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Spontaneous and stimulated emissions of a preformed quantum free-electron wave function
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Do the prior history and the wave-packet size and form of a free electron have a physical effect in its interaction
with light? Here we answer these fundamental questions on the interpretation of the electron quantum wave
function by analyzing spontaneous and stimulated emissions of a quantum electron wave packet, interacting
with a general, quantized radiation field. For coherent radiation (Glauber state), we confirm that stimulated
emission and absorption of photons depends on the preinteraction-history-dependent size, exhibiting spectral
cutoff when it exceeds the interacting radiation wavelength. Furthermore, stimulated emission of an optically
modulated electron wave packet has a characteristic harmonic emission spectrum beyond the cutoff, which
depends on the modulation features. In either case, there is no wave-packet-dependent radiation of the Fock state,
and particularly the vacuum state spontaneous emission is wave-packet independent. The classical-to-quantum
transition of radiation from the point-particle to the plane-wave limits, and the effects of wave-packet modulation
indicate a way of measuring the wave-packet size of a single electron wave function, and suggest an alternative
direction for exploring light-matter interaction.
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I. INTRODUCTION

Accelerated free electrons emit electromagnetic radiation
when subjected to an external force (e.g., synchrotron radia-
tion [1], undulator radiation [2], and Compton scattering [3]).
Radiation can also be emitted by currents that are induced
by free electrons in polarizable structures and materials, such
as in Cherenkov radiation [4], transition radiation [5], and
Smith-Purcell radiation [6]. Some of these schemes were
demonstrated to operate as coherent stimulated radiative emis-
sion sources, such as free-electron lasers (FELs) [7–11], as
well as accelerating (stimulated absorption) devices, such as
the dielectric laser accelerator (DLA) and the inverse Smith-
Purcell effect [12–14].

Most of the free-electron radiation schemes of emission
or acceleration operate in the classical theoretical regime of
electrodynamics, where the electrons can be considered point
particles, and the radiation field is described by Maxwell
equations (no field quantization). However, a variety of free-
electron radiation schemes [15,16], and particularly FELs
(e.g., Refs. [17–19]) have been analyzed in the framework
of a quantum model in which the electron is described in
the inherent quantum limit, given as a plane-wave quantum
wave function—the opposite limit of the point-particle clas-
sical presentation. Quantum description of the electron wave
function is also used in another recently developed research
field of electron interaction with radiation: photoinduced near-
field electron microscopy (PINEM) [20,21]. In this scheme,
a single electron quantum wave function interacts with the
near field of a nanometric structure illuminated by a coherent
laser beam. Of special relevance for the present discussion is a
recent PINEM-type experiment of Echternkamp et al. [22], in
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which it was demonstrated that optical frequency modulation
of the energy and the density expectation values of a single
electron wave packet are physically possible.

The extremely different presentations of the radiative in-
teraction of free electrons in the classical and quantum limits
raise interest in the theoretical understanding of the transition
from the quantum to the classical limit of the radiative inter-
action process. In the classical description, the point-particle
dynamics is governed by the Lorentz force equation, and its
radiation—by Maxwell equations. The radiation field emitted
spontaneously by a single free electron and its stimulated
emission and absorption have phase dependence on the radia-
tion field. However, in the “classical spontaneous emission” of
free electrons (e.g., undulator radiation, Čerenkov radiation)
the phase dependence of the individual electron washes out
after averaging over an ensemble of electrons entering the
interaction region at random phase. On the other hand, in the
quantum description of spontaneous and stimulated radiation
by a free electron there is no phase dependence already at the
level of a single electron, because the electron is described
by an infinitely extended plane wave [15]. The spontaneous
emission is described as a consequence of “zero-field vibra-
tion” in a quantized field model. The stimulated radiation
emission (absorption) is explained in terms of multiphoton
emission (absorption) processes in which the electron makes
a transition to lower (higher) energy states of its continuous
energy dispersion curve.

The way to settle these two diverse points of view of the
electron-radiation interaction, and understand the classical-
to-quantum transition, is to describe the free electron as a
quantum wave packet [23], which would tend to resemble
a plane wave when the wave packet is long relative to the
radiation wavelength, and a point particle in the opposite limit.
In this article, we analyze the spontaneous and stimulated
emission problem of a quantum electron wave function in a
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FIG. 1. Smith-Purcell radiation experimental setup for measur-
ing electron wave-packet spontaneous and stimulated emission and
corresponding electron energy spectrum and wave-packet-dependent
acceleration. (a) An expanding electron wave packet. (b) An
energy-modulated wave packet, turning into a density-modulated
bunched electron wave packet, and emitting stimulated-superradiant
Smith-Purcell radiation and corresponding acceleration at harmonic
frequencies.

quantum-electrodynamics (QED) formulation. We will show
that in the case of stimulated interaction with a coherent
(Glauber state) radiation field, the more general QED model
is consistent with the semiclassical analyses [17,24,25], but
as expected, it has different predictions in the case of sponta-
neous emission [26–28]. Since recent experimental progress
[29,30] makes it feasible to generate, accelerate, control the
shape and size, and modulate a single electron wave packet
[22,31–34], we assert, based on the presented theory, that ra-
diative interaction experiments in the transition range between
classical-to-quantum electron wave-packet limits, provide a
viable way for measuring the dimension and structure of
the electron quantum wave packet. It can help to resolve
the difference in description of spontaneous emission in the
classical and quantum formulations, and offers an alternative
way to study fundamental aspects of radiation-matter inter-
action in the quantum limits. In particular, it can provide
better insight into the fundamentally disputed problem of the
physical interpretation of the quantum electron wave function
and the particle-wave duality nature of the electron [35,36].

II. MODELING AND METHODS

In the present work, we exemplify the general analysis
for the case of radiative interaction of a free electron with
a slow-wave axial field component of a radiation mode of
frequency and wave number (ω, qz ), such that it can interact
synchronously with a copropagating electron of velocity v0 �
ω/qz. Such a slow-wave component can be a near-field evanes-
cent diffraction order (Floquet space harmonic) propagating
along a periodic grating (Smith-Purcell structure), or it can be
a TM wave in a dielectric structure or in a hollow dielectric
waveguide (Čerenkov radiation structure) [4,16,9].

In Fig. 1(a) we show a Smith-Purcell experimental setup
for measuring the spontaneous and stimulated emission from
such structures as well as the electron energy spectrum after

interaction. In these experimental setups, it is possible to
measure the radiation emission and the dependence of the
electron energy spectrum on the size of the expanding wave
packet σz(tD), which depends in this case on the drift time
of the electron wave packet from its virtual emission point.
Figure 1(b) shows an elaborate version of the Smith-Purcell
experiment, in which the electron quantum wave packet is
optically modulated (as demonstrated by Echternkamp et al.
[22]) before it drifts and enters into the radiative interaction
section. We point out that even though the present analysis
demonstrates the interaction for the case of a slow-wave
structure, it can be straightforwardly extended to other radia-
tive interaction schemes of a free electron, such as transition
radiation and FELs.

Our QED analysis is based on first-order perturbation
solution of the relativistically modified Schrödinger equation
[15,24] for a free-electron wave function and a quantized
radiation field. The unperturbed Hamiltonian is similar to the
one used in conventional quantum analysis of free-electron
interaction [15], but, as in [24], the equation is solved here
with initial conditions of a finite size electron quantum wave
packet instead of a plane wave. The interaction Hamiltonian
is taken to be

HI (t ) = −e[Â · (−ih̄∇) + (−ih̄∇) · Â]

2γ m
, (1)

where γ = 1/
√

1 − β2 is the Lorentz factor, β = v0/c, and m
is the free-electron mass. For the case of our concern,

Â = − 1

2iω
[Ê(r)e−iωt − Ê†(r)eiωt ], (2)

where Â, Ê are field operators. In our one-dimensional anal-
ysis, we assume that the light-electron coupling takes place
through an axial slow-wave field component of one of the
modes q:

Ê(r) =
∑

q

Ẽqze
iqzz−iφ0 âqez, (3)

where âq(â†
q) is the annihilation (creation) operator of photon

number state |ν〉 in this mode q. For Smith-Purcell interaction,
the field (3) is the axial component of one of the space har-
monics of a classical Floquet-mode radiation wave incident
on a grating in a Smith-Purcell structure [24,25], Êq(r) =∑

m Ẽqmeiqzmz, where qzm = qz0 + m2π/λG, and one of the
space harmonics, m, satisfies the near-synchronism condition
with the electron velocity ω/qzm � v0. The ratio between the
interacting (synchronous) axial wave component at the elec-
tron path and the amplitude of the incident radiation wave (the
fundamental space harmonic), ηqm = Ẽqzm/Ẽq⊥0, is a function
of the specific grating structure that can be calculated by
direct solution of classical Maxwell equations. Here Ẽqzm and
Ẽq⊥0 are the axial component and transverse component of
the mth-order and zeroth-order space harmonics, respectively.
We assume that the fundamental space harmonic (that radiates
in free space) is the dominant space harmonic and is box
quantized as Ẽq⊥0 =

√
2h̄ω
ε0V [37].

Following the standard quantum-electrodynamics theory,
we expand the initial wave function in terms of the quan-
tum numbers p of the electron state and the Fock photon
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occupation state of mode q, which is given by |i〉 =∑
p,ν c(i)

p,ν (t )|p, ν〉. For the case of an electron wave packet in
our one-dimensional model, the initial wave function is given
by

|i〉 =
∫

d p√
2π h̄

∑
ν

c(0)
p,νe−iEpt/h̄|p, ν〉, (4)

where the energy dispersion relation of relativistic free elec-
trons is Ep = c

√
m2c2 + p2.

First-order time-dependent perturbation theory of the
Schrödinger equation [37] (see derivation details in Ap-
pendix A) results in

ih̄ċ(1)
p′,ν ′ =

∫
d p√
2π h̄

∑
ν

c(0)
p,ν〈p′, ν ′|HI (t )|p, ν〉e−i(Ep−Ep′ x)t/h̄.

(5)

Integrating (5) in time t from 0 to infinity, the emission
and absorption process terms of the first-order perturbation
coefficient c(1)

p′,ν ′ = c(1)(e)
p′,ν ′ + c(1)(a)

p′,ν ′ are given by, respectively,

c(1)(e,a)
p′,ν ′ = π

2ih̄

∫
d p√
2π h̄

∑
ν

c(0)
p,ν〈p′, ν ′|H (e,a)

I (0)|p, ν〉

× δ

(
Ep − Ep′ ∓ h̄ω

2h̄

)
, (6)

where H (e,a)
I correspond, respectively, to the second and first

terms in the interaction Hamiltonian (1).
The momentum quantum recoil of the electron is

found from substituting in (6) the energy dispersion rela-
tion, expanded to second order: Ep = c

√
m2c2 + p2 ≈ ε0 +

v0(p − p0) + (p−p0 )2

2m∗ . Determined by the delta functions, it is
p(e,a)

rec = p′(e,a) − p0 = p(0)
rec(1 ± δ), p0 = γ0mv0, where p(0)

rec =
h̄ω/v0, δ = h̄ω/2m∗v2

0 , m∗ = γ 3
0 m. Then the first-order pertur-

bation coefficient is given by

c(1)(e,a)
p′,ν ′ =

⎧⎨
⎩

+( p′+p(e)
rec−h̄qzm/2

p0

)
ϒ̃

√
ν ′c(0)

p′+p(e)
rec,ν

′−1
sinc

(
θ

(e)
m /2

)
ei(θ

(e)
m /2+φ0 )

−( p′−p(a)
rec+h̄qzm/2

p0

)
ϒ̃

√
ν ′ + 1c(0)

p′−p(a)
rec,ν

′+1
sinc

(
θ

(a)
m /2

)
e−i(θ

(a)
m /2+φ0 )

, (7)

θ
(e,a)
m =

(
p(e,a)

rec ± h̄qzm
)
L

h̄
=
(

ω

v0
− qzm

)
L ±

(
ω

v0

)
Lδ = θm ± ε

2
, (8)

where θm = ( ω
v0

− qzm)L is the classical interaction “detuning
parameter”; ε = δ( ω

v0
)L � 1 is the interaction quantum recoil

parameter [15]. The normalized photon exchange coefficient

is ϒ̃ = eẼqzmL
4h̄ω

.
The schematic diagram in Fig. 2 shows the light-matter

scattering processes of emitting and absorbing a photon.
Explicitly, for emitting a photon, the final coefficient of state
|p, ν + 1〉 is given by c(0)

p,ν+1 + c(1)(e)
p,ν+1. This represents a re-

ciprocal electron momentum and energy conserving process
through emission of photon and momentum backward recoil:
|p + p(e)

rec, ν〉 ⇒ |p, ν + 1〉 [38]. On the other hand, for ab-
sorbing a photon, the final coefficient of state |p, ν − 1〉 is
given by c(0)

p,ν−1 + c(1)(a)
p,ν−1, which corresponds to the process of

absorbing a photon and electron momentum forward recoil:

FIG. 2. A schematic diagram showing the light-matter scattering
processes of emitting and absorbing a photon from an initial electron-
photon distribution (|c(0)

p,ν |2) to a final distribution.

|p − p(a)
rec, ν〉 ⇒ |p, ν − 1〉. Finally, the net photon emission

and absorption is obtained from

�νq =
∑
p,ν

(∣∣c(0)
p,ν+1 + c(1)(e)

p,ν+1

∣∣2 − ∣∣c(0)
p,ν−1 + c(1)(a)

p,ν−1

∣∣2). (9)

This can be expressed as the sum of two terms, �νq =
�ν (1)

q + �ν (2)
q , i.e.,

�ν (1)
q = 2

∑
p,ν

Re
{(

c(0)∗
p,ν+1c(1)(e)

p,ν+1

) − (
c(0)∗

p,ν−1c(1)(a)
p,ν−1

)}
, (10a)

�ν (2)
q =

∑
p,ν

(∣∣c(1)(e)
p,ν+1

∣∣2 − ∣∣c(1)(a)
p,ν−1

∣∣2). (10b)

Note that we replaced the index p′ → p, ν ′ → ν for the
final momentum and photon distributions. The second photon
emission term �ν (2)

q is the same as the expression that has
been derived in previous QED formulations by free electrons
in the plane-wave limit using Fermi’s “golden rule” [15].
The first term �ν (1)

q is the contribution from the interference
between the initial and scattered states that depends on the
features of the initial wave-function distribution. This phase-
dependent term, that is beyond the conventional Fermi’s
golden rule [38], has not been considered in previous analyses,
and is a pivotal observation of the present formulation.

Additionally, at this point, it is proper to explain the neglect
of the phase-dependent second-order emission and absorption
terms 2Re{c(2)∗(p′)c(0)(p′) + c(1)(e)∗(p′)c(1)(a)(p′)} ∝ e−4�2/2

and other second-order processes of interference between
emission and absorption terms. Their inclusion requires
second-order perturbation analysis (cp,ν (t ) = c(0)

p,ν + c(1)
p,ν +
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c(2)
p,ν) beyond the present first-order perturbation analysis,

which would not affect the main results of the derived first-
order momentum density expressions. They would add small
wave-packet-dependent contributions to the second-order mo-
mentum density expression, and will produce second-order
sidebands of two-photon emission and two-photon absorption
processes [17,24].

III. RESULTS

In the present analysis, we consider the case where the
electron wave function and the radiation field are initially
disentangled, c(0)

p,ν = c(0)
p c(0)

ν , where the component cp is only
for the electron state and cν is only for the photon state.
Substitution of (7) in (10) then results in

�ν (1)
q =

∑
p,ν

(√
ν + 1ρ (1)(e)

p,ν + √
νρ (1)(a)

p,ν

)
,

�ν (2)
q =

∑
p,ν

[
(ν + 1)ρ (2)(e)

p,ν − νρ (2)(a)
p,ν

]
, (11)

where

ρ (1)(e,a)
p,ν = 2ϒ̃

[
p ± (

p(e,a)
rec ∓ h̄qzm/2

)
p0

]
sinc

(
θ

(e,a)
m /2

)

× Re
{(

c(0)∗
p c(0)

p±p(e,a)
rec

)(
c(0)∗
ν±1c(0)

ν

)
e±i(θ

(e,a)
m /2+φ0 )

}
,

(12a)

ρ (2)(e,a)
p,ν = ϒ̃2

[
p ± (

p(e,a)
rec ∓ h̄qzm/2

)
p0

]2

× sinc2
(
θ

(e,a)
m /2

)∣∣c(0)
p±p(e,a)

rec

∣∣2∣∣c(0)
ν

∣∣2. (12b)

We are set now to examine various cases of interest: (A)
spontaneous emission; (B) stimulated emission with quantum
light, and particularly with a single Fock state—c(0)

ν = δν,ν0 ;
and (C) stimulated emission from a coherent Glauber state.

A. Spontaneous emission

In this case,

c(0)
ν = δν,0, (13)

and we get from the second-order perturbation of Eq. (10b)
that the only nonzero quantum transition term is the first
(emission) term (see Fig. 3), giving the single photon emission
from the vacuum state:

�νq,SP = �ν (2)
q

∣∣
ν=0 =

∑
p

∣∣c(1)(e)
p,1

∣∣2 = ϒ̃2sinc2
(
θ

(e)
m /2

)
,

(14)

where we approximated at p(e)
rec/p0, h̄qzm/p0 � 1.

Remarkably, in this case, (11) and (12) produce the null
result �ν (1)

q = 0 for the spontaneous emission contribution
of the first-order perturbation term. Equation 14 is then the
only source of spontaneous photon emission, and therefore,
to first-order approximation, there is no wave-packet size or
shape dependence of spontaneous emission! In the case of
an open structure, such as the Smith-Purcell setup [Fig. 1(a)],

FIG. 3. Spontaneous emission occurs due to the radiation field
of the vacuum state. In the absence of any light sources, there is no
process of absorption.

there is a continuum of modes, and the useful parameter is the
spontaneous spectral radiant energy emission per unit solid
angle per unit frequency:(

dWq

dωd�

)
SP

= h̄ωρph(ω)�νq,SP

= e2L2

64π2

ω2

c2

√
μ0

ε0
|ηqm|2 sin c2

(
θm

2

)
, (15)

where we used for the free-space density of modes ρph(ω) =
ω2V /8π2c3 (suppressed the photon polarization index) [15].
This expression for the spontaneous emission is consistent
with both classical and QED expressions, previously derived
in [25,15].

B. Stimulated emission—Fock photon state

In this case,

c(0)
ν = δν,ν0 . (16)

Inspecting (11) and (12), it appears straightforward that,
similarly to the case of spontaneous emission (which is simply
the Fock state ν0 = 0), there is in general no Fock-state-
stimulated emission due to the first-order terms, namely,
�ν (1)

q |ν0 = 0, because substituting (16) in (12a) results in

null terms:
√

ν0 + 1(c(0)∗
ν0+1c(0)

ν0 ) = √
ν0(c(0)∗

ν0−1c(0)
ν0

) = 0. There
is therefore no linear field stimulated radiative interaction with
a Fock-state radiation wave. This is hardly surprising, since a
Fock-state wave has no phase.

The second-order terms in (11) do produce spontaneous
and stimulated emission that is also wave-packet indepen-
dent. With the approximation p(e,a)

rec /p0, h̄qzm/p0 � 1, and the
limit of an infinite (plane-wave) electron wave packet c(0)

p =
δ(p − p0) the momentum integration of (12b) results in

�ν (2)
q = ϒ̃2

[
(ν0 + 1)sinc2

(
θ

(e)
m /2

) − ν0sinc2
(
θ

(a)
m /2

)]
. (17)

This result is fully consistent with the previously derived
expressions for spontaneous and stimulated emission of FELs
and other free-electron radiation schemes in the infinite elec-
tron quantum wave-function limit [15].

C. Stimulated emission—coherent photon state

A coherent Glauber state represents the classical multipho-
ton radiation field of a laser beam. In this case the photon state
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coefficient presentation in terms of Fock states is given by [37]

|√ν0〉 = e−ν0/2
∞∑

ν=0

(ν0)ν/2

√
ν!

|ν〉, (18)

and here ν0 is the expectation value of the photon distribution
of the Floquet mode q incident on the grating:

∑
ν

ν
∣∣c(0)

ν

∣∣2 = ν0. (19)

In this case, contrary to the Fock case, substitution of
(18) into (12a) includes a nonvanishing sum of terms,∑

ν

√
ν + 1(c(0)∗

ν+1c(0)
ν ) = ∑

ν

√
ν(c(0)∗

ν−1c(0)
ν ) = √

ν0 �= 0.
Therefore, the phase-dependent stimulated photon emis-

sion of a coherent state �ν (1)
q is nonzero. This is consistent

with the conclusion of our earlier semiclassical analysis of
this problem [24], and is fully expected, since the coherent
state represents a classical radiation field. The substitution of
(18) into (11) results in, for this case, the stimulated photon
emission contributions:

�ν (1)
q =

∑
p

(√
ν0ρ

(1)(e)
p + √

ν0ρ
(1)(a)
p

)
,

�ν (2)
q =

∑
p

[
(ν0 + 1)ρ (2)(e)

p − ν0ρ
(2)(a)
p

]
, (20)

where

ρ (1)(e,a)
p = 2ϒ̃

[
p ± (

p(e,a)
rec ∓ h̄qzm/2

)
p0

]
sinc

(
θ

(e,a)
m /2

)

× Re
{(

c(0)∗
p c(0)

p±p(e,a)
rec

)
e±i(θ

(e,a)
m /2+φ0 )

}
,

ρ (2)(e,a)
p = ϒ̃2

[
p ± (

p(e,a)
rec ∓ h̄qzm/2

)
p0

]2∣∣c(0)
p±p(e,a)

rec

∣∣2. (21)

Noted that the second expression for the stimulated emis-
sion is essentially the same for the coherent state and the Fock
state, and is given, in the limit of a plane-wave quantum wave
function, by the same “FEL gain” [15] phase-independent
expression [Eq. (17)]. The wave-packet case differs only
concerning the first-order contribution that is null for a single
Fock state but is finite for a coherent state. Our formulas can
be extended into more general photon-electron interactions
with quantum light, such as the squeezed state or the cat state
[38,39]. Note, though, that the radiation or acceleration with
quantum light is still out of experimental capability, since the
quantum light sources are too weak at the present state of the
art.

IV. DISCUSSIONS

We now apply the formulation to two specific examples
of quantum electron wave packets: (a) a single finite size
electron wave packet represented by a Gaussian envelope
function, and (b) an optically modulated Gaussian envelope
wave packet [22]

A. Gaussian electron wave packet

We consider stimulated emission with a fixed photon
coherent state, interacting with an electron wave packet of
Gaussian distribution, chirped after drift length LD:

c(0)
p = (

2πσ 2
p0

)−1/4
exp

[
− (p − p0)2

4σ̃ 2
p (tD)

]
ei(p0LD−ε0tD )/h̄, (22)

where σ̃ 2
p (tD) = σ 2

p0
(1 + iξ tD)−1, ξ = 2σ 2

p0
/m∗h̄, LD =

v0tD. We perform the momentum integration in (20) for
this case, using (21), under the same approximation,
p(e,a)

rec , h̄qzm, σp0 � p0 (see Appendix B and Ref. [24]),
which results in

�ν (1)
q = 2ϒ̃

√
ν0e−�2/2

{
sinc

(
θ

(e)
m /2

)
cos

(
θ

(e)
m /2 + φ0

)
+ sinc

(
θ

(a)
m /2

)
cos

(
θ

(a)
m /2 + φ0

)}
, (23a)

�ν (2)
q = ϒ̃2

{(
ν0 + 1

)
sinc2

(
θ

(e)
m /2

) − ν0sinc2
(
θ

(a)
m /2

)}
,

(23b)

where we defined the extinction parameter,

� =
(

ω

v0

)
σz(tD) =

(
h̄ω

v0

)√1 + ξ 2t2
D

2σp0

= �0

√
1 + ξ 2t2

D,

(24)

with �0 = 2π
β

(
σz0
λ

). This expression (23) is the main result of

this paper. While the phase-independent expression �ν (2)
q can

be found in the earlier publications [15,17–19], the phase-
dependent term (23a) is new. In the limit of negligible in-

teraction recoil, ε = δ( ω
v0

)L � 1, θ
(e)
m = θ

(a)
m = θm, Eq. (22)

reduces to �ν (1)
q = 4ϒ̃

√
ν0e−�2/2sinc(θm/2) cos(θm/2 + φ0).

Substituting
√

ν0Ẽqzm = Em,cl , where Em,cl is the classical
mth-order axial slow-wave field component, then one obtains
the phase-dependent radiation increment:

h̄ω�ν (1)
q = (eEm,cl L)e−�2/2sinc

(
θ̄m

2

)
cos

(
θ̄m

2
+ φ0

)
.

(25)
This result restores the semiclassical expression for elec-

tron wave-packet acceleration and deceleration that was de-
rived from solution of the Schrödinger equation for the
electron [24], and confirms the electron-wave energy con-
servation spectral reciprocity relation �ν (1)

q + �W acc
e /h̄ω = 0

[38]. It is suggested that measurement of the dependence of
Eq. (25) on � can be used for evaluating the wave-packet size
σz(tD) at the entrance to the interaction region.

Einstein relations between the wave-packet-independent
stimulated emission and spontaneous emission are directly
derived from (23b), as in [15]. However, in the case of
the wave-packet-dependent expression (23a), the stimulated
emission is proportional to ϒ̃

√
ν0, while the spontaneous

emission expression (14) is proportional to ϒ̃2. This suggests
another form of “Einstein relation” [25] between spontaneous
emission and wave-packet-dependent stimulated emission:(

�ν (1)
q

)2

�νq,SP
= 16ν0e−�2

cos2

(
θ̄m

2
+ φ0

)
. (26)
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This universal relation is independent of the interaction
structure, because the structure-dependent coefficient ϒ can-
cels out. It can be useful for estimating the wave-packet-
dependent (and the point particle, � � 1) stimulated emis-
sions based on measurement of the spontaneous emission.

Comparison of (23a) to (14) also reveals that while the
wave-packet-dependent stimulated emission vanishes in the
range �(LD) � 1 (and absolutely so at any drift distance from

its source LD < zG = β3
0 γ 3

0
π

λ2

λc
[24]), the quantum spontaneous

emission always exists, independently of �. Therefore, ob-
servation of classical single point-particle emission and rec-
ognizing the transition of wave-packet-dependent stimulated
emission from the classical to the quantum limit in the regime
� ∼ 1, require overcoming a signal-to-noise ratio condition
S/N > 1, where

S/N ≡
(

�ν (1)
q

�νq,SP

)∣∣∣∣∣
max

= 4
√

ν0

ϒ̃
. (27)

Note that the coefficient ϒ̃ = eẼqzmL
4h̄ω

is grating-structure de-
pendent. Derivation of explicit expressions for the measurable
S/N value is given in Appendix C.

B. Modulated quantum electron wave packet

Now we consider the case where the initial electron state is
an optically modulated Gaussian wave packet. Such an elec-
tron wave function can be generated by multiphoton emission
and absorption from a laser beam of frequency ωb. After a
drift length LD in dispersive free space, its multiharmonic
momentum distribution is chirped [22]:

c(0)
p = (

2πσ 2
p0

)−1/4
∞∑

n=−∞
Jn(2|g|) exp

[
− (p − p0 − nδp)2

4σ 2
p0

]

× einφbe−i(p−p0 )2tD/2m∗ h̄ei(p0LD−ε0tD )/h̄, (28)

where φb is the phase of the modulating laser, 2|g| =∫
eEb(z)dz/h̄ω is the photon exchange energy modulation

coefficient at the optical modulation point, and δp = h̄ωb/v0 is
the multiphoton emission and absorption electron momentum
recoil quantum at this modulation point. The detailed deriva-
tion of (28) can be found in Appendix B and [22,25], where it
is shown that the expectation value ρ (0)(tD) = |C(0)

p (tD)|2 (tD
is the electron free drift time after the modulation point) repre-
sents, for tD > 0, a density-modulated wave packet. After the
integration over momentum space in (20) and (21) with (28)
(see Appendix B), the photon emission is obtained as

�ν (1)
q = 2ϒ̃

√
ν0
{
sinc

(
θ

(e)
m /2

)
B(e)(ω) + sinc

(
θ

(a)
m /2

)
B(a)(ω)

}
,

(29a)

�ν (2)
q = ϒ̃2

{
(ν0 + 1)sinc2

(
θ

(e)
m /2

) − ν0sinc2
(
θ

(a)
m /2

)}
.

(29b)

The second-order phase-independent term (29b) turned
out to be the same as the case of an unmodulated Gaus-
sian wave packet (23b), where the following sum rule

was used,
∑∞

n,k=−∞ Jn(2|g|)Jk (2|g|) exp(− (n−k)2δ2
p

8σ 2
p0

)ei(n−k)φb =
1, which indicates independence of the second-order emission

of the electron wave-function envelope and its internal dis-
tribution. On the other hand, the first term is dependent on
both the wave-packet dimension and modulation parameters
through the bunching parameter:

B(e,a)

= e−�2/2
∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|)e− (n−k)2δ2

p

8σ2
p0

+ (n−k)δp p(0)
rec

4σ2
p0

× cos

[
θ

(e,a)
m

2
+ φ0 − (n − k)φb + (n + k)δp p(e,a)

rec tD
2m∗h̄

]
,

(30)

where we approximate p(e,a)
rec = p(0)

rec = h̄ω/v0. In the limit of

negligible interaction recoil, ε = δ( ω
v0

)L � 1, θ
(e)
m = θ

(a)
m =

θm, we can express the phase-dependent term (29a) as

�ν
(1)
q, mod =

(
eEm,cl L

h̄ω

)
sinc

(
θ̄m

2

)
B(ω), (31)

with

B(ω) = B(e) + B(a)

2
=

∞∑
l=−∞

Bl exp

(
− (ω − lωb)2σ 2

t (tD)

2

)
,

(32)

where we changed the summation indices (n, k) to (n, � =
n − k), and substituted in the exponents δp = h̄ωb/v0, p(0)

rec =
(n − k)δp ⇒ ω = lωb. The �th-order bunching coefficient is
then given by (see Appendix B)

Bl ≈
∞∑

n=−∞
Jn(2|g|)Jn−l (2|g|) exp

[
− l2(δpξ tD)2

8σ 2
p0

]

× cos

[
θ̄m

2
+ φ0 − lφb + (2n − l )lδ2

ptD

2m∗h̄

]
. (33)

It is instructive to affirm that the zero-order har-
monic (l = 0) has the same functional dependence as
the wave-packet-dependent expression of the unmodu-
lated wave packet (25) with the same cutoff, B(ω)|l=0 =

FIG. 4. The wave-packet-dependent photon emission rate as a
function of wave-packet size for unmodulated electron wave packet
interacting with a coherent laser beam. Inset: the schematic diagram
of a Gaussian wave packet.
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FIG. 5. The high-order-harmonics spectrum of stimulated emis-
sion by a periodically bunched wave packet, interacting after a drift
length corresponding to maximal density bunching. The harmonics
are separable, ωbσt (LD ) = 4 > 1. Inset: the schematic diagram of a
periodically bunched Gaussian wave packet.

e−�2/2sinc( θ̄m
2 ) cos( θ̄m

2 + φ0), but because of the modulation,
higher-order-harmonic emission is spectrally possible beyond
the cutoff condition � > 1. Also notice that in the absence of
modulation (g = 0), but also in the absence of drift (tD = 0),
Eq. (31) reduces to the expression of the unmodulated wave-
packet case (25), which leads to the significant conclusion that
in the absence of density modulation there is no modulation-
dependent emission.

The multiharmonic spectrum of the spectral parameter
B(ω) is shown in Fig. 5 for the case of ωσt (tD) = 4 > 1,
that corresponds to a long wave packet with internal mod-
ulation and separable harmonics. The harmonic amplitudes
were calculated for a modulation coefficient value 2|g| = 11.4
and a drift length for which the density modulation ampli-
tude is maximal [22,25,32–34], tD,max = (π/ωb)/(�pmax/p0),
where �pmax � 2|g|h̄ωb/v0. The emission spectrum is
shown for maximum acceleration phase for each harmonic.

Comparative measurement of the emission spectrum with
modulation (Fig. 5) and without (Fig. 4) may be helpful in
the measurement of the wave-packet size.

V. CONCLUSIONS

The main results of the present analysis are summarized
in Table I for cases of finite size, both unmodulated and
modulated quantum electron wave packets. Solving for the
interaction of an electron wave packet with quantized radi-
ation, we identified two additive contributions to the photon
emission: wave-packet dependent (�ν (1)

q ) and wave-packet
independent �ν (2)

q . The second-order term is consistent with
the conventional quantum theory for spontaneous and stim-
ulated emission of free electrons in the infinite (intrinsic)
quantum wave-function regime [15]. The first-order term
�ν (1)

q is innovative. It predicts wave-packet dependence of
stimulated emission when the interacting radiation state is
coherent (Glauber) state, consistently and complementarily
with earlier predictions of electron wave-packet-dependent
acceleration and deceleration, based on semiclassical (elec-
tron Schrödinger equation) analysis [24]. A Fock state in-
teracting wave has null contribution to the first-order term
�ν (1)

q . This includes also the case of the quantum vac-
uum fluctuation, indicating that the QED-modeled sponta-
neous emission of a free electron is wave-packet independent
in all regimes independently, whether the wave packet is
modulated or not.

The main result of this work is the affirmation that the
first-order stimulated emission spectrum of a wave packet
depends on its size at the entrance to the interaction region,
σz(tD). It exhibits an exponential decay scaling (25) with a
short-wavelength cutoff when σz(tD) ∼ β0λ, corresponding
to the transition from the point-particle classical interaction
limit to the quantum electron wave-function limit. An even
more intricate characteristic of the stimulated emission
spectrum takes place when the wave packet is optically

TABLE I. A gallery of phase-dependent and phase-independent photon emission rates of unmodulated and modulated quantum electron
wave packets.
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modulated, displaying a wave-packet-dependent harmonic
frequencies spectrum beyond the cutoff wavelength (Fig. 4).
This observation presents alternative understanding in
light-matter interaction: the well-known klystron-type
stimulated-superradiant interaction schemes of radiation
emission from density-bunched point-particle beams [40]
are physically possible also with density modulation
on the level of the quantum wave function of a single
electron. The experiment reported by Priebe et al.
[32] may be a demonstration of such phase-dependent
stimulated interaction at second-harmonic bunching
frequency.

We assert that measurement of the characteristic stimulated
emission spectra of modulated and unmodulated quantum
electron wave packets provides a way for evaluating their
size and internal features. Such measurement can be done
by changing the interaction wavelength λ or the drift length
LD = v0tD in the range σz(tD) = σz0

√
1 + ξ 2t2

D ∼ β0λ, which
is attainable at short enough drift lengths away from the

source: LD < zG = β3
0 γ 3

0
π

λ2

λc
[24]. We stress, however, that only

for simplicity we assumed that the wave-packet size at the
entrance to the interaction region is determined by the drift
time. Advancement of optical streaking techniques [31] would

provide full control over the phase, size, and chirp charac-
teristics of the quantum electron wave packet. Hence, the
more general conclusion of this work is that the stimulated
interaction of a free-electron wave packet is dependent on
the history of the electron transport prior to the radiative
interaction.

Practical measurement of photon emission and electron
energy spectra of single electron radiative interaction is a
challenging experiment. It requires accumulating multiple
interaction events data with wave-packet preselection of
Aharonov’s weak measurement scheme [41] and using wave-
packet shape formation schemes as in [31]. The detection of
the radiation certainly also requires satisfaction of a signal-
to-noise ratio condition S/N > 1, considering the ever-present
wave-packet-independent noise due to spontaneous emission.
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APPENDIX A: FIRST-ORDER PERTURBATION THEORY ANALYSIS

Following the standard quantum-electrodynamics theory, we expand the initial wave function in terms of the quantum
numbers p of the electron state and the Fock photon occupation state of mode q, which is given by |i〉 = ∑

p,ν c(0)
p,ν (t )|p, ν〉.

For the case of an electron wave packet in our one-dimensional model, the initial wave function is given by

|i〉 =
∫

d p√
2π h̄

∑
ν

c(0)
p,νe−iEpt/h̄|p, ν〉, (A1)

where the energy dispersion relation of relativistic free electrons is Ep = c
√

m2c2 + p2.
First-order time-dependent perturbation theory of the Schrödinger equation [42,43] results in

ih̄ċ(1)
p′,ν ′ =

∫
d p√
2π h̄

∑
ν

c(0)
p,ν〈p′, ν ′|HI (t )|p, ν〉e−i(Ep−Ep′ )t/h̄. (A2)

Integrating (A2) in time t from 0 to infinity, the emission and absorption process terms of the first-order perturbation
coefficient c(1)

p′,ν ′ = c(1)(e)
p′,ν ′ + c(1)(a)

p′,ν ′ are, respectively,

c(1)(e,a)
p′,ν ′ = π

2ih̄

∫
d p√
2π h̄

∑
ν

c(0)
p,ν〈p′, ν ′|H (e,a)

I (0)|p, ν〉δ
(

Ep − Ep′ ∓ h̄ω

2h̄

)
, (A3)

where H (e,a)
I correspond, respectively, to the second and first terms of the field operator Â = − 1

2iω [Ê(r)e−iωt − Ê†(r)eiωt ] used
in the interaction Hamiltonian [Eq. (1) in the main text].

The momentum quantum recoil of the electron is found from substitution in (A3) of the energy dispersion relation expanded to
second order: Ep = c

√
m2c2 + p2 ≈ ε0 + v0(p − p0) + (p−p0 )2

2m∗ . Determined by the delta functions, the emission and absorption
recoils are found to be p(e,a)

rec = p′(e,a) − p0 = p(0)
rec(1 ± δ), where p0 = γ0mv0, p(0)

rec = h̄ω/v0, δ = h̄ω/2m∗v2
0 , and m∗ = γ 3

0 m.
Then the first-order perturbation coefficient is given by

c(1)(e,a)
p′,ν ′ = π

iv0

∑
ν

c(0)
p′±p(e,a)

rec ,ν
〈p′, ν ′|H (e,a)

I (0)|p′ ± p(e,a)
rec , ν〉, (A4)

and the general matrix element is given explicitly by

〈p′, ν ′|H (e,a)
I (0)|p, ν〉 =

⎧⎪⎨
⎪⎩
+ eh̄Ẽqzm

2γ0mω
〈ν ′|â†

q|ν〉 ∫ dz
2π h̄ e−i(qzmz−φ0 )e−ip′z/h̄

(
∂
∂z − iqzm/2

)
eipz/h̄

− eh̄Ẽqzm

2γ0mω
〈ν ′|âq|ν〉 ∫ dz

2π h̄ ei(qzmz−φ0 )e−ip′z/h̄
(

∂
∂z + iqzm/2

)
eipz/h̄

. (A5)
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After integrating over the spatial space (z) and using 〈ν ′|â†
q|ν〉 = √

ν ′ + 1δν ′,ν+1, 〈ν ′|âq|ν〉 = √
ν ′δν ′,ν−1, one obtains

c(1)(e,a)
p′,ν ′ =

⎧⎪⎨
⎪⎩
+( p′+p(e)

rec−h̄qzm/2
p0

)
ϒ̃

√
ν ′c(0)

p′+p(e)
rec,ν

′−1
sinc

(
θ

(e)
m /2

)
ei(θ

(e)
m /2+φ0 )

−( p′−p(a)
rec+h̄qzm/2

p0

)
ϒ̃

√
ν ′ + 1c(0)

p′−p(a)
rec,ν

′+1
sinc

(
θ

(a)
m /2

)
e−i(θ

(a)
m /2+φ0 )

, (A6)

with the normalized photon exchange coefficient ϒ̃ = eẼqzmL
4h̄ω

, and

θ
(e,a)
m =

(
p(e,a)

rec ± h̄qzm
)
L

h̄
=
(

ω

v0
− qzm

)
L ±

(
ω

v0

)
Lδ = θm ± ε

2
, (A7)

where θm = ( ω
v0

− qzm)L is the classical interaction detuning parameter, and ε = δ( ω
v0

)L � 1 is the interaction quantum recoil
parameter [44]. Note that we replaced the index p′ → p, ν ′ → ν for the final momentum and photon distributions.

APPENDIX B: DERIVATION OF PHOTON EMISSION BY A GAUSSIAN ELECTRON WAVE PACKET
AND A MODULATED GAUSSIAN WAVE PACKET

To derive the photon emission expressions for a single quantum electron wave packet [Eq. (23) in the main text)],
the integration over p in Eqs. (11) and (12) should be carried out with the Gaussian distribution function of the drifted
electron amplitude in momentum space [Eq. (22) in the main text]:c(0)

p = (2πσ 2
p0

)−1/4 exp[− (p−p0 )2

4σ̃ 2
p (tD ) ]ei(p0LD−ε0tD )/h̄. For the

phase-independent second-order photon emission�ν (2)
q , this involves the following integrations:

∑
p

{(
p + p(e)

rec − h̄qzm/2

p0

)2∣∣c(0)
p+p(e)

rec

∣∣2}

= (
2πσ 2

p0

)−1/2
∫

d p

(
p + p(e)

rec − h̄qzm/2

p0

)2

exp

[
−
(
p + p(e)

rec − p0
)2

2σ 2
p0

]
=
(

1 − h̄qzm

2p0

)2

+
(

σp0

p0

)2

≈ 1, (B1)

and similarly, for the absorption term,

∑
p

⎧⎨
⎩
[

p − (
p(a)

rec − h̄qzm/2
)

p0

]2∣∣c(0)
p−p(a)

rec

∣∣2
⎫⎬
⎭ =

(
1 + h̄qzm

2p0

)2

+
(

σp0

p0

)2

≈ 1. (B2)

For the phase-dependent first-order photon emission part (�ν (1)
q ),

∑
p

{[
p + (

p(e)
rec − h̄qzm/2

)
p0

]
Re

{
c(0)∗

p c(0)
p+p(e)

rec

}}

= (
2πσ 2

p0

)−1/2
∫

d p

(
p + p(e)

rec − h̄qzm/2

p0

)
Re

{
exp

[
− (p − p0)2

4σ 2
p0

(1 − iξ tD)−1

]
exp

[
−
(
p + p(e)

rec − p0
)2

4σ 2
p0

(1 + iξ tD)−1

]}

= e−�2
/

2

(
1 + p(e)

rec − h̄qzm

2p0

)
≈ e−�2

/
2, (B3)

and similarly, for the absorption term,

∑
p

{[
p − (

p(a)
rec − h̄qzm/2

)
p0

](
c(0)∗

p c(0)
p−p(a)

rec

)} = e−�2
/

2

(
1 − p(e)

rec − h̄qzm + ip(e)
recξ tD

2p0

)
≈ e−�2

/
2, (B4)

where we define the decay parameter,

� =
(

ω

v0

)
σz(tD) =

(
h̄ω

v0

)√1 + ξ 2t2
D

2σp0

= �0

√
1 + ξ 2t2

D and �0 = 2π

β0

(σz

λ

)
, ξ = 2σ 2

p0

γ 3
0 mh̄

. (B5)

These result in Eq. (23) of the main text. Note that in all cases we took the approximation p(e,a)
rec , h̄qz, σp0 � p0 in the last

steps of calculation. Also, note that the imaginary part may contribute to an additional phase to the cosine function in the case
of very long drift time tD.

Similarly, to derive the photon emission of the modulated quantum electron wave packet [Eq. (29) in the main text], the
integration over p in Eqs. (11) and (12) should be carried out with the modulated Gaussian distribution function of the drifted
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electron in momentum space:

c(0)
p = (

2πσ 2
p0

)−1/4
∞∑

n=−∞
Jn(2|g|) exp

[
− (p − p0 − nδp)2

4σ 2
p0

]
einφbe−i(p−p0 )2tD/2m∗ h̄ei(p0LD−ε0tD )/h̄. (28′)

For the phase-independent second-order photon emission�ν (2)
q , this involves the following integrations:

∑
p

{(
p + p(e)

rec − h̄qzm/2

p0

)2∣∣c(0)
p+p(e)

rec

∣∣2}

= (
2πσ 2

p0

)−1/2
∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|)e−i(n−k)φb

∫
d p

(
p + p(e)

rec − h̄qzm/2

p0

)2

× exp

[
−
(
p + p(e)

rec − p0 − nδp
)2

4σ 2
p0

]
exp

[
−
(
p + p(e)

rec − p0 − kδp
)2

4σ 2
p0

]

=
{[

1 − (n + k)δp + h̄qzm

2p0

]2

+
(

σp0

p0

)2
} ∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

]
e−i(n−k)φb

≈
∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

]
e−i(k−k)φb = 1, (B6)

and similarly,

∑
p

⎧⎨
⎩
[

p − (
p(a)

rec − h̄qzm/2
)

p0

]2∣∣c(0)
p−p(a)

rec

∣∣2
⎫⎬
⎭ ≈

∞∑
n,k=−∞

Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

]
e−i(n−k)φb = 1. (B7)

Here we took the approximation p(e,a)
rec , |n + k|δp, h̄qzm, σp0 � p0 in the last steps of calculation and adopted an identity

relation of Bessel functions.
For the derivation of the phase-dependent first-order photon emission term of the modulated quantum wave packet (�ν (1)

q )
[Eq. (29a) in the main text] we went through the following derivation steps of integration (11) and (12) with (28), using the same
approximations:

∑
p

{[
p + (

p(e)
rec − h̄qzm/2

)
p0

](
c(0)∗

p c(0)
p+p(e)

rec

)}

= (
2πσ 2

p0

)−1/2
∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|)e−i(n−k)φb

∫
d p

(
p + p(e)

rec − h̄qzm/2

p0

)

× exp

[
− (p − p0 − nδp)2

4σ 2
p0

−
(
p + p(e)

rec − p0 − kδp
)2

4σ 2
p0

]
e

i(p−p0−nδp )2tD
2m∗ h̄ − i(p+p(e)

rec−p0−mkδp )
2

tD
2m∗ h̄

=
[

1 + (n + k)δp + p(e)
rec − h̄qzm + ip(e)

recξ tD
2p0

]
e
− (1+ξ2t2

D )p(e)2
rec

8σ2
p0

×
∞∑

n,k=−∞
Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

+ (n − k)δp p(e)
rec

4σ 2
p0

+ i(n + k)δp p(e)
rectD

2m∗h̄

]
e−i(n−k)φb

≈ e
− (1+ξ2t2

D )p(e)2
rec

8σ2
p0

∞∑
n,k=−∞

Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

+ (n − k)δp p(e)
rec

4σ 2
p0

+ i(n + k)δp p(e)
rectD

2m∗h̄

]
e−i(n−k)φb, (B8)

and similarly, for the absorption term,

∑
p

{[
p − (

p(a)
rec − h̄qzm/2

)
p0

](
c(0)∗

p c(0)
p−p(a)

rec

)} ≈ e
− (1+ξ2t2

D )p(a)2
rec

8σ2
p0

∞∑
n,k=−∞

Jn(2|g|)Jk (2|g|)

× exp

[
− (n − k)2δ2

p

8σ 2
p0

− (n − k)δp p(a)
rec

4σ 2
p0

− i(n + k)δp p(e)
rectD

2m∗h̄

]
e−i(n−k)φb . (B9)
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We note that the expression for the second-order photon emission�ν (2)
q [Eq. (29b) in the main text], including the expression

for spontaneous emission (ν0 = 0), comes out identical to the expression for the unmodulated wave packet (23b), namely—the
modulation, as well as the wave-packet dimension, does not affect the spontaneous emission spectrum at all. Also, note that
the expression for the first-order photon emission�ν (1)

q [Eq. (29a)] reduces to the expression of the wave-packet-dependent
first-order term of the unmodulated wave packet [Eq. (23a)] in the limit of the diminished modulation parameter 2|g| → 0,

where the identity e−(1+ξ 2t2
D )p(e)2

rec /8σ 2
p0 = e−�2/2 recovers the spectral cutoff factor in Eq. (23a).

Notice that besides the momentum integration, Eqs. (11) and (12) involve also summation over the photon occupation states.
In the derivation of the first-order photon emission expression (that is dependent on both wave-packet size and the modulation
parameters), we used the sum-rule expression [Eq. (18)], that is valid only for a coherent (Glauber) state of the radiation state
(and not valid for quantum light). This results in

�ν (1)
q = 2ϒ̃

√
ν0
{
sinc

(
θ

(e)
m 2

)
B(e)(ω) + sinc

(
θ

(a)
m /2

)
B(a)(ω)

}
,

B(e,a) = exp

[
−
(
1 + ξ 2t2

D

)
p(0)2

rec

8σ 2
p0

] ∞∑
n,k=−∞

Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

+ (n − k)δp p(0)
rec

4σ 2
p0

]

× cos

[
θ̄ (e,a)

m

2
+ φ0 + (n + k)δp p(0)

rectD
2m∗h̄

− (n − k)φb

]
. (B10)

Using the approximations p(e,a)
rec = p(0)

rec = h̄ω/v0, θ̄e = θ̄a = θ̄ results in Eqs. (31) and (32) in the main text:

�ν
(1)
q, mod =

(
eEm,cl L

h̄ω

)
sinc

(
θ̄m

2

)
B(ω), B(ω) = B(e) + B(a)

2

= e
− (1+ξ2t2

D )p(0)2
rec

8σ2
p0

∞∑
n,k=−∞

Jn(2|g|)Jk (2|g|) exp

[
− (n − k)2δ2

p

8σ 2
p0

+ (n − k)δp p(0)
rec

4σ 2
p0

]

× cos

[
θ

2
+ φ0 + (n + k)δp p(e,a)

rec tD
2m∗h̄

− (n − k)φb

]

=
∞∑

l=−∞

{ ∞∑
n=−∞

Jn(2|g|)Jn−l (2|g|) exp

[
−
(
p(0)

rec − lδp + lδp
)2

ξ 2t2
D

8σ 2
p0

]

× exp

[
−
(
lδp − p(0)

rec

)2

8σ 2
p0

]
cos

[
θ

2
+ φ0 + (2n − l )δp p(0)

rectD
2m∗h̄

− lφb

]}

=
∞∑

l=−∞
Bl exp

[
−

(
p(0)

rec − lδp
)2

8σ 2
p0

(
1 + ξ 2t2

D

)−1

]
=

∞∑
l=−∞

Bl exp

[
− (ω − lωb)2σ 2

t (tD)

2

]
, (B11)

with p(0)
rec = (n − k)δp ⇒ ω = lωb and l = n − k being the microbunching harmonic order. The lth-order bunching parameter is

given by

Bl =
∞∑

n=−∞
Jn(2|g|)Jn−l (2|g|) exp

[
−lδp

(
2p(0)

rec − lδp
)
ξ 2t2

D

8σ 2
p0

]
cos

[
θ̄ (e,a)

m

2
+ φ0 + (2n − l )δp p(e,a)

rec tD
2m∗h̄

− lφb

]

≈
∞∑

n=−∞
Jn(2|g|)Jn−l (2|g|) exp

[
− l2(δpξ tD)2

8σ 2
p0

]
cos

[
θ̄ (e,a)

m

2
+ φ0 + (2n − l )lδ2

ptD

2m∗h̄
− lφb

]
, (B12)

where δp = h̄ωb/v0. This frequency dependence of the bunching parameter factor in the first-order stimulated emission explains
the remarkable resonant radiative “spots” at ω = lωb in the stimulated emission spectrum (Fig. 5 in the main text) beyond the
frequency cutoff of l = 0, reflecting the interior microstructure of the electron wave packet.

APPENDIX C: SIGNAL-TO-NOISE RATIO

A necessary condition for measuring the wave-packet-dependent stimulated emission per electron is addressed here. The
phase-dependent term (the ‘signal’) is given by [Eq. (25) in the main text]:

�ν (1)
q = 4ϒ̃

√
ν0e−�2/2sinc

(
θ̄m

2

)
cos

(
θ̄m

2
+ φ0

)
, (C1)
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should be detected under the background of the ever-existing quantum spontaneous emission (the ‘noise’), which is the phase-
independent term [Eq. (15) in the main text],(

dνq

dωd�

)
SP

= ρph(ω)�νq,SP = e2L2

64π2

ω2

c2

√
μ0

ε0
|ηqm|2sinc2

(
θm

2

)
. (C2)

Then, the satisfication of a signal-to-noise ratio condition S/N > 1 requires:

S/N = �ν (1)
q

/( dνq

dωd�

)
SP

��det�ωdet, (C3)

where ��det, �ωdet are, respectively, the solid angle acceptance and the frequency bandwidth of the detection system.
Alternatively, we will present here a derivation of the S/N parameter by calculating from first principles the spontaneous

emission per single mode corresponding to the Floquet radiation mode incident on the grating in the stimulated emission
problem. In this case, we generalize the quantization procedure, such that

1

2

√
ε0

μ0
|Ẽq⊥0|2tr = h̄ω, (C4)

where tr = L/v0 is the interaction time along the grating. For this model we get

ϒ̃ = ẼqzmL

4h̄ω
=
{

1

8

√
μ0

ε0
|η̃qm|2 e2L2

Aeff,qtr

/
h̄ω

}1/2

, (C5)

with tr = L/β0c, and substituting for the mode q (e.g., a Gaussian mode incident on the grating at angle �), Aeff,q =
Lwweff,q cos(�̄/2), this simplifies into

ϒ̃ =
{

1

8
|η̃qm|2 e2β0

ε0weff,q

/
h̄ω

}1/2

. (C6)

This expression can be used to calculate the spontaneous emission per mode [Eq. (14) in the main text],

�νq,SP = ϒ̃2sinc2(θm/2), (C7)

and then, with the expression for stimulated emission (C1), evaluate explicitly the maximal signal-to-noise ratio for an isolated
single mode detection [Eq. (27) in the main text]:

S
/

N ≡
(

�ν (1)
q

�νq,SP

)∣∣∣∣∣
max

= 4
√

ν0

ϒ̃
. (C8)

This equation indicates that the wave-packet-dependent stimulated emission can be detected (S/N > 1) in a Smith-Purcell
experiment with a sufficiently intense incident laser pulse: ν0 > ϒ̃2/16.

Note that the same result can be obtained also by substituting �ωdet = 2π/tr , ��det = (λ/2Aeff,q)2 in Eq. (C3) for an optical
detection system optimally matched to measure the signal and spontaneous emission from a diffraction limited single mode.
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