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Quantum information leverages correlations between spacelike separated parties in order to perform useful
tasks such as secure communication and randomness certification. Nevertheless, not much is known about
the intricate geometric features of the set quantum correlators. In this paper we study the structure of the set
of quantum correlators using semidefinite programming, more precisely the boundary, extreme, and exposed
points. We obtain quantum Bell inequalities characterizing a certain class of bipartite scenarios. In the case
of two dichotomic measurements, extremal quantum correlators coincide with the correlators that uniquely
determine the state and measurement operators, a property known as self-testing. We illustrate the usefulness
of our theoretical findings with many examples and extensive computational work.
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I. INTRODUCTION

Quantum theory distinguishes itself from classically con-
ceived theories of physics in several ways, most notably in
terms of the observed correlations between spacelike sepa-
rated parties [1]. The existence of nonlocal quantum corre-
lations predicted by Bell has been confirmed by numerous
experiments [2–4], which have influenced deeply our un-
derstanding of the physical world, and have led to real-life
applications in cryptography [5] and randomness certification
[6] among others.

Despite the usefulness of nonlocal quantum distributions,
the structure of the set of quantum distributions is not well
understood. Most notably, there are many semidefinite pro-
gramming hierarchies approximating the set of quantum cor-
relations from the exterior, but these hierarchies only converge
in the limit, e.g., see [7,8]. In fact, it was shown only recently
in [9] that the set of (tensor product) quantum correlations is
not closed.

From a practical perspective, to manipulate quantum in-
formation, one needs a robust method for identifying quan-
tum systems. This motivates extensive work studying the
relationship between objects in the theory, namely quantum
states and measurements, and the theory’s predictions, namely
probabilities of experiments. This line of research is known as
quantum tomography whose recent reincarnation is known as
self-testing [10] and gate set tomography [11].

Here we study the geometric structure of the set of quantum
correlators. As the quantum set is convex, its properties can
be understood via various features of its convex geometry,
i.e., its facial structure and its extreme points [12]. Such an
approach of studying the quantum set within the framework
of convex analysis was also employed in [13]. Our approach
differs in that we use the rich duality theory of semidefinite
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programming as our main tool. The relevance of semidefi-
nite programming for the study of quantum correlators was
implicit in the work of Tsirelson [14], a connection that
was pursued further in [7,8]. It essentially follows from [14]
that the geometry of the set of quantum correlators is the
projection of the geometry of the elliptope, a convex set of
central interest in the field of combinatorial optimization [15].

Connections to semidefinite programming lead to several
interesting results.

First, exact and analytic description of quantum correla-
tions is extremely rare: the only known instance occurs in
the case of two dichotomic measurements for Alice and Bob
and is known as the Tsirelson-Landau-Masanes quantum Bell
inequalities. We obtain analytic description for a more general
scenario where Alice has two dichotomic measurements and
Bob has an arbitrary number of dichotomic measurements
(Theorem 1).

Second, we refine the above description of the boundary of
quantum sets by deriving necessary and sufficient conditions
for extremality (Theorem 2 and 3), and a sufficient condition
for exposedness (Theorem 5). These characterizations take the
form of semidefinite programming, i.e., efficiently solvable,
which greatly facilitates the numerical study of specific quan-
tum correlations.

Third, we show that these stronger geometric properties—
extremality and exposedness—are not just theoretical curios-
ity but have significant impact on applications. Specifically,
extremality and self-testing are equivalent in the case of
two dichotomic measurements (Theorem 4). This means in
particular that experimentalists are now allowed much more
freedom in the class of correlations that, once observed, would
uniquely determine the underlying quantum system. Further,
exposedness of a correlation allows one to conclude the same
property, but by using only the maximal quantum violation of
a certain Bell inequality.

We start with a brief review of Bell nonlocality (Sec. II),
followed by the precise definition of the set of quantum
correlators, our main object of study. We then obtain char-
acterization of this set via the positive semidefinite matrix
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completion problem (Sec. III), which leads to an analytic
description (Sec. IV). Further exploiting this connection, we
study the convex geometry of quantum correlators, its extreme
points (Sec. V A) and exposed points (Sec. V D), and present a
connection between the geometric concept of extremality with
the operational task of self-testing (Sec. V C). Algorithmic re-
sults and examples are interspersed in these sections whenever
convenient. We conclude the paper with a high level overview
of our results and pointers towards future research.

II. BELL NONLOCALITY

Bell experiment. The experimental and mathematical
framework for studying behaviors between two spacelike
separated parties is known as a bipartite Bell experiment. In
this setting two parties, called Alice and Bob, perform in-
dependently and simultaneously local measurements on their
corresponding subsystems and record the resulting outcomes.
In this work, we restrict to Bell experiments where the parties
can only perform dichotomic (i.e., two-outcome) measure-
ments.

The event that the first party performed measurement x and
got outcome a, whereas the second party performed measure-
ment y and got outcome b is denoted by (a, b|x, y). The next
step is to consider physical theories that assign probabilities
p(a, b|x, y) to all possible events of a Bell experiment. The
collection of all joint conditional probabilities p(a, b|x, y) is
called a full behavior.

Clearly, for any physical theory, behaviors satisfy nonneg-
ativity and normalization conditions, i.e.,

p(a, b|x, y) � 0, ∀a, b, x, y,∑
a,b

p(a, b|x, y) = 1, ∀x, y.

Furthermore, for reasonable physical theory, the behaviors
that can be generated between spacelike separated parties have
the property that each party’s local marginal distribution does
not depend on the other party’s choice of measurement, i.e.,∑

b

p(a, b|x, y) =
∑

b

p(a, b|x, y′), ∀a, x, y �= y′,

∑
a

p(a, b|x, y) =
∑

a

p(a, b|x′, y), ∀b, y, x �= x′.
(1)

A full behavior that satisfies all the linear constraints given in
(1) is called no signaling. Given a no-signaling behavior, we
denote by pA(a|x) and pB(b|y) the local marginal distributions
of Alice and Bob, respectively.

As we only consider dichotomic measurements, we can
use an equivalent parametrization of a no-signaling behavior
p(a, b|x, y) in terms of average values. Explicitly, for outcome
labels a, b ∈ {±1} we use the affine bijection

p(a, b|x, y) �→ (cx, cy, cxy), (2)

where

cx =
∑

a∈{±1}
a pA(a|x), cy =

∑
b∈{±1}

b pB(b|y),

cxy =
∑

a,b∈{±1}
ab p(a, b|x, y).

The image of the set of full behaviors under the map (2) is
called the set of full correlators, and its elements are denoted
by (cx, cy, cxy). Lastly, the coordinate projection of the set of
full correlators on the coordinates cxy is the correlator space
and its elements are called correlators.

Local behaviors and correlators. A behavior p(a, b|x, y) is
called local deterministic if p(a, b|x, y) = δa, f (x)δb,g(y), where
δ is the Kronecker delta function and f , g are functions
from the input set to the output set. Furthermore, a behavior
p(a, b|x, y) is called local if it can be written as a convex com-
bination of local deterministic behaviors, i.e., p(a, b|x, y) =∑

i μi pi, where μ � 0,
∑

i μi = 1, and each pi is local de-
terministic.

Fixing outcome labels a, b ∈ {±1}, the corresponding set
of correlators is the convex hull of all n × m matrices xy�,
where x ∈ {+1,−1}n×1 and y ∈ {+1,−1}m×1. This is known
as the cut polytope of the complete bipartite graph Kn,m (in
±1 variables) and is of central importance in the field of
combinatorial optimization [15].

Quantum behaviors and correlators. According to the
(Hilbert space) axioms of quantum mechanics, a full behavior
p(a, b|x, y) is quantum, if there exist ρ, a quantum state acting
on the Hilbert space HA ⊗ HB, and {Mx

a} and {My
b}, local

measurements acting on HA and HB, i.e.,

ρ 
 0, tr(ρ) = 1,

Mx
a 
 0,

∑
a

Mx
a = 1,

My
b 
 0,

∑
b

My
b = 1,

such that p(a, b|x, y) = tr(Mx
a ⊗ My

bρ). Equivalently, a full
correlator (cx, cy, cxy) is quantum, if there exists a quan-
tum state ρ acting on the Hilbert space HA ⊗ HB, and ±1
observables A1, . . . , An, B1, . . . , Bm acting on HA and HB,
respectively, such that

cx = tr((Ax ⊗ I )ρ), x ∈ [n],

cy = tr((I ⊗ By)ρ), y ∈ [m],

cxy = tr(ρAx ⊗ By), x ∈ [n], y ∈ [m].

(3)

The set of quantum correlators, denoted by Cor(n, m), is
the set of all vectors cxy, where cxy = tr(ρAx ⊗ By) for a
quantum state ρ and ±1 observables A1, . . . , An, B1, . . . , Bm.
It is evident that the difference with full correlators lies
in the lack of local marginals ax, by. Note that the set of
quantum correlators is a compact and convex subset of the
cube [−1, 1]nm. Throughout this work, we arrange the entries
of a quantum correlator cxy ∈ Cor(n, m) as an n × m matrix
C, which we call a quantum correlation matrix. We use the
vector and matrix representations interchangeably.

III. LINK TO SEMIDEFINITE PROGRAMMING

A semidefinite program (SDP) is a mathematical optimiza-
tion problem, where the objective is to optimize a linear func-
tion over an affine slice of the cone of positive semidefinite
matrices. A SDP in primal canonical form is given by

p∗ = sup
X

{〈C, X 〉 : X 
 0, 〈Ai, X 〉 = bi (i ∈ [�])}, (P)
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where 〈·, ·〉 denotes the trace inner product of matrices and
the generalized inequality X 
 0 means that the matrix X
is positive semidefinite, i.e., it has non-negative eigenvalues.
SDPs are an important generalization of linear programming,
which is obtained as a special case when all involved matrices
are diagonal. SDPs have significant modeling power, powerful
duality theory, and efficient algorithms for solving them.

The link between quantum correlators and SDPs originates
in the seminal work of Tsirelson [14, Theorem 2.1] and later
also in [8,16,17]. Specifically, Tsirelson showed that a matrix
C = (cxy) ∈ [−1, 1]n×m is a quantum correlation matrix if
and only if there exists a collection of real unit vectors
u1, . . . , un, v1, . . . , vm such that

cxy = 〈ux, vy〉, for all x ∈ [n], y ∈ [m]. (4)

We note that 〈·, ·〉 denotes the canonical inner product of
vectors. As a consequence of Tsirelson’s theorem it follows
that C = (cxy) ∈ [−1, 1]n×m is a quantum correlation matrix
if and only if the following SDP is feasible:

max
X

0,

such that Xx,n+y = cxy, x ∈ [n], y ∈ [m],

Xii = 1, i ∈ [n + m],

X ∈ Sn+m
+ .

(5)

To establish this equivalence note that if cxy =
〈ux, vy〉,∀x ∈ [n], y ∈ [m], where ‖ux‖ = ‖vy‖ = 1, the
Gram matrix Gram(u1, . . . , un, v1, . . . , vm) is feasible
for (5). Conversely, if X ∈ Sn+m

+ is feasible for (5),
by the spectral theorem for real symmetric matrices,
there exist unit vectors u1, . . . , un, v1, . . . , vm such that
X = Gram(u1, . . . , un, v1, . . . , vm). Clearly, this implies that
cxy = 〈ux, vy〉, ∀x ∈ [n], y ∈ [m], and thus C = (cxy) is a
quantum correlation matrix.

Furthermore, a geometric interpretation of Tsirelson’s the-
orem is that the set of n × m quantum correlation matrices
Cor(n, m) is the image of the set of (n + m) × (n + m) posi-
tive semidefinite matrices with diagonal entries equal to one,
denoted by En+m, under the projection

� : Sn+m → Rn×m,

(
A C

C� B

)
�→ C, (6)

i.e., we have that Cor(n, m) = �(En+m).
Any matrix in �−1(C) ∩ En+m is called a PSD completion

of C. Thus checking whether a matrix C = (cxy) ∈ [−1, 1]n×m

is a quantum correlation matrix reduces to checking that the
partially specified matrix ( ? C

C� ? ) can be completed to
a full PSD matrix with diagonal entries equal to one. For
example, the CHSH correlator C = 1√

2
( 1 1

1 −1 ) is quantum,
as the corresponding partial matrix⎛

⎜⎜⎝
1 ? 1/

√
2 1/

√
2

? 1 1/
√

2 −1/
√

2
1/

√
2 1/

√
2 1 ?

1/
√

2 −1/
√

2 ? 1

⎞
⎟⎟⎠ (7)

admits a PSD completion, obtained by setting all the unspeci-
fied entries to zero.

The problem of completing a partially specified matrix into
a full PSD matrix is an important instance of semidefinite pro-
gramming, referred to as the PSD matrix completion problem;
e.g., see [18] and references therein.

One of the most fruitful approaches for studying the PSD
matrix completion problem has been the use of graph theory.
Specifically, let G = ([n], E ) be a simple undirected graph,
whose edges encode the positions of the known entries of
the matrix. The elliptope or coordinate shadow of a graph
G, denoted by E (G), is defined as the image of En under the
coordinate projection

�G : Sn → RE , A �→ (Ai j )i j∈E . (8)

In other words, any vector a ∈ E (G) ⊆ RE corresponds to a
G-partial matrix that admits a completion to a full PSD matrix
with diagonal entries equal to one.

The properties and structure of the elliptope of a graph
have been studied extensively; e.g., see [15,19–21]. By the
definition of the elliptope of a graph, it is clear that

Cor(n, m) = E (Kn,m),

where Kn,m denotes the complete bipartite graph, where the
bipartitions have n and m vertices, respectively. This link
allows us to utilize properties concerning the structure of the
elliptope of a graph E (G) in our study of the structure of the
set of quantum correlators.

IV. ANALYTIC DESCRIPTION OF Cor(n, m)

A first property of E (G) of relevance to this work is that
the elliptope of a graph G = ([n], E ) is a subset of a nonlinear
transform of the metric polytope, denoted by Met(G), which
consists of all vectors x = (xe) ∈ RE satisfying

0 � xe � 1, for all e ∈ E , (9)∑
e∈F

xe −
∑

e∈C\F

xe � |F | − 1, (10)

where C is any cycle in G and F is any odd cardinality
subset of C. Recall that a cycle in a graph is a sequence of
vertices starting and ending at the same vertex, where each
two consecutive vertices in the sequence are adjacent to each
other. We refer to the inequalities of type (9) and (10) as box
inequalities and cycle inequalities, respectively.

The relation between E (G) and Met(G) is completely
understood; e.g., see [22, Theorem 4.7]. Specifically, it is
known that, for any graph G, we have the inclusion E (G) ⊆
cos(π (Met(G))). Furthermore, equality holds if and only if
the graph G does not have the complete graph on four vertices,
denoted by K4, as a minor.

Two observations concerning this result are in order. First,
note that the cosine function is applied componentwise, i.e.,
for a vector x = (xe) ∈ RE we define cos(x) ∈ RE , where
cos(x)e = cos xe. Second, a graph H is called a minor of a
graph G, if H can be obtained from G through a series of edge
deletions, edge contractions, and isolated node deletions.

Based on this and the fact that Cor(n, m) = E (Kn,m), we
now derive an analytic description for Cor(n, m), whenever
min{n, m} � 2. Indeed, it is easy to check that the complete
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bipartite graph Kn,m has the complete graph on four vertices
K4 as minor if and only if min{n, m} > 2. Thus it follows
that Cor(n, m) = cos π (Met(Kn,m)) whenever min{n, m} �
2. This gives the following.

Theorem 1. For min{n, m} � 2, we have that C = (cxy) ∈
Cor(n, m) if and only if the following linear system is feasible:

0 � θxy � π, ∀x, y,

0 � θ1 j + θ2i + θ2 j − θ1i � 2π,

0 � θ1i + θ2i + θ2 j − θ1 j � 2π,

0 � θ1i + θ1 j + θ2 j − θ2i � 2π,

0 � θ1i + θ1 j + θ2i − θ2 j � 2π,

(11)

where 3 � i < j � n + 2 and θxy = arccos(cxy).
As an example, in the case of Cor(2, 2), the resulting

characterization is known as the Tsirelson-Landau-Masanes
criterion, which has been rediscovered numerous times; e.g.,
see Refs. [14,16,23]. The description for Cor(2, n) when n �
3 is obtained here. The detailed argument leading to Theorem
1 is given in Appendix B.

The deceptively simple form of the inequalities in The-
orem 1 may lead us to conjecture that the pairwise angle
parametrization will be able to linearize the description of
the set of quantum correlations. However, our preliminary
investigation into scenario Cor(3, 3) showed otherwise: non-
linearity exists even in the pairwise angle parametrization (i.e.,
after taking the componentwise arccosine mapping). Hence
an elegant parametrization for quantum correlators in general
remains an open problem.

V. EXTREMAL AND EXPOSED CORRELATORS

In this section we use that Cor(n, m) is a projection of the
elliptope En+m, to study the convex geometry of Cor(n, m).
We begin with its extreme points (or zero-dimensional faces)
and continue with its exposed points.

A. Extremal correlators

A matrix C ∈ Cor(n, m) is an extreme point of Cor(n, m)
if the equality C = λC1 + (1 − λ)C2, where λ ∈ (0, 1) and
C1,C2 ∈ Cor(n, m), implies C = C1 = C2.

The set of extreme points of Cor(n, m), denoted by
ext(Cor(n, m)), is important for the following reasons. First,
since the set of quantum correlators is compact (i.e., closed
and bounded) and convex, by the Krein-Milman theorem (e.g.,
see [24, Theorem 3.3]), Cor(n, m) is equal to the convex hull
of its extreme points.

Secondly, Tsirelson showed that any quantum realization
of an extremal correlator in Cor(n, m) corresponds to a com-
plex representation of an appropriate Clifford algebra [14,
Theorem 3.1]. As a consequence, depending on the parity
of the rank of an extremal correlator C, it either has one or
two “nonequivalent” (up to arbitrary unitaries) quantum repre-
sentations. In modern language, Tsirelson’s work specialized
to the case of even-rank extremal correlators is a self-testing
statement and a connection we pursue further Sec. V C.

In this section we derive an exact characterization for
extremality in Cor(n, m), in terms of the PSD matrix com-
pletion problem. This fact essentially follows from the work

of Tsirelson [14,25], and was also recently noted in [26,
Theorem 3.3]. The main tool in the proof is a set of necessary
conditions for extremality derived by Tsirelson, which we
have collected in Theorem 8 in the Appendix.

Theorem 2. A correlator C ∈ Cor(n, m) is extremal if
and only if C has a unique PSD completion Ĉ ∈ En+m, and
furthermore,

rank(Ĉ ◦ Ĉ) =
(

rank(Ĉ) + 1

2

)
, (12)

where ◦ denotes the Hadamard (componentwise) product of
matrices.

Proof. The forward implication is a consequence of The-
orem 8 (iii), combined with the following characterization of
extreme points of the elliptope [27]:

E ∈ ext(En) ⇐⇒ rank(E ◦ E ) =
(

rank(E ) + 1

2

)
. (13)

For the converse direction, by assumption we have that
�−1(C) ∩ En+m = {Ĉ}, where the map � was defined in (6).
Furthermore, the rank assumption on Ĉ combined with (13)
implies that Ĉ ∈ ext(En+m). Since C ∈ ext(Cor(n, m)) if and
only if �−1(C) is a face of En+m, e.g., see [28, Lemma 2.4],
we conclude that C ∈ ext(Cor(n, m)) as an extreme point is a
face. �

Illustrating the usefulness of Theorem 2, we now show the
extremality of various quantum correlation matrices.

The only other technique available in the literature for
showing extremality of a quantum correlator is via the notion
of self-testing. Specifically, it was shown in [13, Proposition
C.1] that a full correlator (cx, cy, cxy), which is a self-test, is
also necessarily an extreme point of the set of full correlators.
It is easy to verify that this argument remains valid for
correlators, i.e., if C ∈ Cor(n, m) is a self-test, it is also an
extreme point of Cor(n, m).

Example 1. The CHSH correlator C = 1√
2
(1 1
1 −1) is well

known to be a self-test (e.g., see [29, Theorem 4.1]), and
thus it is an extreme point of Cor(2, 2). To recover this by
Theorem 2, we first show that the matrix⎛

⎜⎜⎜⎜⎝
1 a 1/

√
2 1/

√
2

a 1 1/
√

2 −1/
√

2

1/
√

2 1/
√

2 1 b

1/
√

2 −1/
√

2 b 1

⎞
⎟⎟⎟⎟⎠ (14)

admits a unique PSD completion. Indeed, consider an arbi-
trary completion and let x1, x2, y1, y2 be the vectors in a Gram
decomposition. Define

z+ = x1 + x2√
2

, z− = x1 − x2√
2

.

Then clearly 〈z+, z−〉 = 0. Furthermore, 〈y1, z+〉 = 1 and
〈y1, z−〉 = 0. Since ‖y1‖ = 1 it follows that

y1 = z+
‖z+‖ , y2 = z−

‖z−‖ .
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This implies that b = 〈y1, y2〉 = 0. Similarly, we get that a =
0. Thus the unique PSD completion is

Ĉ =

⎛
⎜⎜⎝

1 0 1/
√

2 1/
√

2
0 1 1/

√
2 −1/

√
2

1/
√

2 1/
√

2 1 0
1/

√
2 −1/

√
2 0 1

⎞
⎟⎟⎠. (15)

Lastly, as rank(Ĉ) = 2 and rank(Ĉ ◦ Ĉ) = 3, it follows by
Theorem 2 that C ∈ ext(Cor(2, 2)).

Example 2. The Mayers-Yao correlator [10]

C =
⎛
⎝ 1 0 1/

√
2

0 1 1/
√

2
1/

√
2 1/

√
2 1

⎞
⎠ (16)

is a self-test (e.g., see [29, Theorem 4.2]), and thus it is an
extreme point of Cor(3, 3). To recover this by Theorem 2 we
first check that the corresponding matrix⎛

⎜⎜⎜⎜⎜⎜⎝

1 a b 1 0 1/
√

2
a 1 c 0 1 1/

√
2

b c 1 1/
√

2 1/
√

2 1
1 0 1/

√
2 1 d e

0 1 1/
√

2 d 1 f
1/

√
2 1/

√
2 1 e f 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

admits a unique PSD completion. To see this, consider an
arbitrary PSD completion and let x1, x2, x3, y1, y2, y3 be a
Gram decomposition. Since ‖x1‖ = ‖y1‖ = 1 and 〈x1, y1〉 =
1, we have that x1 = y1. Similarly, we get that x2 = y2. These
two conditions imply that

a = 〈x1, x2〉 = 〈x1, y2〉 = 0,

b = 〈x1, x3〉 = 〈y1, x3〉 = 1/
√

2,

c = 〈x2, x3〉 = 〈y2, x3〉 = 1/
√

2,

d = 〈y1, y2〉 = 〈x1, x2〉 = 0,

e = 〈y1, y3〉 = 〈x1, x3〉 = 1/
√

2,

f = 〈y2, y3〉 = 〈x2, y3〉 = 1/
√

2. (18)

Summarizing, the unique PSD completion of C is

Ĉ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1/
√

2 1 0 1/
√

2
0 1 1/

√
2 0 1 1/

√
2

1/
√

2 1/
√

2 1 1/
√

2 1/
√

2 1
1 0 1/

√
2 1 0 1/

√
2

0 1 1/
√

2 0 1 1/
√

2
1/

√
2 1/

√
2 1 1/

√
2 1/

√
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(19)

Lastly, since rank(Ĉ) = 2 and rank(Ĉ ◦ Ĉ) = 3 it follows by
Theorem 2 that C ∈ ext(Cor(2, 3)).

Example 3. The quantum correlator

C = 1

2

(
1 1
1 −2

)

is a self-test [30] and thus an extreme point of Cor(2, 2). It can
be easily checked that the corresponding partial matrix has a

unique PSD completion given by

Ĉ =

⎛
⎜⎝

1 −1/2 1/2 1/2
−1/2 1 1/2 −1
1/2 1/2 1 −1/2
1/2 −1 −1/2 1

⎞
⎟⎠.

As rank(Ĉ) = 2 and rank(Ĉ ◦ Ĉ) = 3, it follows that C ∈
ext(Cor(2, 2)).

Extreme points of Cor(2, 2). In this section we give an
explicit characterization of the extreme points of Cor(2, 2),
in terms of the angle parametrization from Theorem 1.

Theorem 3. For C = (cxy) ∈ Cor(2, 2) let θxy = arccos
(cxy) ∈ [0, π ] for all x, y ∈ {1, 2}.

(i) If rank(C) = 1, then C is extreme iff it is local deter-
ministic, i.e., C = uv�, for u, v ∈ {+1,−1}2.

(ii) If rank(C) = 2, then C is extreme iff it saturates exactly
one of the inequalities

0 �
∑

xy �=x′y′
θxy − θx′y′ � 2π

and at most one of the inequalities

0 � θxy � π,

where x, x′, y, y′ ∈ {1, 2}.
The case rank(C) = 1 is straightforward so we mainly

focus on the case rank(C) = 2. To prove extremality, we use
the assumptions of the theorem to prove the existence of a
unique completion that satisfies (12). Extremality then follows
by Theorem 2.

For the converse direction, we translate the assumption
of extremality, namely unique completability and the rank
condition (12) to the level of the angle parameters θxy. As it
turns out, these assumptions imply that the unspecified entries
are uniquely determined in any completion. In turn, this shows
that one cycle inequality and at most one box inequality are
tight. The details are given in Appendix D.

B. Verifying extremality computationally

The examples given in the previous section illustrate the
usefulness of the characterization of extremality given in
Theorem 2. Nevertheless, it is not clear whether Theorem 2
leads to an algorithm for testing extremality, as a priori it is
not immediately obvious how to systematically check whether
the corresponding completion problem has a unique solution.
We address this issue using the rich duality theory enjoyed by
SDPs, summarized in Theorems 6 and 7 in Appendix A.

Back to the completion problem, given C = (cxy) ∈
Cor(n, m), its PSD completions coincide with the set of
solutions of the SDP feasibility problem (5).

Next, we dualize the SDP (5). For this, we first write (5) in
primal canonical form [recall (P)], i.e.,

max
X

0

such that 〈Ex,n+y, X 〉 = cxy, x ∈ [n], y ∈ [m],

〈Eii, X 〉 = 1, i ∈ [n + m],

X ∈ Sn+m
+ ,

(20)
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where Ei j = 1
2 (eie�

j + e je�
i ) is the symmetric matrix with

entry 1 at row i and column j and nonzero elsewhere, scaled
by a factor of half.

The dual of the SDP (20) is given by

inf
λ,Z

n+m∑
i=1

λi +
n∑

x=1

m∑
y=1

λxycxy

such that
n+m∑
i=1

λiEii +
n∑

x=1

m∑
y=1

λxyEx,n+y = Z ∈ Sn+m
+ . (21)

Note that the SDP (21) admits a positive definite feasible
solution, e.g., obtained by setting λxy = 0, ∀x, y and taking
λi to be sufficiently large.

Furthermore, by weak duality for SDPs [cf. Theorem 6
(i)], we have that 0 = p∗ � d∗, i.e., d∗ > −∞. By strong
duality for SDPs [cf. Theorem 6 (iv)], these two properties
imply that the value of the dual SDP (21) is equal to zero,
i.e., d∗ = 0. Furthermore, d∗ = 0 is clearly attained, e.g., take
λi = λxy = 0. Lastly, as C ∈ Cor(n, m) by assumption, the
primal SDP (5) is also attained. Thus, to show that the SDP
(5) has a unique solution, it suffices to exhibit a nondegenerate
optimal solution for (21).

Specializing the definition of dual nondegeneracy for SDPs
[see (A2) in Appendix A] to a dual feasible solution (λ, Z ) for
the SDP (21), this is equivalent to asking that M = 0 is the
only solution of the system:

MZ = 0,

Mii = 0, 1 � i � m + n,

Mi j = 0, 1 � i � n, n + 1 � j � n + m.

(22)

An important observation is that (22) is a linear program in
the entries of the symmetric matrix variable M ∈ Sn+m, and
thus it is efficiently solvable.

We are now ready to describe an algorithmic procedure for
determining extremality of a given C ∈ Cor(n, m), based on
Theorem 2 and the notion of SDP nondegeneracy. For the
convenience of the reader, the algorithm is summarized in a
flow chart in Fig. 1.

Step 1. We solve the pair of primal-dual SDPs (20) and
(21), to get Xopt and Zopt, respectively.

Step 2. We check whether Zopt is dual nondegenerate, i.e.,
we check whether M = 0 is the only solution to the linear
programming problem (22) (where Z = Zopt.)

Step 3a. If Zopt is nondegenerate, then Xopt is the unique
solution of the primal SDP (20) by Theorem 7. Lastly, we
check whether

rank(Xopt ◦ Xopt ) =
(

rank(Xopt ) + 1

2

)
.

If this holds then C is extreme, and if it fails, C is not extreme.
Step 3b. If Zopt is degenerate and

rank(Xopt ) + rank(Zopt ) = m + n, (23)

we conclude that C is not extreme. Indeed, if C was extreme,
by Theorem 2, Xopt would be the unique solution of the
SDP (20). As Xopt, Zopt satisfy (23), by Theorem 7 (ii) the
matrix Zopt would be dual nondegenerate optimal solution, a
contradiction.

Input correlation C ∈ Cor(n,m)

Solve the SDPs (20) and (21),
to get Xopt and Zopt

Check if Zopt

is nondegenerate

Check
rank condition (12)

Check strict
complementarity

Extremal

Inconclusive

Not extremal

yes

no

yes

no

yes

no

FIG. 1. Flow chart describing the algorithmic procedure for de-
termining extremality in Cor(n, m).

Step 3c. If Zopt is degenerate and

rank(Xopt ) + rank(Zopt ) < m + n, (24)

our procedure is inconclusive.
Note that by weak duality for SDPs, we always have that

rank(Xopt ) + rank(Zopt ) � m + n. Thus condition (23) fails if
and only if condition (24) holds.

We implemented this procedure on MATLAB® using
the YALMIP package and Mosek as in [31]. Furthermore,
we tested the performance of the procedure on randomly
generated extremal points of Cor(2, 2). Specifically, with
randExtremeCorr22.m, we generate a random point in
extCor(2, 2) by randomly picking three angles, θ1, θ2, θ3 ∈
(0, π ), and setting φ = θ1 + θ2 + θ3. If φ < π or 2π < φ <

3π , we set the fourth angle θ4 = φ; otherwise, we discard
this instance. Then, by Theorem 3, the corresponding cor-
relator is extremal in Cor(2, 2). We applied our procedure,
called extremeCorr.m, on 1000 extremal points generated
by randExtremeCorr22.m. In all instances, our algorithm
correctly detected that the generated points are indeed ex-
treme.

C. Operational interpretation of extremality

It turns out that the geometric concept of extremality has
a nice operational interpretation. We now explain the connec-
tion with the task of self-testing, which has been mentioned
several times in the previous sections.

Self-testing, also referred to as device-independent char-
acterization of the state and the measurements, or simply
blind tomography, captures the idea that certain correlations
between spacelike separated parties predicted by quantum
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theory determine the state and the measurement up to local
isometries and other irrelevant degrees of freedom.

The term self-testing was introduced in the work by May-
ers and Yao [10]. Nevertheless, the idea underlying self-
testing was discovered earlier numerous times in the literature,
for example, in the works of Tsirelson [14], Summers-Werner
[32], and Popescu-Rohrlich [33]. The interested reader is
referred to [29] for a general survey and [34,35] for more
recent developments.

Self-testing can be formalized using the notion of (pure)
quantum realization of a quantum correlator C. By this we
mean an ensemble (HA,HB, ψ, {Ax}x, {By}y) such that cxy =
ψ†(Ax ⊗ By)ψ for all x ∈ [n], y ∈ [m], where ψ is a unit vec-
tor in HA ⊗ HB, and the Hermitian operators Ax on HA, By

on HB all have eigenvalues in [−1, 1].
Each quantum realization induces an entire orbit of realiza-

tions, obtained by applying local isometries. Concretely, given
two isometries (i.e., V †V = 1H)

VA : HA → HA′ , VB : HB → HB′ ,

then the ensemble

(HA′ ,HB′ , (VA ⊗ VB)ψ, {VAAxV
†

A }x, {VBByV
†

B }y) (25)

is another quantum realization of C. This subsumes adding
subsystems because tensoring is an isometry.

We say that the correlation C self-tests the ensemble
(HA,HB, ψ, {Ax}x, {By}y) iff all other quantum realizations of
C are of the form (25), i.e., for any other quantum realization
(HA′ ,HB′ , ψ, {A′

x}x, {B′
y}y) there exist isometries VA : HA ⊗

HA′′ → HA′ and VB : HB ⊗ HB′′ → HB′ and a unit vector
ψ ′′ ∈ HA′′ ⊗ HB′′ , such that

ψ ′ = (VA ⊗ VB)(ψ ⊗ ψ ′′),

A′
x = VA

(
Ax ⊗ 1HA′′

)
V †

A ,

B′
y = VB

(
By ⊗ 1HB′′

)
V †

B . (26)

Furthermore, we say that C is a self-test if it self-tests some
quantum realization (HA,HB, ψ, {Ax}x, {By}y).

In the following theorem we give a geometric characteriza-
tion of self-testing for the special case of Cor(2, 2).

Theorem 4. Let C ∈ Cor(2, 2) with rank(C) = 2. The fol-
lowing are equivalent: (i) C is an extreme point of Cor(2, 2);
(ii) C self-tests the singlet; (iii) C is a self-test.

Proof. In [30, Theorem 1] it is shown that a rank two
correlator C ∈ Cor(2, 2) self-tests the singlet if and only if C
saturates exactly one of the inequalities

−π �
∑

xy �=x′y′
arcsin(cxy) − arcsin(cx′y′ ) � π, ∀x′y′,

and at most one of the inequalities

−π/2 � arcsin(cxy) � π/2, ∀x, y,

where x, x′ ∈ {1, 2}, y, y′ ∈ {3, 4}. Using that arccos(x) +
arcsin(x) = π

2 and θxy = arccos(cxy), the equivalence be-
tween (i) and (ii) follows from Theorem 3 (ii). Lastly, the
equivalence between (ii) and (iii) is a special case of [14,
Theorem 3.2]. �

We remark that it is possible to give a direct proof of
the relation between extremality and self-testing (without

resorting to [30]) by resolving the mismatch between local
isometries (used in the definition of self-testing) and global
isometries (used in deriving the structure of realizations of
extremal points).

D. Exposed correlators

An exposed face of Cor(n, m) is a subset F ⊆ Cor(n, m)
for which there exists a matrix A ∈ Rn×m such that F =
argmax{〈A, X 〉 : X ∈ Cor(n, m)}. A matrix C ∈ Cor(n, m) is
an exposed point of Cor(n, m) if the singleton {C} is an
exposed face of Cor(n, m), i.e., there exists A ∈ Rn×m such
that

{C} = argmax{〈A, X 〉 : X ∈ Cor(n, m)}.
Setting b = max{〈A, X 〉 : X ∈ Cor(n, m)}, C is an ex-

posed point of Cor(n, m) if the following two properties hold:
(i) 〈A, X 〉 � b for all X ∈ Cor(n, m) and (ii) 〈A, X 〉 = b if
and only if X = C. In this setting, we say that the hyperplane
H = {X ∈ Rn×m : 〈A, X 〉 = b} exposes the point C.

The exposed points of a convex set are always extreme, but
the converse is not always true. An example of such a point
is the Hardy behavior [36], which is an extreme point of the
set of full behaviors (as it is a self-test [37]), but was recently
shown to be nonexposed [13]. In addition, combined with the
relation to self-testing in Cor(2, 2), we get the interpretation
that exposed points allow self-testing by means of a Bell
inequality (the hyperplane H above).

In this section, we use again SDP duality theory to give a
sufficient condition for a point C ∈ Cor(n, m) to be exposed.
Our main tool is the following result.

Theorem 5. Let C∗ = (c∗
xy) be an extreme point of

Cor(n, m) and Z∗ = ∑n+m
i=1 λ∗

i Eii + ∑n
x=1

∑m
y=1 λ∗

xyEx,n+y a
dual optimal solution for (21).

(i) The hyperplane

H =
⎧⎨
⎩(cxy) : −

n∑
x=1

m∑
y=1

λ∗
xycxy =

n+m∑
i=1

λ∗
i

⎫⎬
⎭, (27)

supports the set Cor(n, m) at the point C∗, i.e.,

−
n∑

x=1

m∑
y=1

λ∗
xycxy �

n+m∑
i=1

λ∗
i , ∀C ∈ Cor(n, m),

−
n∑

x=1

m∑
y=1

λ∗
xyc∗

xy =
n+m∑
i=1

λ∗
i .

(ii) Furthermore, if the homogeneous linear system

MZ∗ = 0, Mii = 0, 1 � i � n + m, (28)

in the symmetric matrix variable M ∈ Sn+m has only the
trivial solution M = 0, then the hyperplane H given in (27)
exposes the point C∗.

Proof. Recall that the solution set of (20) coincides with
the set of PSD completions of C∗. As C∗ is extreme, by
Theorem 2, it has a unique PSD completion Ĉ∗ ∈ Sn+m

+ , i.e.,
Ĉ∗ is the unique solution of the SDP (20).

We have already seen that the values of (20) and (21)
coincide, and both are attained. Consequently, as Ĉ∗ and Z∗
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are primal-dual optimal, we have 〈Ĉ∗, Z∗〉 = 0 [cf. Theorem
6 (iii)]. Expanding this we get

n+m∑
i=1

λ∗
i +

n∑
x=1

m∑
y=1

λ∗
xyc∗

xy = 0.

Lastly, consider an arbitrary C ∈ Cor(n, m) and let Ĉ be one
of its PSD completions. As the PSD cone is self-dual we get
that 〈Ĉ, Z∗〉 � 0, and expanding this gives

n+m∑
i=1

λ∗
i +

n∑
x=1

m∑
y=1

λ∗
xycxy � 0,

which shows that H supports Cor(n, m) at C∗. Equivalently,
C∗ is an optimal solution of the program:

max

⎧⎨
⎩−

n∑
x=1

m∑
y=1

λ∗
xycxy : C ∈ Cor(n, m)

⎫⎬
⎭. (29)

Next, we further assume that the linear system (28) admits
only the trivial solution. To show that the hyperplane H
exposes C∗, it suffices to show that C∗ is the unique optimal
solution of (29). To do this, we first write (29) as an SDP in
primal canonical form. Recalling that Cor(n, m) = �(En+m),
it immediately follows that (29) is equivalent to the SDP:

max
X

〈�∗
b, X 〉,

such that Xii = 1, 1 � i � n + m,

X ∈ Sn+m
+ ,

(30)

where �∗
xy = −λ∗

xy, ∀x ∈ [n], y ∈ [m], and

�∗
b =

(
0n×n

�∗
2

�∗
2

�
0m×m

)
.

The dual of (30) is given by

min
λ,Z

n∑
x=1

λx +
m∑

y=1

μn+y,

such that
n∑

x=1

λxExx +
m∑

y=1

μyEn+y,n+y − �∗
b = Z ∈ Sn+m

+ .

(31)
As the primal (30) is strictly feasible and upper bounded, there
exists no duality gap and the dual is attained; cf. Theorem 6
(iv). To show that C∗ is exposed it remains to show that C∗ is
the unique optimal solution of (30). For this, by Theorem 7, it
suffices to show that the dual SDP (31) has a nondegenerate
optimal solution.

By the definitions of Z∗ and �∗
b we have that Z∗ =∑n+m

i=1 λ∗
i Eii − �∗

b, i.e., Z∗ is dual feasible for (31). Further-
more, as 〈Ĉ∗, Z∗〉 = 0, and Ĉ∗, Z∗ are primal-dual feasible
for (30) and (31), respectively, they are primal-dual optimal.
Lastly, the assumption (28) implies that Z∗ is dual nondegen-
erate, and the proof is concluded. �

We now illustrate the usefulness of Theorem 5 by two con-
crete examples, followed by a summary and the conclusions
of our computational work.

Example 4. We prove that the hyperplane

c11 + c12 + c21 − c22 � 2
√

2

exposes the CHSH correlator. This means that observing a
CHSH value of 2

√
2 in an experiment self-tests a unique

quantum realization. We have already seen that the matrix
Ĉ given in (15) is the unique optimal solution for (20). As
rank(Ĉ) = 2, the null space of Ĉ has dimension two, and a
linear basis is given by

v1 =
(

1√
2
,

1√
2
,−1, 0

)�
, v2 =

(
1√
2
,− 1√

2
, 0,−1

)�
.

Using these two vectors we define

Z∗ = v1v
�
1 + v2v

�
2 =

⎛
⎜⎜⎜⎜⎝

1 0 − 1√
2

− 1√
2

0 1 − 1√
2

1√
2

− 1√
2

− 1√
2

1 0

− 1√
2

1√
2

0 1

⎞
⎟⎟⎟⎟⎠.

Next, we show that Z∗ is dual optimal for (21). Indeed, by
construction Z∗ is feasible for (21), and satisfies 〈Ĉ, Z∗〉 =
〈Ĉ, v1v

�
1 〉 + 〈Ĉ, v2v

�
2 〉 = 0. As Ĉ is optimal for (5), Theorem

(6) (iii) implies that Z∗ is dual optimal.
Having established that Z∗ is dual optimal, Theorem 5

implies that the hyperplane c11 + c12 + c21 − c22 � 2
√

2 sup-
ports Cor(2, 2) at the CHSH correlator. Lastly, to prove that
this hyperplane exposes the CHSH correlator, by Theorem 5
(ii), it suffices to show that the homogeneous linear system
(28) only admits the trivial solution. A straightforward calcu-
lation reveals this is the case.

Example 5. We show that the hyperplane

−12
√

2c14 + 4c15 − 4
√

2c16 + 4c24 − 12
√

2c25 − 4
√

2c26

−4
√

2c34 − 4
√

2c35 + 2(2 − 3
√

2)c36 � 6(5
√

2 + 2)
(32)

exposes the Mayers-Yao correlator (16). This means that
achieving the maximal quantum violation of the above Bell
inequality self-tests a unique quantum realization. In Example
2, we showed that the SDP (20) has the unique solution

X ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1/
√

2 1 0 1/
√

2
0 1 1/

√
2 0 1 1/

√
2

1/
√

2 1/
√

2 1 1/
√

2 1/
√

2 1
1 0 1/

√
2 1 0 1/

√
2

0 1 1/
√

2 0 1 1/
√

2
1/

√
2 1/

√
2 1 1/

√
2 1/

√
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(33)
Note that rank(X ∗) = 2 and, in fact, its column space is
spanned by the first two columns. Thus its null space has
dimension four, and a basis is given by the vectors:

v1 = (−1,−1,−1, 1, 1, 1)�,

v2 = (−1, 1, 0, 1,−1, 0)�,

v3 = (1, 1,−
√

2, 1, 1,−
√

2)�,

v4 = (1, 1,−1,−1,−1, 1)�.
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Using these vectors we define

Z∗ = 2
√

2v1v
�
1 + (3

√
2 + 1)v2v

�
2 + v3v

�
3 +

√
2v4v

�
4

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(3
√

2 + 1) 0 0 −6
√

2 2 −2
√

2

0 2(3
√

2 + 1) 0 2 −6
√

2 −2
√

2

0 0 3
√

2 + 2 −2
√

2 −2
√

2 2 − 3
√

2

−6
√

2 2 −2
√

2 2(3
√

2 + 1) 0 0

2 −6
√

2 −2
√

2 0 2(3
√

2 + 1) 0

−2
√

2 −2
√

2 2 − 3
√

2 0 0 3
√

2 + 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By construction, Z∗ is positive semidefinite, feasible for
(21), and satisfies 〈X ∗, Z∗〉 = 0. Consequently, by Theorem
6 (iii) we get that Z∗ is dual optimal for (21) and thus, by
Theorem 5 (i), we see that (32) is a valid hyperplane for
Cor(3, 3). It remains to show that the hyperplane (32) exposes
the Mayers-Yao correlator. For this, by Theorem 5 (ii), it
suffices to show that the linear system (28) only admits the
trivial solution. An easy calculation shows that this is indeed
the case.

Verifying exposedness computationally. Theorem 5 leads to
an algorithm for checking whether a given extremal correlator
C is exposed. This is summarized below.

Step 1. Solve the SDP (21) to find an optimal solution Z∗ =∑n+m
i=1 λ∗

i Eii + ∑n
x=1

∑m
y=1 λ∗

xyExy.
Step 2. Solve the SDP (31) to find an optimal solution Z . If

Z is nondegenerate, then C is exposed. If Z is degenerate, the
test is inconclusive.

We implemented this procedure, called exposedCorr.m
[31], on 1000 randomly generated extremal correlators from
Cor(2, 2), generated by randExtremeCorr22.m. In all in-
stances, our algorithm concluded that the corresponding cor-
relators were also exposed. Our computations suggest that, for
Cor(2, 2), most extreme points are also exposed. This is not
surprising because according to Straszewicz’s theorem (see
[38], Theorem 18.6), the set of exposed points are dense in
the set of extremal points.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied geometric features of the set of
quantum correlators using semidefinite programming. Our
starting point is that the set of quantum correlations can be
seen as the projection of the feasible region of a semidefi-
nite program, known as the elliptope. This connection leads
to a characterization of its boundary, which generalizes the
well-known Tsirelson-Landau-Masanes criterion (Theorem
1). Furthermore, based on this connection, we were able to
translate results concerning the geometry of elliptopes to the
set of quantum correlations. The first question we consid-
ered was to characterize its extreme points, or equivalently
its zero-dimensional faces. We managed to give a complete
characterization by making a link to the positive semidefinite
matrix completion problem (Theorem 2).

Furthermore, for the simplest Bell scenario we determined
an explicit characterization of its extreme points (Theorem 3).
Next, we gave a sufficient condition for a correlator to be

exposed (Theorem 5). Lastly, we show that, in the simplest
Bell scenario, the geometric property of extremality coincides
with the operational task of self-testing (Theorem 4).

Our investigations in this paper naturally lead to several
future directions.

(1) Can one obtain further analytic characterizations for
scenarios not captured by Theorem 1? Can one generalize to
multipartite correlation scenarios?

(2) What is the facial structure of the set of quantum
correlations?

(3) In the set of full quantum behaviors, is extremality still
equivalent to self-testing? If not, is extremality equivalent to
self-testing with global isometries?

The first two questions are evident; let us comment on the
third one. Here self-testing with global isometries is a similar
notion to self-testing, but with the “gauge” equivalence being
relaxed to arbitrary global isometries (yet still preserving the
observed behavior). In other words, the (equivalence) orbit
of each realization is larger as we allow global isometries in
addition to local isometries. Note that self-testing with global
isometries implies the usual self-testing, but the converse does
not hold in general. Now it turns out that Theorem 4 can be
strengthened by adding the following equivalence: (iv) C is a
self-testing with global isometries. �

Thus extremality gives a stronger property than (usual)
self-testing in this context. We leave the study of these con-
cepts and their relationships as future work.
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APPENDIX A: SEMIDEFINITE PROGRAMING

In this section we briefly collect all the tools from SDP
duality theory that we use in this paper. For proofs of these
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facts and additional details, interested readers are referred to
[39].

Theorem 6. Consider a pair of primal-dual SDPs:

p∗ = sup
X

{〈C, X 〉 : X 
 0, 〈Ai, X 〉 = bi (i ∈ [�])}, (P)

d∗ = inf
y,Z

{
�∑

i=1

biyi :
�∑

i=1

yiAi − C = Z 
 0

}
. (D)

The following properties hold.
(i) (Weak duality) Let X, (y, Z ) be a pair of primal-dual

feasible solutions for (P) and (D), respectively. Then,
〈C, X 〉 � ∑�

i=1 biyi, i.e., p∗ � d∗.
(ii) (Optimality condition) Let X, (y, Z ) be a pair of

primal-dual feasible solutions for (P) and (D), respectively.
If 〈C, X 〉 = ∑�

i=1 biyi, then we have that p∗ = d∗ and, fur-
thermore, X and (y, Z ) are primal-dual optimal solutions,
respectively.

(iii) (Complementary slackness) Let X, (y, Z ) be a pair of
primal-dual feasible solutions for (P) and (D), respectively.
Under the assumption that p∗ = d∗ we have that X, (y, Z ) are
primal-dual optimal if and only if 〈X, Z〉 = 0.

(iv) (Strong duality) Assume that d∗ > −∞ (p∗ < +∞)
and that (D) [(P)] is strictly feasible. Then p∗ = d∗ and,
furthermore, the primal (dual) optimal value is attained.

Given a pair of primal-dual SDPs (P) and (D), a primal
feasible solution X is called primal nondegenerate if

TX + span{A1, . . . , A�}⊥ = Sn (A1)

and a dual feasible solution (y, Z ) is dual nondegenerate if

TZ + span{A1, . . . , A�} = Sn, (A2)

where TZ is the tangent space on the manifold of symmetric
n × n matrices with rank equal to rank(Z ), at the point Z , and
the sum of two vectors spaces denotes the linear span of their
union.

A concrete expression for the tangent space is

T ⊥
Z = {M ∈ Sn : MZ = 0}.

For example, see [40] or [41, Lemma 7.1.1].
The next result summarizes sufficient conditions for the

unicity of optimal solutions to SDPs identified in [40], which
we use extensively throughout this work.

Theorem 7. Consider a pair of primal-dual SDPs (P) and
(D), where we assume that their optimal values are equal and
that both are attained. We have the following.

(i) If (P) has a nondegenerate optimal solution, (D) has
a unique optimal solution. Symmetrically, if (D) has a non-
degenerate optimal solution, then (P) has a unique optimal
solution.

(ii) Furthermore, let X, (y, Z ) be a pair of primal-dual
optimal solutions that satisfy

rank(X ) + rank(Z ) = n,

a property known as strict complementarity. Then, if X is the
unique optimal solution for (P), (y, Z ) is dual nondegenerate.
Symmetrically, if (y, Z ) is the unique optimal for (D), X is
primal nondegenerate.

APPENDIX B: NECESSARY CONDITIONS FOR
EXTREMALITY

In this section we collect several useful properties of ex-
treme points of Cor(n, m), identified in the seminal work of
Tsirelson [14,25]. For a more modern proof of these facts the
reader is referred to [42].

A family of vectors u1, . . . , un, v1, . . . , vm is called a C
system of C ∈ Cor(n, m) if they satisfy ‖ux‖ � 1, ‖vy‖ � 1,
and cxy = 〈ux, vy〉, ∀x ∈ [n], y ∈ [m].

Theorem 8. For any C ∈ ext(Cor(n, m)) we have the fol-
lowing.

(i) All C systems are necessarily unit vectors.
(ii) For any C system {u1, . . . , un, v1, . . . , vm} we have that

span({ui}n
i=1) = span({v j}m

j=1).
(iii) C admits a unique PSD completion, i.e., there exists a

unique matrix Ĉ ∈ En+m with

Ĉ =
(

A C
C� B

)
∈ En+m.

Furthermore, we have that Ĉ ∈ ext(En+m) and rank(Ĉ) =
rank(A) = rank(B) = rank(C).

We note that the proof of Theorem 8 establishes the follow-
ing chain of implications: (i) �⇒ (ii) �⇒ (iii). To the best of
our knowledge, it is not known whether any of these three
conditions is equivalent to extremality.

APPENDIX C: PROOF OF THEOREM 1

Let K2,n be the complete bipartite graph, where the first
bipartition has two vertices labeled {1, 2} and the second
bipartition has n vertices labeled {3, . . . , n + 2}. As K2,n has
no K4 minor, by [22, Theorem 4.7] we have that Cor(2, n) =
cos π (Met(K2,n)). Setting θxy = arccos(cxy), we get that c =
(cxy) ∈ Cor(2, n) if and only if there exists a = (axy) ∈
Met(K2,n) such that cxy = cos(πaxy), i.e.,

θxy

π
∈ Met(K2,n).

The box constraints for Met(K2,2) give

0 � θxy � π, ∀x, y.

We continue with the cycle inequalities of Met(K2,n). Note
that, for each 3 � i < j � n + 2, the graph K2,n contains
one cycle of length four, namely C = (1, i, j, 2). The cycle
inequality for F = {1i} gives

θ1i − θ1 j − θ2i − θ2 j � 0,

and the cycle inequality for C \ F gives

θ1 j + θ2i + θ2 j − θ1i � 2π.

Summarizing, c = (cxy) ∈ Cor(2, n) if and only if

0 � θxy � π, ∀x, y,

0 � θ1 j + θ2i + θ2 j − θ1i � 2π,

0 � θ1i + θ2i + θ2 j − θ1 j � 2π, (C1)

0 � θ1i + θ1 j + θ2 j − θ2i � 2π,

0 � θ1i + θ1 j + θ2i − θ2 j � 2π,

where 3 � i < j � n + 2.
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APPENDIX D: ALL THE EXTREME POINTS IN Cor(2, 2)

We present the proof of the complete characterization of
extreme points in Cor(2, 2). In the main text, we employ the
following labeling for the completion matrix:⎛

⎜⎝
1 ? cos θ11 cos θ12

? 1 cos θ21 cos θ22

cos θ11 cos θ21 1 ?
cos θ12 cos θ22 ? 1

⎞
⎟⎠ ,

which derives from our notation of cxy where x ∈ [n] and y ∈
[m] labels Alice’s and Bob’s measurements. However, we now
switch to the following notation:⎛

⎜⎝
1 ? cos θ13 cos θ14

? 1 cos θ23 cos θ24

cos θ13 cos θ23 1 ?
cos θ14 cos θ24 ? 1

⎞
⎟⎠ ,

which is derived from the natural position of elements within
the completion matrix (e.g., c13 = cos θ13 is the element at
row 1 and column 3). We will be addressing the unspecified
entries in a similar manner, so that the full completion matrix
is notated as⎛

⎜⎝
1 cos θ12 cos θ13 cos θ14

cos θ12 1 cos θ23 cos θ24

cos θ13 cos θ23 1 cos θ34

cos θ14 cos θ24 cos θ34 1

⎞
⎟⎠ .

There is an evident correspondence between the notation
in the main text and the notation here so that the upper
2 × 2 block still contains Alice and Bob’s observable joint
correlations.

Our strategy would be to use the conditions in Theorem 2 to
understand which correlations are extreme in Cor(2, 2). This
means understanding the conditions for unique completion to
happen.

Lemma 9. Given C = (cxy) = (cos θxy) ∈ [−1, 1]2×2, de-
fine m := max{|θ31 − θ41|, |θ32 − θ42|} and

M := min{θ31 + θ41, θ32 + θ42, 2π − (θ31 + θ41),

2π − (θ32 + θ42)} .

Then C has a PSD completion if and only if one of the
unspecified entries θ34 lies in the interval [m, M].

The proof of this Lemma requires two basic results about
the PSD completion problem. First, as any principal submatrix
of a PSD matrix is also PSD, a necessary condition for x ∈
E (G) is that the restriction of x to any completely specified
principal submatrix is PSD. In graph-theoretic language, if K
is a clique in G, i.e., a fully connected subgraph of G, the
restriction of x to K , denoted by xK , should lie in E (K ). The
converse is the following.

Theorem 10. [20] Graph G is chordal (i.e., every circuit of
length at least four in G has a chord) iff

E (G) = {x ∈ RE : xK ∈ E (K ) for each clique K ⊆ G}.
Secondly, we will also need an explicit description of

E (K3), which has an elegant geometric interpretation (three
vectors in Euclidean space).

Theorem 11. [43] Let 0 � θ1, θ2, θ3 � π . Then, the matrix

C =
⎛
⎝ 1 cos θ1 cos θ3

cos θ1 1 cos θ2

cos θ3 cos θ2 1

⎞
⎠

is positive semidefinite if and only if

θ1 � θ2 + θ3, θ2 � θ1 + θ3,

θ3 � θ1 + θ2, θ1 + θ2 + θ3 � 2π. (D1)

Furthermore, C is singular if and only if one of the above
inequalities holds with equality.

Proof of Lemma 9. Let K2,2 be the graph with vertex set
{1, 2, 3, 4} and edges {(1, 3), (1, 4), (2, 3), (2, 4)}. By defini-
tion of the elliptope of a graph, C ∈ E (K2,2) if and only if there
exists c34 such that (C, c34) ∈ E (K2,2 ∪ {(3, 4)}). Neverthe-
less, the graph K2,2 ∪ {3, 4} is chordal, and thus by Theorem
10 we have that C ∈ E (K2,2) if and only if there exists c34 ∈
[−1, 1] such that (c13, c14, c34) ∈ E (K3) and (c23, c24, c34) ∈
E (K3). Lastly, by Theorem 11, these two conditions are equiv-
alent to the existence of θ34 ∈ [0, π ] satisfying the following
sixteen inequalities:

θ13 � θ14 + θ34, θ23 � θ24 + θ34,

θ14 � θ13 + θ34, θ24 � θ23 + θ34,

θ34 � θ13 + θ14, θ34 � θ23 + θ24,

θ13 + θ14 + θ34 � 2π, θ23 + θ24 + θ34 � 2π.

(D2)

Eliminating the unknown variable θ34 from the system (D2)
we get θ34 ∈ [m, M]. �

Proof of Theorem 3. We split the proof into two parts
based on the rank of the input correlation matrix written in
the new notation we employed in this Appendix:

C =
(

cos θ13 cos θ14

cos θ23 cos θ24

)
.

Rank-one case. Since this proof extends to arbitrary (n, m)
and not just (2,2) we let C ∈ Cor(n, m) with rank(C) = 1. We
have to show that C is an extreme point if and only if C = xy�,
for some vectors x ∈ {+1,−1}n and y ∈ {+1,−1}m.

First, assume that C = xy�, where x ∈ {+1,−1}n and y ∈
{+1,−1}m, and consider a convex combination

C =
∑

k

λkC
k, where

∑
k

λk = 1, λk � 0, (D3)

and the matrices Ck lie in Cor(n, m), i.e., Ck
i j = 〈uk

i , v
k
j 〉,

where ‖uk
i ‖ = ‖vk

j ‖ = 1. Note that

1 = |Ci j | = |xiy j | =
∣∣∣∣∣
∑

k

λkC
k
i j

∣∣∣∣∣ =
∣∣∣∣∣
∑

k

λk
〈
uk

i , v
k
j

〉∣∣∣∣∣
�

∑
k

λk

∣∣〈uk
i , v

k
j

〉∣∣ � ∑
k

λk = 1, (D4)

and thus we have equality throughout. In particular, we get
that

∑
k λk|〈uk

i , v
k
j 〉| = 1, and as |〈uk

i , v
k
j 〉| � 1, this implies

that |〈uk
i , v

k
j 〉| = 1, for all k, i, j. In other words, all matrices

Ck have entries ±1. Lastly, by (D3) we get that Ck = xy� for
all k, and thus C is extremal.

Conversely, let C be a rank-one extreme point of Cor(n, m).
In this setting, we have already mentioned that C admits a
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unique PSD completion Ĉ ∈ En+m with Ĉ = ( A C
C� B) ∈ En+m

and, furthermore, Ĉ ∈ ext(En+m) and rank(Ĉ) = rank(A) =
rank(B) = rank(C); e.g., see [42, Lemma 2.5]. By the as-
sumptions we have that rank(C) = 1, and thus rank(Ĉ) = 1,
i.e.,

Ĉ =
(

x
y

)(
x
y

)�
∈ En+m.

Since Ĉ ∈ En+m, it follows that x2
i = y2

i = 1. In turn,
this shows that C = xy�, where x ∈ {+1,−1}n and y ∈
{+1,−1}m.

Rank-two case. Let C ∈ Cor(2, 2) with rank(C) = 2. We
show that C ∈ extCor(2, 2) if and only if it saturates exactly
one of the cycle inequalities

0 �
∑

xy �=x′y′
θxy − θx′y′ � 2π, x, x′ ∈ {1, 2}, y, y′ ∈ {3, 4},

and at most one of the box inequalities

0 � θxy � π, x ∈ {1, 2}, y ∈ {3, 4}.
First, assuming that C saturates exactly one cycle inequal-

ity and at most one box inequality, we show that C is extremal.
By Theorem 2, it suffices to show that C has a unique PSD
completion Ĉ, that furthermore satisfies the rank constraint
between the correlation matrix C and its unique completion Ĉ.
For this, given an arbitrary PSD completion of the matrix C,⎛

⎜⎝
1 c12 c13 c14

c12 1 c23 c24

c13 c23 1 c34

c14 c24 c34 1

⎞
⎟⎠, (D5)

we show that c12 and c34 are uniquely determined. For con-
creteness, assume that the tight cycle inequality is

θ13 + θ23 + θ24 − θ14 = 0. (D6)

This assumption is without loss of generality, as all cycle
inequalities are equivalent up to permuting the parties and
relabeling the outcomes. In the optimization community this
is known as the “switching symmetry” of the cut polytope
[15].

The fact that this equality leads to a unique completion
should be evident by Lemma 9. However, let us be even
more explicit and show that the unknown entries c12, c34 are
completely determined by this equation. Summing the two
triangle inequalities

−θ13 − θ23 + θ12 � 0, −θ24 − θ12 + θ14 � 0, (D7)

we get that

θ13 + θ23 + θ24 − θ14 � 0, (D8)

which combined with (D6) implies that

θ12 = θ13 + θ23 = θ14 − θ24. (D9)

Indeed, if either of the triangle inequalities in (D7) were strict,
then (D8) would also be a strict inequality, contradicting (D6).
Similarly, using the two triangle inequalities

−θ23 − θ24 + θ34 � 0, −θ34 − θ13 + θ14 � 0, (D10)

we get that

θ34 = θ23 + θ24 = θ14 − θ13. (D11)

Taking cosines in (D9) and (D11), we see that the two un-
specified entries c12 and c34 in (D5) are uniquely determined.
Specifically, we have

c12 = cos(θ12) = c13c23 −
√(

1 − c2
13

)(
1 − c2

23

)
, (D12)

c34 = cos(θ34) = c23c24 −
√(

1 − c2
23

)(
1 − c2

24

)
, (D13)

where we used that θ13, θ14, θ23, θ24 ∈ [0, π ]. Summarizing, C
has a PSD unique completion, denoted by Ĉ.

The last step of the proof is to show that

rank(Ĉ ◦ Ĉ) =
(

rank(Ĉ) + 1

2

)
.

For this, let x1, . . . , x4 be a Gram decomposition of Ĉ. By
(D6), these four vectors span either a one-dimensional or
a two-dimensional linear space. In particular, by projecting
onto their linear span we may assume that they in fact lie in
R2. Thus, for the rank of Ĉ, there are two cases to consider:
rank(Ĉ) ∈ {1, 2}.

If rank(Ĉ) = 1, since rank(C) � rank(Ĉ) we have that
rank(C) = 1, contradicting the assumption that rank(C) = 2.
Thus we have that rank(Ĉ) = rank(C) = 2. By Theorem 2, it
remains to show that

rank(Ĉ ◦ Ĉ) = dim span(x1x�
1 , x2x�

2 , x3x�
3 , x4x�

4 ) = 3.

Note that x1 is not parallel to x2, for otherwise the second
row of C would be a multiple of the first one, contradicting
the assumption rank(C) = 2. Similarly, x3 is not parallel to
x4. Thus the sets {x1, x2} and {x3, x4} are the basis for R2.
Furthermore, a simple calculation shows that

x3 = sin(θ13)x1 + sin(θ23)x2

sin(θ13 + θ23)
(D14)

and

x4 = sin(θ14)x1 + sin(θ24)x2

sin(θ14 + θ24)
. (D15)

For example, to see (D14), expand x3 in the {x1, x2} basis, i.e.,
x3 = λx1 + μx2. Taking inner products with x1 and x2, and
eliminating μ in the resulting linear system, we get that λ =
[cos(θ13) − cos(θ23) cos(θ12)]/ sin2(θ12). Lastly, substituting
θ12 = θ13 + θ23, it follows that λ = sin(θ13)/ sin(θ13 + θ23).
Combining (D14) and (D15) we get

x3x�
3 = sin2(θ13)x1x�

1 + sin2(θ23)x2x�
2 + 2 sin(θ13) sin(θ23)(x1x�

2 + x2x�
1 )

sin2(θ13 + θ23)
, (D16)

x4x�
4 = sin2(θ14)x1x�

1 + sin2(θ24)x2x�
2 + 2 sin(θ14) sin(θ24)(x1x�

2 + x2x�
1 )

sin2(θ14 + θ24)
. (D17)

052108-12



GEOMETRIC STRUCTURE OF QUANTUM CORRELATORS … PHYSICAL REVIEW A 99, 052108 (2019)

Next we show that

x1x�
2 + x2x�

1 �∈ span(x1x�
1 , x2x�

2 ). (D18)

Without loss of generality, we may assume that x1 =
(1, 0)� because, for any unitary operator U , the vec-
tors Ux1,Ux2,Ux3,Ux4 also define a Gram decomposi-
tion of Ĉ. Furthermore, as x1 = (1, 0)�, we have that x2 =
(cos(θ12), sin(θ12))� and, consequently,

x1x�
2 + x2x�

1 =
(

2 cos(θ12) sin(θ12)
sin(θ12) 0

)
,

x1x�
1 =

(
1 0
0 0

)
,

x2x�
2 =

(
cos2(θ12) cos(θ12) sin(θ12)

cos(θ12) sin θ12 sin2(θ12)

)
.

As sin2(θ12) �= 0 (since x1 is not parallel to x2) we see that
(D18) holds.

Lastly, note that either sin(θ13) sin(θ23) �= 0 or sin
(θ14) sin(θ24) �= 0. Indeed, if both are zero, we would have
two tight box constraints, contradicting the hypothesis. With-
out loss of generality, say that sin(θ13) sin(θ23) �= 0. Because
x1x�

2 + x2x�
1 �∈ span(x1x�

1 , x2x�
2 ), it follows by (D16) that

x3x�
3 �∈ span(x1x�

1 , x2x�
2 ),

and thus dim span(x1x�
1 , x2x�

2 , x3x�
3 , x4x�

4 ) � 3. On the other
hand, by (D16) and (D17) it follows that dim span
(x1x�

1 , x2x�
2 , x3x�

3 , x4x�
4 ) � 3.

We now prove the converse direction of the theorem. Say
that C is a rank two extreme point of Cor(2, 2). By Lemma
[42, Lemma 2.5], C has a unique PSD completion Ĉ, where
rank(Ĉ) = rank(C) = 2 and rank(Ĉ ◦ Ĉ) = 3.

First, note that under the assumptions of the theorem there
can be at most one tight box constraint. Indeed, having two (or
more) tight box constraints implies that x1, x2, x3, x4 consists
of two pairs of parallel vectors, which contradicts the fact that
span(x1x�

1 , x2x�
2 , x3x�

3 , x4x�
4 ) = 3. In turn, the fact that we

have at most one tight box constraint implies that at most one
cycle inequality can be tight. For concreteness, say that θ14 =

θ13 + θ23 + θ24 and θ13 = θ14 + θ23 + θ24 − 2π . Substituting
the second equation into the first one we get that θ23 + θ24 =
π , which when substituted back into the first equation gives
that θ14 = θ13 + π . In turn, using that θ13, θ14 ∈ [0, π ], this
implies that θ14 = π, θ13 = 0, i.e., we have two tight box
constraints, a contradiction. Thus it remains to exhibit one
tight cycle inequality.

By assumption C is extreme and, thus, it admits a unique
PSD completion, i.e., there exists a unique choice for c12 and
c34 that makes the partial matrix (D5) PSD. In particular, there
exists a unique choice for the value of θ34 = arccos(c34). We
are now ready to conclude the proof of our theorem.

We have already noted that, under the assumptions of
the theorem, there exists a unique choice for the value of
θ34 = arccos(c34). Consequently, by Lemma 9, the interval
[m, M] should reduce to a single point, i.e., the two end points
should coincide. This happens iff one expression from the
lower bound m is equal to the upper bound M.

We consider two cases. First, if these two inequalities
have disjoint support, we get a tight cycle inequality. For
example, from the equality θ31 − θ41 = θ32 + θ42 we get the
tight cycle inequality θ31 = θ41 + θ32 + θ42. Second, if the two
inequalities have the same support, we get a tight box inequal-
ity. In turn, this gives a tight cycle inequality. For example,
the equality θ32 − θ42 = 2π − (θ32 + θ42) gives the tight box
inequality θ32 = π. As rank(Ĉ) = 2, all size three minors of
Ĉ are singular. In particular, the minor Ĉ[2, 3, 4] is singular
and thus, by Theorem 11, one of the triangle inequalities for
(2,3,4) is tight. Using that θ32 = π , combined with the fact
that we can have at most one box inequality, we get that
θ34 + θ24 = π . Lastly, the minor Ĉ[1, 3, 4] is also singular
and, again by Theorem 11, one of the triangle inequalities for
(1,3,4) is tight. For example, if θ13 + θ14 = θ34, by eliminating
θ34 we get that θ13 + θ14 = π − θ24, which is the tight cycle
inequality θ13 + θ14 + θ24 = θ32. �

Let us conclude with a remark that the rank-two case can
be proved with a purely algebraic argument, i.e., avoiding the
use of Gram vectors, by using the fact that rank of a matrix M
is the largest order of any nonzero minor in M. The advantage
of this algebraic argument is to eliminate any kind of doubt
caused by appeal to geometric intuitions.
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