated, or are violated only marginally, in the limit j — oco. The precision
required to confirm a violation appears to be difficult to achieve. In practice, the quantum system, in spite of
being entangled, becomes indistinguishable from its classical counterpart.
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I. INTRODUCTION

A large quantum system should exhibit classical features.
This is the main idea of the correspondence principle formu-
lated by Bohr in the first years of quantum mechanics. There
still is a question how this classical behavior is reached. This
applies in particular to systems in entangled states. A quantum
system in an entangled state consists of two subsystems,
and coherence between these subsystems is the essence of
entanglement.

The classical limit has been studied via different routes.
One universal mechanism of reaching the classical limit by
a large quantum system is through interactions with environ-
ment. The interactions lead to “dephasing” of the quantum
system—during time evolution the density matrix evolves
from describing a pure state to a mixed state, an incoherent
superposition of special “pointer” states [1-3].

Another possibility of discussing the classical limit is
to consider quantum mechanical quantities that have their
counterparts in classical physics. Examples of such quantities
are expectation values of position, momentum, energy, etc.
Moreover, off-diagonal elements of position or momentum
operators between states of different energy have their clas-
sical counterparts as well.

Yet another aspect of classicality to notice is that very
precise measurements have to be performed in order to
detect quantum effects in systems close to the classical
limit.

Bell [4] found a set of inequalities that are fulfilled
by probabilities, obtained within any hidden variable the-
ory with local realism. Violation of Bell’s inequalities is a
proof that quantum mechanics cannot be replaced by any
form of probabilistic theory with local realism. This asser-
tion was confirmed by experiments with two state systems
(qubits).
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Original and early versions of Bell’s inequalities [4,5]
involved two observers, each one having a choice of two
mutually incompatible experiments. The inequalities have
been generalized and can involve many observers, many
particles [6] and multidimensional systems [7-11]. From a
geometric point of view, Bell’s inequalities describe a bound
convex set—intersection of a finite number of half spaces.
Finding all Bell’s inequalities gives a necessary and sufficient
condition for deciding whether a given state can be viewed
as representing a local theory with hidden variables. This is,
however, a computationally demanding NP problem [12]. A
complete list of Bell’s inequalities exists only for the simplest
cases [5,13-17].

More past studies [18-20] were interested in the j — oo
limit. They mostly referred to the question of how fast the
maximum magnitude of violation vanishes for the optimum
angle. The conclusion was that in the nonseparable singlet
state [18] large quantum numbers are no guarantee of classical
behavior. This view was repeated by [7,8] and was also
confirmed using the “numerical linear optimization” approach
[9,10]. In fact, this approach assumes the nonideal Bell state
as a density matrix, but the measurement itself was treated,
from assumption, as an “ideal one.” On the basis of such
assumptions, a general belief emerged that probabilities of
nonlocal events grow with the dimension of the systems
[7,8]. This means that the probability of the averaged event
might grow beyond the shot noise limit, and the chances
of the inequality violation for a given experimental setting
increases.

In this paper we are interested in the classical limit of
entangled states, but not from the point of view of robustness
to noise of a perfectly chosen Bell inequality. Our effort is to
consider the chance to observe a violation when the measured
quantity or Bell coefficient settings are imperfectly known.
We focus on a two-particle system, each particle possessing
angular momentum j, e.g., spinning tops. The classical limit
in such a system is reached when the values of both angular
momenta are much larger than 7z — the quantum unit of
angular momentum. We will show that it is very hard to
find Bell’s inequality and prove the quantum nature of the
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entangled state when j — oo. This illustrates the fact that the
system cannot be distinguished, or at least it would be very
hard to distinguish, from a classical system of two classical
correlated angular momenta.

This approach to the classical limit sheds more light on
the structure of entanglement of systems close to the classical
limit. Moreover, our view can be quite well suited to experi-
mental conditions, where angles measurements are imperfect
and determination of generalized Bell’s coefficients for large
J 1s onerous.

II. THE SYSTEM: QUANTUM AND CLASSICAL
DESCRIPTION

We consider a system consisting of two particles (tops),
each characterized by angular momentum quantum number
j. The square of the angular momentum is thus %%j(j + 1).
We are interested in case of large j, hence we consider states
close to the classical limit. We assume that angular momenta
are expressed in units of /i. The system is in the state with the
total angular momentum equal to zero. This state is given by

Z( - '"J_|m>| m). )

m=—j

This is definitely an entangled state with maximal entangle-
ment.

Two observers, say A and B, measure components of
angular momenta along arbitrarily chosen axes in the state
|W). Let us name these axes a for observer A and b for
observer B. The result of such measurement is a number m;
in case of observer A and m, in case of observer B, with
—j < my < j. Thus there are 2j + 1 possible outcomes of
measurement for each observer. In case of the state |W) with
zero total angular momentum the distribution of the results
is flat, the probability of finding the value m of the angular
momentum by each observer along each axis is 2]1+1

We will now find the probability amplitude a(a, b, m;, my)
of detecting a value m, of the angular momentum of the first
particle in the direction a and a value of m, of the angular
momentum of the second particle in the direction b. We make
use of the fact that the state |\W) is rotationally invariant,
i.e., has the same form in all coordinate systems. We choose,
therefore, the system of coordinates where vector a is along
the z axis and vector b lies in the x-z plane. Thus the y axis
is perpendicular to the plane spanned by the two vectors. The
probability amplitude a(a, b, m, m;) of detecting values m,
and m; in the chosen coordinate system is

a(a,b,my, my)

= Z Z( D" (my lm) (ma|m'y &7, ., (B),
2]+ A @)

where f is the angle between a and b. After short manipula-
tions one can write

1
a(av b9 mlvmz) = ﬁ( 1)] m d*ml mz(ﬁ), (3)
where d_m . (B) denotes the Wigner rotation function [21].
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FIG. 1. Slices of the quantum (left) and classical (middle and
right) probability distribution |a(a, b, m;, my)|> when the azimuthal
angle between vectors a and b is equal § = 7 /2. (Upper panels)
|j| = 10; (middle panels) |j| = 50; (lower panels) |j| = 90. Left

and middle column plots present the array-plot function, while right
column plots present the continuous density plot.

Probability of detecting angular momenta equal to m; and
my along appropriate directions is plotted in Fig. 1 for several
values of j. Let us note that this probability depends only
on the angle between vectors a and b. Because of rotational
invariance of the state |W), the same formula is valid in all
coordinate systems.

In addition to the probability amplitude a(a, b, m;, m)
given by (3), we will consider the lowest order correlation
functions of two angular momentum components along an
arbitrary axis a of one angular momentum and the sec-
ond angular momentum component along a different axis b.
This correlation function E(aJ;, bJ,) is obtained by taking
the expectation value of the operator aJ; - bJ, in the state
W), where Ji, J, denote angular momentum operators cor-
responding to the first and second particle. We choose the a
vector along the z axis and get

J
1
E@Ji;,bly) = — b,. 4
@Ji,bJ2) ,,,_Z_,Z —m(=m) )
Quantity b, is now the projection of the b vector on the z axis,
hence the cosine of the angle between vectors a and b. The
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sum over m is well known. In general, we can write

iU+

E(aJ;,bl)y) = 3

-b. (5)
Note that (5) is consistent with the correlation function found
in the case of spin % system (see [22]).

We will proceed with the study of a purely classical
model of two correlated systems having angular momentum J
each. The systems are spatially separated, however, their total
angular momentum is zero. The system may consist of two
spinning tops, with opposite axes of rotation. The direction
of the axes is random with uniform probability distribution,
therefore the average value of angular momentum of each top
is equal to zero. Random uniform distribution of the rotation
axis means that its direction n is a unit vector, while its polar
angle ® and azimuthal angle ® are random numbers with
distribution ﬁ sin ©.

We will determine the probability distribution
p(a,b,K,L) of finding the value K of the component
along the a axis of first angular momentum J;, and the value
L of the second angular momentum J, along the b axis.
This is the classical counterpart of the quantum expression
for |a(a, b, m|, my)|* in (3). We will use the fact that the
vector J; of the first top has direction along vector n and the
vector J, of the second top has direction —n, i.e., J; = nJ,
J2 = —nJ. The classical probability distribution is then given
by the formula

R(a,b,K,L)

1
= 4—/d<l>sin®d® S(K—Jan)-8(L+Jbn). (6)
T

Explicit evaluation of this integral leads to
R(a,b,K,L)

1 2 2 2 .2 _1
= —(—K"—L°"—2KLcosO +J" sin“0) 2, @)
2nJ

where 0 is the angle between vectors a and b. Let us introduce
scaled angular momenta k = K/J and [ = L/J. The probabil-
ity of finding the quantities k£ and / within the range of dk and
dl is simply expressed by p.(a,b, k,l) = p(a, b, k,[)dkdl.
The probability distribution therefore reads

1
p(a, bk, 1) = 2—(—k2 — 12 —2klcosd +sin26)z. (8)
T

In order to compare quantum probabilities with their clas-
sical counterparts, we choose the classical angular momentum
J equal to the quantum angular momentum /./j(j 4+ 1). Also
the classical projections k and [ are identified with m,/j and
my/j. The probability p.(a, b, k, ), with dk =1/j =dI is
plotted in Fig. 2.

Now we will discuss the classical correlation E(a J;, b J,)
between a component of one angular momentum along an
arbitrary axis a and of the second angular momentum com-
ponent along a different axis b. The correlation is defined as
the average value of the product (aJ; - b J,), according to

2
E(aJl,sz):—:—n/d(a sin®d® (a-n)(b-n). (9)
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FIG. 2. Probability distributions as a function of the projected
angle B for various momenta j (values on the plots). The classi-
cal ratios k/j =0.1 and [/j = —0.66 are fixed, while the quan-
tum ones, namely m; and m,, are the nearest values allowed by
integer n = 2. The blue line corresponds to quantum probability
la(a, b, m;, my)|*> = |a(B)|? and the orange line corresponds to clas-
sical probability distribution p(a, b, k, ).

Calculation of the integral gives
E@J;,bJ)=—1/%a b. (10)

Correlation (10) found in this purely classical limit is consis-
tent with the quantum correlation (5), the only difference is
that there is J? in the classical case as opposed to /i j(j + 1)
in the quantum case.

III. SEMICLASSICAL APPROXIMATION

Semiclassical approximation to the quantum description
provides a link between the quantum and classical approaches.
We will find now the semiclassical approximation to the
probability amplitude a(a, b, m;, m,) and discuss its relation
to classical probability. We will use the WKB method treating
1 as a small parameter.

We will start with the full Wigner rotation function
D,’;ll._mz (o, B, v) [21]. It satisfies the differential equation

1 92 n 92 ) 5 92 02
————+—2cosB—— )| — —
sin? B\ da?2 = 9y? dady 0B

9 A
—COtﬁ@j(j + 1)} D!, (a,B,y)=0. (1)

The standard semiclassical (WKB) method allows one to

find the asymptotic behavior of the D, (0, 8,0) =d;, . (B),

where d,];l . (B) is the matrix element of the rotation around

the y axis [23]:

; - [2T| 925, _ n
dm,m’('B) = (_1)J - ; Ccos JSO(,B) - = 1 (12)
T |dmom 4
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where J = j + % and Sy is the generating function of the classical rotation:

m mcos 8 —m' m'
’
So(m', m) = — arccos | —————=) — — arccos
J sin Bv/J2 — m?

Hence,

m — m' cos B

sin B

mm' — J?cos B

T m’2) + arccos (\/(jz Epey m2)>. (13)

2

&, (B) = (=1Y cos (J"SQ(,{;) .

These approximate formulas are not valid in the vicinity of
the classical “turning points,” i.e., points where the denomi-
nator in (14) is close to zero. A

Comparison of exact values of the d',’”,vm(,B) functions and
their semiclassical approximations is illustrated in Fig. 2.
Observe that the probability distribution p(a, b, k, /) found
in the previous section is equal to the square of the envelope
of the dﬁhm,(ﬂ) function in the semiclassical approximation.
The difference between the studied probability of the quantum
system and the corresponding probability distribution for the
classical system lies in small high frequency oscillations seen
in Fig. 2.

IV. STATISTICAL APPROACH TO GENERALIZED
BELL’S INEQUALITIES

In this section we will concentrate on entanglement of
the system and possible experimental tests that can verify its
existence. Entanglement is a nonclassical feature of quantum
systems. The question arises as to whether entanglement can
be detected in a system that is close to the classical limit.
States can be entangled, of course, regardless of the level
of excitation. The example of the state studied here proves
this beyond any doubt. Regardless of the value of j the state
W) is maximally entangled (regardless of exact definition
maximal entanglement). The real question is can one prove
in experiments that entanglement in this state really exists.

Bell’s inequalities and their generalizations provide a pow-
erful tool to prove existence of entanglement. The idea of
Bell’s inequalities can be formulated as follows. One consid-
ers a set of probabilities: p(a, m) and p(a, b, m;, m,) where
the measurement axes are chosen in various directions defined
by vectors a and b. Two sets of vectors a, and by, where r =
1,2 and s = 1, 2 should be considered. Notice that probabili-
ties p(a,, by, m;, my) depend on vectors a, and b by the angle
between them. If hidden variables exist and local realism
is valid then probabilities p(a,, m) and p(a,, by, m;, my) are
within the convex hull spanned by vertex defined by these
functions. This means that the probabilities satisfy a set of
inequalities known as (generalized) Bell’s inequalities.

Numerous experiments showed that these inequalities are
violated by quantum probabilities in case of entangled states
of two j = 1/2 states, known as qubits [22], and references
therein. This provides a strong argument that no hidden vari-
ables or local realism exist in quantum physics.

Let us now discuss in more detail the generalized Bell’s
inequalities. These are inequalities that should be satisfied by
linear combinations of joined probabilities p(a,, by, m;, my)

(14)

4> n\/sinz,B — 5 (m? +m? —2mm’ cos B)

(

under the assumption of local realism and existence of
hidden variables. Analogs of Bell’s inequalities in case of
large angular momentum are also known [15,16]; see also
[9,18,20,24-27].

In case of arbitrary j there are § =4 x (2j + 1) joined
probabilities p(a,, by, m;, my). According to [28], all Bell’s
inequalities are of the form

My < Y play by my, my)c(rs.my,my) < My, (15)

7,8, [,V

where M, and M, are fixed numbers and c(r, s, m,, m,) are
coefficients. The coefficients are equal to 0 or to natural
numbers with plus or minus sign [28]. Not all of them are
independent, however, the number of independent inequalities
(15) grows rapidly with j. Since we are interested in the case
of large j, the number of Bell’s inequalities is huge. It is not
realistic to consider them all, so we will turn to the statistical
approach.

Inspiration to use statistical methods stems from a some-
what similar approach to spectra of complex systems, where
the Hamilton operator is replaced by a matrix with elements
being random numbers with a statistical distribution. The
eigenvalues are random numbers and in fact are studied using
statistical methods.

To deal with Bell’s inequalities, we will treat the prob-
abilities of measuring given values of angular momenta by
the two observers as random numbers. Quantum probabilities
p(a,, by, my, my) have their classical analog p.(a,, by, k, 1),
as we saw in Sec. IIL. It is helpful to consider quantum cor-
rections, i.e., differences between the quantum and classical
probabilities. The quantum corrections are

(Sp(ah bsv miy, m2)
:p(ar9bsvmlam2)_pc‘(al'7b.hk’l)dkdl7 (16)

where k = m,/j, | = my/j and increments are chosen to fit
the increments of quantum numbers m; and m;, therefore
dk=1/j=dl.

Classical probabilities satisfy Bell’s inequalities and viola-
tion of these inequalities by quantum systems can be due to
the quantum corrections only.

Now we will study how the corrections scale with the
value of angular momentum j. First we will show that the
corrections dp(a,, by, m;, m) tend to zero for large j regard-
less of the choice of vectors a, and b;. Since there are many
corrections mentioned above, we will study average values
of them, i.e., §p, = ﬁ Zmlm Sp(a,, by, my, my). The
behavior of this quantity is illustrated in Fig. 3 as a function

052112-4



CLASSICAL LIMIT OF ENTANGLED STATES OF TWO ...

PHYSICAL REVIEW A 99, 052112 (2019)

0.4k h . B=17/8
il 1 - B=r/4
'H“] \H‘ ”» ‘ ‘8:71'/2

N 0pay

FIG. 3. The sum of all quantum corrections versus momentum j
for a given set of angle 8. Color line points correspond to different
values of angle 8.

of j. Notice that dp,, tends to zero when j — oo. The next
figure, Fig. 4, shows the average squares of §p,,, i.e., § piv =
m >, BP(@r, by, my, my))? as functions of j. It is
clear that the larger the j the smaller the average difference
between the classical and quantum probability. Notice from
Fig. 4 that §p?, goes to zero as j*.

Figure 5 presents histograms of differences between classi-
cal and quantum probabilities for various j and various angles
B between vectors a, and b,. We see that the differences
are localized around zero and the distribution is close to
a Gaussian. Thus we may say that the differences between
classical and quantum probabilities are random numbers with
a narrow distribution.

Finally we will show that probabilities p(a,, by, m;, my)
for various angle between a, and by are not correlated. This
is visible in Fig. 6, where the correlation function:

J
CiB)=N Y [p(a, a5, m,m)- pa, by, m,m)]

my,my=—j

decreases fast with j in the vicinity of small angles.

The discussion of Bell’s inequalities (15) will be contin-
ued using differences § pgv. The generalized inequalities (15)
involve linear combinations of probabilities. We can subtract
from them the classical values, which obviously fulfill the

15
] - B=m/8
- c p=m/4
T} " B=m/2
el
=z
"~ 5

FIG. 4. The scaling of average squares of dp(a,, by, my, my)
versus momentum j. The scaling factor is proportional to j2N, where
N =(2j+1)>~
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FIG. 5. Histograms of N é§p(a,, by, my, m,) values, which are
given by projections of momentum m; , and angle B between vectors
a, and b,. Values m, , vary from —j to j by one. Values j and § are
placed on the plot.

inequalities, and get a set of inequalities for §p(a,, by, my,
my). Every such inequality contains (2j + 1) terms at most,
so the number of terms scales as j2. Note that each term
consists of a product of a coefficient c(r, s, m;, mp) and
ép(a,, by, my, my). The number of coefficients grows with j2,
while §p(a,, by, mi, my) tend to zero as j—2. Therefore the
linear combination can either tend to zero or to a constant,
independent of j. Since §p(a,, by, m;, my) can be positive
or negative the linear combination of them in any of Bell’s
inequalities contains terms with alternating signs and thus the
total sum tends to zero with j — oco. The only exception is
the case when the signs of §p(a,, b, m;, my) are correlated
with the signs of c(r, s, m;, m,), i.e., when all or at least most
products c(r, s, my, my) x dp(a,, by, my, my) are of the same
sign.

We should stress also that probabilities p(a,, by, m, my)
as well as ép(a,, by, m;, mp) depend on the choice of mea-
surement performed by the two observers. A measurement is
defined by the directions a, and by along which the angular
momenta are measured. From Fig. 2 we can clearly see that
the probabilities p(a,, by, m;, my) are quite sensitive to the
angle between the two vectors. Even a small change of the

0 /4 /2 3m/4 ™

FIG. 6. Correlation C;(8) as a function of angle between vectors
a, and b, for various momentum j = 4 (green), j = 9 (red), j = 15
(blue), j = 21 (black).
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angle leads to a large change of p(a,, by, my, my). Suppose
one of Bell’s inequalities is violated by a set of probabilities
for given vectors a, and by. A small change of these vectors,
or rather the angle between them, by about 7 /j leads to
a substantial change of the probabilities. In fact, instead of
minima of p (as functions of angle) we may have maxima
after a small change of angles and the inequality is no longer
violated. Thus verification if a Bell inequality is violated or
not, depends on the choice of angles, and therefore on the
accuracy of angle determination.

In order to strongly violate a Bell inequality the coefficients
c(r, s,my, my) have to be correlated with the probabilities
p(a,, by, my, my). This requires that the c(r, s, m;, my) coef-
ficients corresponding to large probabilities p(a,, by, m;, my),
are large (in absolute value) and negative to dominate over the
remaining positive terms. These “’specially designed” condi-
tions do not prove that Bell’s inequalities cannot be violated
by probabilities obtained form the state |\W). The scaling
laws found above say that on average the violation of Bell’s
inequalities is negligible. Therefore, possible determination
of the violation is not probable. A small number of violated
inequalities indicate that the degree of practical violation does
not grow with j. In this way the quantum state |W), being
a quantum maximally entangled state, reproduces classical
angular momentum.

Observe that the classical limit proved here is not reached
in a uniform way. It is not said that each of Bell’s inequalities
is fulfilled in the limit of large j.

A completely different approach to Bell’s inequalities is
to consider correlation functions rather than the probabilities
(see [22]). The correlation function E can be written as a
sum E = E¢jassical + Equantum, where Ecjassical = _%a -b, and
Equantum = —%ja - b. In the classical limit j — oo correlation
functions E tend to their classical counterparts and no viola-
tion of Bell’s inequalities is possible.

V. CONCLUSIONS

There are many approaches to the study of the classical
limit in case of a large quantum system. One kind of ap-
proach is based on measurements and finite resolution of any
measuring device. If the resolution of angular momentum
measurement is below the quantum unit 7 then one cannot
measure the probability p(a,, m) nor the joined probability
p(a,, by, m;, my). Each such measurement only gives an av-
erage over many m; and my. It is clear from the plots that

such averaging leads directly to classical probabilities. This is
a simple observation.

Another approach of looking at the classical limit, which
was formulated by Zurek [1], stresses the importance of
the environment and damping of the quantum coherence by
mutual interaction between the system and the environment.
Our approach to the classical limit is, however, very different
from this one. There is no need for coherence damping in the
present approach. The probabilities of measurement and also
correlation functions of the quantum theory are sufficiently
close to their classical counterparts to make the quantum case
look very much the same as the classical system.

Obviously, the quantum states differ from the classical
distribution function. The difference lies in entanglement that
has no classical counterpart. In case of the entangled state
the relation between classical and quantum description is
more subtle than in previously mentioned cases. Existence of
entanglement can be verified on the basis of Bell’s inequalities
and their generalizations. While a lot is known about Bell’s
inequalities for small systems, two-state systems in particular,
the case of the large entangled system is less known. We
formulated a statistical approach to the problem based on the
fact the number of Bell’s inequalities grows rapidly with the
size of the system and that the probability of measuring a
single state is very difficult to determine. Using the example
of two large but entangled angular momenta we showed
that joined probabilities p(a,, by, m;, m;) behave similar to
random numbers in case of large j.

Our statistical approach showed that it is very difficult to
find an inequality that is violated by the entangled state of
two large angular momenta. This does not prove that such an
inequality does not exist. Our result shows only that there are
very few of such violated inequalities and therefore it is very
difficult to find them. We should stress that an inequality exists
that is violated even in the case of very large systems [20].

In addition to Bell’s inequalities we studied quantum cor-
relation functions and showed that they tend to the classical
limit of two correlated classical tops like 1/j. Because of this
rapid approach to the classical limit the correlation functions
cannot be used efficiently to discriminate between classical
and quantum states.
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