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Dynamics and thermalization in a simple mesoscopic fermionic bath
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We consider a central fermion strongly interacting with a surrounding mesoscopic bath of fermions which is
weakly coupled to a Markovian bath of fermions. The master equation of the system consisting of the central
fermion and the mesoscopic bath is derived, and based on this master equation, the reduced dynamics and
thermalization of the central fermion are investigated. As probes for studying the dynamics and thermalization,
the mean number of the central fermion and the current density are calculated. The observed dynamics reveal
that strong coupling strength induces non-Markovian behavior and that in the long time limit thermalization is
attained leaving the central fermion in a thermal state that is described by the corresponding Gibbs distribution.
Upon attaining the thermal state, the central fermion is found to be entangled with the collective mode of the
surrounding mesoscopic bath in the high-temperature regime, whereas in the low-temperature regime, it is found
to undergo sudden death of entanglement.

DOI: 10.1103/PhysRevA.99.052102

I. INTRODUCTION

Investigations of the influence of the environment on the
dynamics of open quantum systems is an active area of
research [1–8]. As physical implementations of quantum sys-
tems are increasingly becoming widespread, these investiga-
tions become fundamentally crucial since these implementa-
tions imply exposing the quantum system to the environment.
Also in nature quantum systems are never completely isolated
from their environment. In modeling open quantum systems,
the nature of the environment can, in general, vary (either
fermionic [9–11] or bosonic [12]) depending on what one
seeks to model. Paradigmatic examples of such models are the
Fano-Anderson model [13], the spin-boson model [1,14,15],
and the Caldeira-Leggett model [1,15,16].

These investigations have revealed that a characteristic
feature of an open quantum system is that in the course of
undergoing its dynamics, the reduced system loses informa-
tion to the environment. This phenomenon has been coined
decoherence and it is known to pose a serious challenge
to physical implementations such as quantum information
processing [17]. Furthermore, the flow of information to
the environment is either unidirectional or bidirectional. The
corresponding dynamics have been termed Markovian and
non-Markovian dynamics, respectively. Exactly what deter-
mines the direction of information has attracted a great deal
of attention. Various works [2,3,5,8,18] suggest the onset of
non-Markovian dynamics from Markovian dynamics when
one switches the coupling strength from weak to strong. In
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applications such as quantum information processing, reser-
voir engineering [19–22], and quantum technologies, it is very
important to know exactly what kind of dynamics (Markovian
or non-Markovian) the quantum system will undergo for
a given regime of parameters because certain characteristic
quantum properties are robust when the dynamics is of a
specific kind. For example, entanglement is known to be long
lived when the dynamics is non-Markovian [23].

In this work, we seek to investigate the emergence of
non-Markovian dynamics from Markovian dynamics and the
ensuing thermalization [12,24–28] and entanglement of for-
mation of a system of fermions. We note that a survey of ex-
isting literature reveals several measures of non-Markovianity
[18,19,29–33] which are all based on nonmonotonic behavior,
but we will use the Breuer-Laine-Piilo (BLP) measure of non-
Markovianity as suggested by Breuer and co-workers [18]. We
consider a system consisting of a fermion of interest sitting at
the radial center of a mesoscopic bath consisting of a finite
number of fermions sitting in a circular configuration of oc-
cupation sites. Due to the Pauli exclusion principle, each site
in the system is occupied by a maximum of one fermion. The
system is embedded in a Markovian bath [1] of fermions with
which each of the mesoscopic fermions is weakly interacting;
see Fig. 1. All fermions in the system are spinless and the
interaction between the mesoscopic fermions is considered
negligible compared to the interaction between the fermion
of interest and each of the fermions in the mesoscopic bath.
The latter is taken to be strong and uniform throughout. Thus,
the mesoscopic bath is collective. Numerous studies of col-
lective atomic dynamics in connection with fermions, spins,
atomic clocks, and quantum information have been done
[8,17,34,35]. Symmetric configurations like this are known
to yield master equations that are exactly solvable [18,36].
The advantages of this model is that, while displaying several
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FIG. 1. Central fermion of interest d†d strongly interacting with
a surrounding fermionic mesoscopic bath which is weakly interact-
ing with a fermionic Markovian bath.

interesting features like dissipation, decoherence, thermaliza-
tion, entanglement, Markovian, and non-Markovian behavior,
it is analytically solvable and it can be actually mimicked in
experiments with ultracold fermionic atoms in single center
traps or optical lattices due to the presence of a single or many
geometrical centers, respectively, around which atoms are
usually trapped. Spinless fermions are also readily available
in the form of spinless fermionic atoms [37–43].

The paper is structured as follows. In Sec. II we start
from the general quantum master equation in the Born-
Markov approximation to derive the master equation of the
reduced system consisting of the fermion of interest and the
mesoscopic bath. We move on to solve the derived master
equation giving us the reduced density matrix from which
we obtain the density matrix of the fermion of interest by
tracing out the degrees of freedom of the mesoscopic bath.
This is followed in Sec. III A by calculations of the mean
number of the fermion of interest, the current density and
measure of non-Markovianity which we use to observe the
dynamics and thermalization. We then show analytically that
thermalization is achieved in Sec. III B. In Sec. III C, we
analyze thermal entanglement between the fermion of interest
and the collective fermionic mode of the mesoscopic bath. We
finally summarize and conclude in Sec. IV.

II. MODEL AND QUANTUM MASTER EQUATION

The studied system consists of a fermion strongly interact-
ing with a mesoscopic bath of fermions which is embedded in
a Markovian fermionic bath. The total Hamiltonian reads

H = HS + HB + HSB, (1)

where HS is the Hamiltonian of the fermion of in-
terest strongly interacting with the mesoscopic bath,

i.e.,

HS = ωd†d +
N∑

i=1

(εc†
i ci + gc†

i d + gd†ci ), (2)

where we have collectively called the fermion of interest, the
mesoscopic bath, and the interaction between them the system
because they are strongly interacting; d†, d are creation and
annihilation operators of the fermion of interest satisfying the
standard anticommutation relations,

{d, d†}+ = 1, {d, d}+ = 0, {d†, d†}+ = 0, (3)

and c†
i , ci are creation and annihilation operators of the

fermions in the mesoscopic bath satisfying the standard an-
ticommutation relations,

{ci, c†
j }+ = δi j, {ci, c j}+ = 0, {c†

i , c†
j }+ = 0. (4)

The Hamiltonian HB of the Markovian bath reads

HB =
∑

n

ωnb†
nbn, (5)

where b†
n, bn are standard fermionic creation and annihilation

operators satisfying the standard anticommutation relations,

{bn, b†
m}+ = δnm, {bn, bm}+ = 0, {b†

n, b†
m}+ = 0. (6)

As can be seen, Eq. (3), Eq. (4), and Eq. (6) are satisfied by
operators belonging to the same subsystem whereas operators
belonging to different subsystems anticommute regardless of
conjugation, e.g.,

{bn, c†
i }+ = 0, {bn, d}+ = 0, {c†

i , d†}+ = 0. (7)

The Hamiltonian of interaction between the mesoscopic bath
and the Markovian bath is denoted by HSB and in the rotating
wave approximation [1,44] is given by

HSB =
N∑

i=1

∑
n

gnc†
i bn + g∗

nb†
nci. (8)

Using the fact that the Hamiltonian of the system HS , Eq. (2),
is quadratic in form, it can be diagonalized so that it becomes

HS =
N∑

i=0

λiξ
†
i ξi, (9)

where ξ
†
i , ξi are creation and annihilation operators of a

new set of quasifermions satisfying standard anticommutation
relationships,

{ξi, ξ
†
j }+ = δi j, {ξi, ξ j}+ = 0, {ξ †

i , ξ
†
j }+ = 0. (10)

The explicit expressions for the quasifermionic operators ξ
†
i

and their corresponding quasienergies λi read

ξ
†
0 = sin θc† + cos θd†, λ0 = ω + ε

2
+ �N

2
, (11)

ξ
†
1 = cos θc† − sin θd†, λ1 = ω + ε

2
− �N

2
, (12)

ξ
†
i =

√
i − 1

i
c†

i − 1√
i(i − 1)

i−1∑
k=1

c†
k , λi = ε, (13)
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where i = 2, 3, . . . , N , and

�N =
√

4g2N + (ε − ω)2, (14)

θ = 1

2
tan−1

(
2g

√
N

ω − ε

)
, (15)

c = 1√
N

N∑
i=1

ci. (16)

Calculating the anticommutator of the operator c appearing in
Eq. (16), we get

{c, c†}+ = 1, (17)

which means that the whole mesoscopic bath behaves effec-
tively like a single collective fermionic mode. The implica-
tion of this is that the system consisting of the fermion of
interest and N fermions in the mesoscopic bath is effectively
transformed into a simpler system consisting of the fermion
of interest d and an effective mesoscopic fermion c. We
attribute this implication to result from the symmetry of the
system. By combining Eq. (11) and Eq. (12), we see that
the transformation equations from the original picture to the
quasifermionic picture are given by

d = cos θξ0 − sin θξ1, (18)

c = sin θξ0 + cos θξ1, (19)

so that in the quasifermionic picture the interaction Hamilto-
nian, Eq. (8), becomes

HSB =
√

N
∑

n

gnbn(sin θξ
†
0 + cos θξ

†
1 )

+ g∗
n(sin θξ0 + cos θξ1)b†

n, (20)

and the total Hamiltonian, Eq. (1), therefore can be written as

H =
N∑

i=0

λiξ
†
i ξi +

∑
n

ωnb†
nbn +

√
N
∑

n

gnbn(sin θξ
†
0

+ cos θξ
†
1 ) + g∗

n(sin θξ0 + cos θξ1)b†
n. (21)

Switching to the interaction picture, the interaction Hamilto-
nian Eq. (20) attains the form,

H (I )
SB (t ) = ξ

†
0 B0t + ξ

†
1 B1t + H.c., (22)

where

B0t =
√

N
∑

n

gn sin θeit (ωn−λ0 )bn, (23)

B1t =
√

N
∑

n

gn cos θe−it (ωn−λ1 )bn, (24)

and H.c. symbolizes the Hermitian conjugate of the two terms
appearing in Eq. (22).

The starting point for the derivation of the quantum mas-
ter equation for the reduced system is the general expres-
sion for the quantum master equation in the Born-Markov

approximation [1],

ρ̇S (t ) = −
∫ ∞

0
dτTrB

[
H (I )

SB (t ),
[
H (I )

SB (t − τ ), ρS (t ) ⊗ ρB(0)
]]

.

(25)

Substituting the interaction Hamiltonian Eq. (22) into Eq. (25)
and taking the simple case where |λ0 − λ1| � 1 which holds
for N � 1, we obtain the following quantum master equation,

ρ̇S (t ) =
1∑

i=0

γ +
i

(
ξiρSξ

†
i − 1

2
{ξ †

i ξi, ρS}+
)

+ γ −
i

(
ξ

†
i ρSξi − 1

2
{ξiξ

†
i , ρS}+

)
, (26)

where the damping rates γ ±
i are given by

γ ±
0 = πN sin2 θJ (λ0)

(
1 ± tanh

βλ0

2

)
, (27)

γ ±
1 = πN cos2 θJ (λ1)

(
1 ± tanh

βλ1

2

)
, (28)

where β is the inverse temperature of the fermionic Markovian
bath and J (λi ) is the spectral density [1] obtained from the
substitution

∑
n |gn|2 → ∫

dωJ (ω)δ(ωn − ω) where J (ω) =
γ

2π
�2

(ω−ω0 )2+�2 is the Lorenztian spectral density.
To solve the above quantum master equation, Eq. (26), we

can use the Kraus representation [17,45,46] which in combi-
nation with the fact that superoperators corresponding to i = 0
and i = 1 in Eq. (26) commute [i.e., Eq. (26) can also be
written in the form ρ̇S = (L0 + L1)ρS where superoperators
satisfy the relation [L0,L1] = 0)] allows us to obtain

ρS (t ) = etL0 etL1ρS (0) = etL1 etL0ρS (0)

=
3∑

j,k=0

Ej0(t )Ek1(t )ρS (0)E†
k1(t )E†

j0(t ), (29)

as the solution of the quantum master equation, Eq. (26), in
the Kraus representation, where we derive the Kraus operators
to be

E0i(t ) = cos(αi )(ξ
†
i ξi + fi(t )ξiξ

†
i ),

E1i(t ) = cos(αi )gi(t )ξ †
i ,

E2i(t ) = sin(αi)(ξiξ
†
i + f ∗

i (t )ξ †
i ξi ),

E3i(t ) = sin(αi)gi(t )ξi, (30)

with

cos(αi) =
√

γ −
i

γ
β
i

=
√

1

1 + eβλi
= √

pi, (31)

sin(αi ) =
√

γ +
i

γ
β
i

=
√

1 − 1

1 + eβλi
=
√

1 − pi, (32)

fi(t ) = exp

(
−γ

β
i

2
t − iλit

)
, (33)

gi(t ) =
√

1 − | fi(t )|2, (34)

γ
β
i = γ +

i + γ −
i . (35)
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The Kraus operators are subject to the normalization
condition,

M∑
j,k=0

E†
k1(t )E†

j0(t )Ej0(t )Ek1(t ) = I. (36)

The above solution of the quantum master equation, Eq. (29),
is valid for arbitrary initial conditions. We can express the
arbitrary initial conditions in the general form,

ρS (0) = ρ00(0)ξ †
0 |0〉〈0|ξ0 + ρ01(0)ξ †

0 |0〉〈0|ξ1

+ ρ10(0)ξ †
1 |0〉〈0|ξ0 + ρ11(0)ξ †

1 |0〉〈0|ξ1, (37)

where the coefficients ρ00(0), ρ01(0), ρ10(0), and ρ11(0) are
arbitrary subject to the normalization condition,

ρ00(0) + ρ11(0) = 1. (38)

Using this arbitrary initial density matrix of the system,
Eq. (37), in the general solution, Eq. (29), and tracing out
the degrees of freedom of the mesoscopic bath, we obtain the
density matrix of the fermion of interest,

ρ(t ) = Trc[ρS (t )] = κ (t )d†|0〉〈0|d + (1 − κ (t ))|0〉〈0|,
(39)

where

κ (t ) = n0(t )ρ00(0) + n1(t )ρ11(0) + ñ2(t )ρ10(0), (40)

with n0(t ), n1(t ), and ñ2(t ) being given by

n0(t ) = p0 + | f0|2(cos2 θ (1 − p0 p1) − p0),

n1(t ) = p1 + | f1|2(sin2 θ (1 − p0 p1) − p1),

ñ2(t ) = −2Re( f0(t ) f ∗
1 (t )) sin θ cos θ. (41)

In Eq. (41), Re( f0(t ) f ∗
1 (t )) means the real part of the product

of f0(t ) and f ∗
1 (t ). In principle, the density matrix given by

Eq. (39) can be used to calculate various properties of the
fermion of interest for arbitrary initial conditions subject to
the normalization condition Eq. (38).

III. RESULTS AND DISCUSSION

In this section, we will investigate various features of the
reduced system and the fermion of interest. In Sec. III A,
we investigate the dynamics in terms of the mean number of
fermions, current density, BLP measure of non-Markovianity,
and von Neumann entropy. In Sec. III B, we investigate ther-
malization and in Sec. III C we investigate entanglement of
formation to analyze entanglement between the fermion of
interest and the collective mesoscopic fermion.

A. Dynamics of the fermion of interest

To investigate the dynamics of the fermion of interest we
are going to calculate its mean number. Based on the exact
expression for the reduced density matrix of the fermion of
interest, Eq. (39), we obtain the mean number of the fermion
of interest to be

n(t ) = 〈d†d〉 = Tr[d†dρ(t )] = κ (t ), (42)

where κ (t ) is given above, Eq. (40). In the present work we
will consider that initially there is only one fermion of interest

and no fermions in the mesoscopic bath, i.e.,

ρS (0) = d†|0〉〈0|d. (43)

We can express this particular initial condition, Eq. (43), in
the form of the general expression in Eq. (37) by using the
transformation equation, Eq. (18), so that it appears as

ρS (0) = cos2 θξ
†
0 |0〉〈0|ξ0 − sin θ cos θξ

†
0 |0〉〈0|ξ1

− sin θ cos θξ
†
1 |0〉〈0|ξ0 + sin2 θξ

†
1 |0〉〈0|ξ1. (44)

By comparing Eq. (44) and Eq. (37), we identify ρ00(0) =
cos2 θ , ρ11(0) = sin2 θ , and ρ01(0) = ρ10(0) = − sin θ cos θ

so that the mean number of the fermion of interest, Eq. (42),
explicitly appears as

n(t ) = n0(t ) cos2 θ + n1(t ) sin2 θ + n2(t ), (45)

where

n2(t ) = 2Re( f0(t ) f ∗
1 (t )) sin2 θ cos2 θ. (46)

As a further investigation of the dynamics, we will measure
the flow of the fermion of interest between the site of interest
and the mesoscopic bath. To this end, we use the total density
matrix of the system Eq. (29) and the transformation equa-
tions, Eq. (18) and Eq. (19), to calculate the current density,

J (t ) = −i〈c†d − d†c〉
= sin 2θ{Im( f0)Re( f1) − Re( f0)Im( f1)}

= sin 2θ exp

(
−γ

β

0 + γ
β

1

2
t

)
sin(�Nt ), (47)

where Re( fi ) and Im( fi ) correspond to the real and imaginary
parts of fi, respectively.

In what follows, we will plot graphs to show our inves-
tigation of the behavior of the mean number of the fermion
of interest n(t ) and the current density J (t ) with time for
different values of the coupling strength between the fermion
of interest and the mesoscopic bath, for different values of the
number of fermions in the mesoscopic bath, and for different
temperatures of the Markovian bath. The investigation of the
behavior of the mean number of the fermion of interest and
current density with time for different values of the coupling
strength will be done concurrently with the investigation of
the BLP measure of non-Markovianity [18] which in this work
appears as

N (t ) = max
ρ (1) (0),ρ (2) (0)

D(ρ (1), ρ (2) )

= max
ρ (1) (0),ρ (2) (0)

√(
ρ

(1)
11 − ρ

(2)
11

)2 + ∣∣ρ (1)
01 − ρ

(2)
01

∣∣2. (48)

Noting from Eq. (39) that ρ11 = κ (t ) and ρ01 = 0 and per-
forming the maximum over all initial states of the system as
suggested in [47], Eq. (48) becomes

N (t ) = |n0(t )| + |n1(t )| + 2
√

2|ñ2(t )|. (49)

In Fig. 2, we analyze different regimes of the interac-
tion between the fermion of interest and fermions in the
mesoscopic bath. From top to bottom the values of the cou-
pling strength g are 0.1, 1.0, and 2.0, respectively, while
the rest of the parameters are chosen to be the same for all
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FIG. 2. Time dependence of measure of non-Markovianity N (t ) and mean number of fermion of interest n(t ) for different values of
coupling strength g to the mesoscopic bath; t is time measured in units of �−1 so that �t in the abscissa is dimensionless. The rest of the
parameters are chosen to be the same for all curves: ε = 1, ω = 1.3, N = 5000, � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1. It is clear
that when the interaction strength is weak, both N (t ) and n(t ) are monotonically decreasing functions until thermalization is attained. As the
interaction strength is increased, we observe that both N (t ) and n(t ) start to oscillate with the oscillations getting severe in the strong coupling
regime. Since the measure of non-Markovianity measures the degree of non-Markovianity, we can therefore say that the interaction strength
controls the nature of the dynamics, whether Markovian or non-Markovian.

three curves: ε = 1, ω = 1.3, N = 5000, � = γ

2 = πJ (λ0) =
πJ (λ1) = 10−6, and β = 1. It is clear that in the weak cou-
pling case (g = 0.1 and other values lower than this value
not shown in Fig. 2 to avoid redundancy), a monotonically
decreasing curve which is typical of Markovian dissipation
[5,18] is observed. According to [18], such a curve for the
measure of non-Markovianity means that there is no back-
flow. The curve for the mean number decays to a constant
value of approximately 0.5 and remains there for longer
times giving us signs of thermalization. As the interaction
strength is increased, the curves slowly begin to oscillate
(g = 1.0 curves) with increased oscillations for larger inter-
action strength (e.g., g = 2.0 curve). The oscillations indicate
that the electron tunnels back and forth between the site of
interest and the mesoscopic bath. The mean number of the
thermal state of 0.5 is a reasonable prediction because the
system contains a single electron which, as time approaches
infinity, is averaged by the two subsystems between which it
is oscillating. Thus, in increasing the interaction strength, the

process of thermalization shows clear signs of non-Markovian
behavior.

Similarly, in Fig. 3, we analyze the current density for
different regimes of the interaction between the fermion of
interest and fermions in the mesoscopic bath. From top to
bottom the values of the coupling strength g are 0.1, 1.0, and
2.0, respectively, while the rest of the parameters are chosen
to be the same for all three curves: ε = 1, ω = 1.3, N =
5000, � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1. For
the weakest coupling (g = 0.1) the current curve moves only
very slightly from J (t = 0) = 0 to a negative value of J (t )
and then goes back to J (t ) = 0 for all longer times. The curve
for the measure of non-Markovian shows no oscillations,
hence no backflow. As the interaction strength is increased,
the curves slowly begins to oscillate (g = 1.0 curve) with
increased oscillations for larger interaction strength (e.g., g =
2.0 curve). This once again shows that in increasing the
interaction strength the process of thermalization displays
signs of non-Markovian behavior.
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FIG. 3. Time dependence of measure of non-Markovianity N (t ) and current J (t ) for different values of coupling strength g to the
mesoscopic bath; t is time measured in units of �−1 so that �t in the abscissa is dimensionless. The rest of the parameters are chosen to
be the same for all curves: ε = 1, ω = 1.3, N = 5000, � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1. It is clear that as the interaction
strength is increased, we observe that both N (t ) and J (t ) start to oscillate with the oscillations getting severe in the strong coupling regime.
Since the measure of non-Markovianity measures the degree of non-Markovianity, we can therefore say that the interaction strength controls
the nature of the dynamics, whether Markovian or non-Markovian.

In Fig. 4, we observe the behavior measure of non-
Markovianity N (t ) and von Neumann entropy [17,48] S (t ),

S(t ) = −Tr(ρ log2 ρ) = −
∑

i

λi log2 λi

= log2

{(
1

n(t )
− 1

)n(t )
/

(1 − n(t ))

}
, (50)

as time approaches infinity. The initial state is a pure
state of the fermion of interest ρS (0) = ρ(0) ⊗ ρc(0) =
d†|0〉〈0|d ⊗ |0〉〈0| = d†|0〉〈0|d = ρ(0) whose von Neumann
entropy evolves to the completely mixed state, the thermal
equilibrium state, as time approaches infinity. Being a mea-
sure of loss of information, the graph of von Neumann entropy
S (t ), shows the leak of information [17,48] from the initial
value of zero to the maximum of 1. Upon reaching the
maximum value of 1, the graph of S (t ) changes direction
meaning that information starts flowing back, but it does not
reach zero meaning that not all information flows back, rather

it again starts leaking out to the mesoscopic bath again. This
process repeats over and over with the amplitude of backflow
reducing as thermalization is approached. On the other hand,
the initial negative slope in the measure of non-Markovianity
N (t ) indicates loss of information [18] to the mesoscopic
bath. The graph of N (t ) reaches value of 1 where the von
Neumann entropy is maximum and switches to positive slope
indicating backflow to the site of interest. Like S (t ), N (t )
does not reach the previous point indicating that not all in-
formation flows back before it starts to leak to the mesoscopic
bath. Thus, we observe a similar behavior in the two curves
except that the directions are reversed. For pure initial states
(like this particular case), existing literature [17,48,49] shows
that the von Neumann entropy of the density matrix for either
subsystem of a bipartite system can serve as a convenient
measure of entanglement. Just as the initial pure state has
zero von Neumann entropy which increases to maximum for
a completely mixed state, it has zero entanglement which
attains a maximum for a completely mixed state. Since fluctu-
ations in entropy are in general caused by fluctuations in the
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FIG. 4. Time dependence of measure of non-Markovianity N (t )
and von Neumann entropy S (t ); t is time measured in units of
�−1 so that �t in the abscissa is dimensionless. All parameters are
chosen to be the same for all curves: g = 10, ε = 1, ω = 1.3, N =
5000, � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1. The initial
pure state of the fermion of interest evolves to the mixed state,
the thermal equilibrium state, as time approaches infinity. Being a
measure of loss of information, von Neumann entropy S (t ) shows
the leak of information from the initial value of zero to the maximum
whereupon it starts flowing back, but does not all flow back, rather
it again starts leaking out to the mesoscopic bath. On the other hand,
the initial negative slope in the measure of non-Markovianity N (t )
indicates loss of information to the mesoscopic bath. It reaches where
the von Neumann entropy is maximum and switches to positive
slope indicating backflow to the site of interest. It also does not
reach the previous point. This process repeats over and over with
the amplitude of backflow reducing as thermalization is approached.

temperature, we deduce that the cause of backflow is linked to
fluctuations in the temperature and entanglement between the
fermion of interest and the mesoscopic bath.

In Fig. 5, we analyze the influence of the number of
fermions in the mesoscopic bath on the dynamics of the
fermion of interest. From the top curve to the bottom one,
the number of fermions in the reservoir is 5000, 10 000, and
15 000, respectively. The rest of the parameters are chosen
to be the same for all three curves: ε = 1, ω = 1.3, g = 1,
� = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1. First of all,
we note that we are in the strong coupling regime, hence
the observed oscillations as explained above. It is clear from
Fig. 5 that increasing the number of fermions in the meso-
scopic bath leads to a faster decay to thermal equilibrium.
Increased number of fermions in the mesoscopic bath means
that the number of interactions with the fermion of interest
is increased. In addition, the nature of the interactions is
dissipative, so we expect faster decay to thermal equilibrium.

In Fig. 6, the mean number of fermions is plotted against
time and the inverse temperature. The top curve corresponds
to the value of β of 0.1, the middle one 1.0, and 10 the bottom
one. The rest of the parameters are chosen to be the same:
ε = 1, ω = 1.3, g = 1, N = 5000, and � = γ

2 = πJ (λ0) =
πJ (λ1) = 10−6. We note that all the three curves are exactly
the same despite the differences in temperature leading us to
observe that provided all other parameters are the same, the

FIG. 5. Time dependence of mean number of the fermion of
interest n(t ) for different values of number of fermions N in the
mesoscopic bath; t is time measured in units of �−1 so that �t
in the abscissa is dimensionless. The rest of the parameters are
chosen to be the same for all three curves: ε = 1, ω = 1.3, g = 1,
� = γ

2 = πJ (λ0) = πJ (λ1) = 10−6, and β = 1.

dynamics is independent of the temperature of the Markovian
bath.

Figures 7 and 8 show graphs pertaining to our investigation
of the behavior of the current density with time for different
values of the number of fermions in the mesoscopic bath and
for different temperatures of the Markovian bath.

In Fig. 7, we analyze the influence of the number of
fermions in the mesoscopic bath on the current density. From
the top curve to the bottom one, the number of fermions
in the mesoscopic bath is 5000, 10 000, and 15 000, re-
spectively. The rest of the parameters are chosen to be the
same for all three curves: ε = 1, ω = 1.3, g = 1, � = γ

2 =
πJ (λ0) = πJ (λ1) = 10−6, and β = 1. Being in the strong
coupling regime, we observe oscillations in all three curves,
but the decay to J (t ) = 0 is faster for increased number of
fermions.

In Fig. 8, the current density is plotted against time for
different values of inverse temperature of the mesoscopic
bath. The top curve corresponds to the value of β of 0.1,
the middle one 1.0, and 10 the bottom one. The rest of the
parameters are chosen to be the same: ε = 1, ω = 1.3, g =
1, N = 5000, and � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6. We
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FIG. 6. Time dependence of the mean number of the fermion of
interest n(t ) for different values of the inverse temperature β of the
Markovian Bath; t is time measured in units of �−1 so that �t in
the abscissa is dimensionless. The rest of the parameters are chosen
to be the same: ε = 1, ω = 1.3, g = 1, and � = γ

2 = πJ (λ0) =
πJ (λ1) = 10−6.

note that all three curves are exactly the same despite the
differences in temperature leading us to a similar observation
as our investigation of the behavior of the number of fermions
in Fig. 6: Provided all other parameters are the same, the
dynamics is independent of the temperature of the Markovian
fermionic bath.

B. Thermalization of the fermion of interest

Our analysis of the dynamics of the mean number of
fermions in the previous subsection as depicted in Fig. 2 to
Fig. 8 shows thermalization as time approaches infinity. That
observation was based on the graphs alone. In this subsection,
we are going to show thermalization analytically.

Using the well-known canonical thermal equilibrium
state [1],

ρT S = e−βHS

Z
, (51)

where Z = Tr(e−βHS ) is the normalizing partition function,
the mean number of the fermion of interest in thermal

FIG. 7. Time dependence of current density J (t ) as a function of
number of fermions N in the mesoscopic bath; t is time measured
in units of �−1 so that �t in the abscissa is dimensionless. The rest
of the parameters are chosen to be the same for all curves: ε = 1,
ω = 1.3, g = 1, and � = γ

2 = πJ (λ0) = πJ (λ1) = 10−6.

equilibrium is

nT S = 〈d†d〉 = Tr[d†dρT S] = Tr(d†de−βHS )

Tr(e−βHS )
. (52)

Substituting the system Hamiltonian, Eq. (9) and Eq. (18) into
Eq. (52), we obtain

nT S = e−βλ0 cos2 θ + e−β(λ0+λ1 ) + e−βλ1 sin2 θ

(1 + e−βλ0 )(1 + e−βλ1 )

= p0 cos2 θ + p1 sin2 θ, (53)

where p0 and p1 are given by Eq. (31). Equation (53) is the
expected mean number of the fermion of interest in thermal
equilibrium.

On the other hand, our deductions from the previous sub-
section that thermalization is achieved as time approaches
infinity imply that if we take the limit t → ∞ in our calcula-
tions, Eq. (45), we should be able to get the expression for the
thermal equilibrium mean number. Taking the limit t → ∞ in
Eq. (45), we get

n(∞) = p0 cos2 θ + p1 sin2 θ, (54)
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FIG. 8. Time dependence of the current density J (t ) for different
values of the inverse temperature β of the Markovian Bath; t is time
measured in units of �−1 so that �t in the abscissa is dimension-
less. The rest of the parameters are chosen to be the same for all
curves: ε = 1, ω = 1.3, g = 1, N = 5000, and � = γ

2 = πJ (λ0) =
πJ (λ1) = 10−6.

which is exactly the same as the expected thermal equilibrium
mean number, Eq. (53). This indicates that thermalization
is indeed achieved as time approaches infinity. The equality
of the derived thermal equilibrium mean number and the
expected thermal equilibrium mean number also gives us
confidence in the approach and detailed derivations conducted
in this work.

In Fig. 9, we analyze the dependence of the thermal
equilibrium mean number on the inverse temperature, hence
the temperature, of the Markovian bath and the effective
coupling strength g

√
N . We observe that as β → 0, i.e., for

high temperatures of the Markovian bath, nT S → 0.5. This is
exactly as expected from Eq. (53) where pi = 1/(1 + eβλi )
given in Eq. (31) goes to 0.5 as β → 0 resulting in nT S →
0.5(cos2 θ + sin2 θ ) = 0.5. This is also exactly the same ther-
mal mean number that we observed in the previous subsection.
On the other hand, in the low-temperature regime, as β →
∞, pi = 1/(1 + eβλi ) → 0 therefore nT S → 0. These obser-
vations can be explained as follows. When the temperature
of the Markovian bath is low, its thermal energy and that of
the mesoscopic bath is correspondingly low since the entire

FIG. 9. Thermal state mean number as a function of the inverse
temperature β and the dimensionless effective coupling strength
g
√

N/ε and for values of ε = 1, ω = 1.3, J (λ0) = J (λ1).

system is in thermal equilibrium. But the fermion of interest
has higher energy when it is in its own subsystem than when
it is in the subsystem of the mesoscopic bath, i.e., ω = 1.3 >

ε = 1, and therefore can tunnel to the mesoscopic bath in one
direction only leading to the average value of zero number of
fermions of interest. For low temperatures of the Markovian
bath and strong coupling strength, the tunneling is in both
directions between the site of interest and the mesoscopic
bath. This leads to the number of fermions of interest which
was initially one being averaged between the two subsystems
(fermion of interest and the mesoscopic bath), some kind of
“sharing” of the single initial fermion of interest with the
mesoscopic bath which initially had zero fermions. When the
Markovian bath is at high temperatures, it supplies energy to
the fermion of interest which has tunnelled to the mesoscopic
bath and therefore can now tunnel back to the subsystem
of the fermion of interest again resulting in the number of
fermions of interest which was initially one averaged between
the two subsystems. In the high-temperature regime, the same
explanation holds regardless of the coupling regime hence the
straight line corresponding to β = 0.1.

In Fig. 10, we observe similar behavior as in Fig. 9 except
that now we have the difference between the energy of the
fermion of interest and the energy of each of the fermions in
the mesoscopic bath, � = (ω − ε)/ε, instead of the inverse
temperature. At resonance (when ω = ε) or near resonance,
the fermion of interest tunnels back and forth the mesoscopic
bath rapidly with increasing coupling strength leading to a
rapid attainment of the average value of one-half. In the far
resonance when the fermion of interest has greater energy than
the fermions in the mesoscopic bath, the rise to the average
value of half is slow with increasing coupling strength because
the back and forth tunneling is delayed: The fermion of inter-
est has greater energy than the fermions in the mesoscopic
bath and therefore its tunneling in one direction (toward the
bath) is prolonged when the interaction strength is weak.
As the coupling strength is increased, the fermions in the
mesoscopic bath begin to tunnel back to the subsystem of the

052102-9



MWALABA, SINAYSKIY, AND PETRUCCIONE PHYSICAL REVIEW A 99, 052102 (2019)

FIG. 10. Thermal state mean number as a function of the di-
mensionless effective coupling strength g

√
N/ε and dimensionless

� = (ω − ε)/ε, measure of the difference between the energy of the
fermion of interest and the energy of each of the fermions in the
mesoscopic bath, for inverse temperature β = 1, J (λ0) = J (λ1).

fermion of interest leading to attainment of the average value
of one-half.

Let us now turn to the thermal state current density. From
the expression for J (t ) in Eq. (47), we can calculate the
expected thermal state current density by taking the limit
t → ∞:

J (∞) = 0. (55)

This can be compared with the value of the thermal state
current density calculated explicitly from the thermal state
density matrix:

JT S = −iTr{(c†d − d†c)ρT S} = 0, (56)

where ρT S is the thermal equilibrium state density matrix
Eq. (51) and we have used the transformation equations,
Eq. (18) and Eq. (19), for d and c, respectively. We see that
J (∞) and JT S are in exact agreement verifying that our system
attains the state of thermal equilibrium after a long interval of
time. This observation is also in line with the observations
of Figs. 3–8 that the current goes to zero as time approaches
infinity.

C. Thermal quantum correlations

In the previous subsection, we studied the properties of the
thermal state of the fermion of interest. In the present section,
we would like to extend the analysis to include the mesoscopic
bath. Due to the symmetry of the model under consideration
we have shown that effectively the fermion is coupled only
to the symmetric collective mode c = 1√

N

∑N
i=1 ci. In this sec-

tion, we analyze the thermal entanglement between fermion of
interest and the collective fermionic mode of the mesoscopic
bath c.

The explicit form of the Kraus operators Eq. (30) allows
obtaining the joint density matrix of the fermion of interest
and collective mode of the mesoscopic bath. These provide a
direct way to analyze bipartite quantum correlations between
the fermion of interest and the mesoscopic bath. However,
the description of the entanglement in systems of fermions is

not as straightforward as for systems of distinguishable two-
level atoms [50,51]. These complications are arising from the
indistinguishability and anticommutativity of the fermionic
systems. In the present paper we will use entanglement of
formation measure [51,52], which was adopted for the bipar-
tite fermionic systems by Caban et al. [53] and applied to the
description of the quantum correlations in the open fermionic
systems [4,54].

Following Friis, Lee, and Bruschi [51], the entanglement
of formation Ē (ρ) for fermionic systems is defined as

Ē (ρ) = min
pn,||ψn〉〉

∑
n

pnS(||ψn〉〉), (57)

where the double-lined Dirac ket ||...〉〉 denote the antisym-
metrized state in the fermionic Fock space. The minimization
is done over all fermionic pure state ensembles that realize the
state ρ = ∑

n pn||ψn〉〉〈〈ψn|| with normalization
∑

n pn = 1,
S(||ψn〉〉) denotes von Neumann entropy.

Caban et al. [53] has demonstrated that in the case of two
fermions, one can construct mapping from two-fermion Fock
space into C2 ⊗ C2, such that the most general two-fermion
density matrix obeying the fermion superselection rules reads

ρ =

⎛
⎜⎜⎜⎝

w1 0 0 b1

0 w2 b2 0

0 b∗
2 v2 0

b∗
1 0 0 v1

⎞
⎟⎟⎟⎠. (58)

Nonzero coefficients of this matrix can be identified as the
following expectation values,

w1 = 〈dd†cc†〉, w2 = 〈d†dcc†〉, v1 = 〈dd†c†c〉,
v2 = 〈d†dc†c〉, b1 = 〈c†d†〉, b2 = 〈c†d〉. (59)

In this case the entanglement of formation Eq. (57) reduces to

Ē (ρ) =
2∑

i=1

(wi + vi )Si, (60)

where Si is defined as

Si =
{

0, if wi = vi or bi = 0,

− 1−ξi

2 log2
1−ξi

2 − 1+ξi

2 log2
1+ξi

2 ,
(61)

and

ξi = wi − vi√
(wi − vi )2 + 4|bi|2

. (62)

For the thermal state considered in this paper the coefficient
b1 ≡ 0. This leads to the following expression for the entan-
glement of formation,

Ē (ρ) = −〈d†d〉
(

1 − ξ

2
log2

1 − ξ

2
+ 1 + ξ

2
log2

1 + ξ

2

)
,

(63)

where the coefficient ξ is given by

ξ = 〈d†d〉 − 2〈d†dc†c〉√
(〈d†d〉 − 2〈d†dc†c〉)2 + 4|〈d†c〉|2

, (64)
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FIG. 11. Thermal entanglement of formation as the function
of dimensionless inverse temperature (βε in logarithmic scale).
Curves (1)–(3) correspond to effective coupling strengths g

√
N =

(10, 100, 1000), respectively; the rest of the parameters are ω = 1.3
and ε = 1. Curves (4) and (5) correspond to the effective coupling
strengths g

√
N = (8, 10), while ω and ε are 13 and 10, respectively.

where the steady-state values of relevant observables are as
follows:

〈d†d〉 = p0 + p1

2
+ p0 − p1

2

|ω − ε|
�N

,

〈d†c〉 = g
√

N

�N
(p0 − p1),

〈d†dc†c〉 = p0 p1. (65)

In Fig. 11 we show the thermal entanglement of formation
Eq. (63) as the function of inverse temperature for various
parameter regimes. We could clearly see that in the high-
temperature regime (log β < 0), the fermion of interest and
the mesoscopic bath are thermally entangled. However, in the
low temperature regime one can see two distinct behaviors.
In one range of parameters the system remains entangled,
while in the other regime there is no entanglement between
the fermion of interest and the mesoscopic bath. In order to
understand and explain this behavior we consider high-T and
low-T limits of Eq. (63).

Using the explicit values of coefficients Eq. (65) we
can analyze the high- and low-temperature behavior of
the entanglement of formation for the studied system. The
high-temperature expansion (βλi � 1) of the coefficients pi

reads

pi ≈ 1

2
− λiβ

4
+ λ3

i β
3

48
+ . . . . (66)

Substituting the high-temperature expansion for pi in Eq. (64),
the high-temperature expansion for ξ reads

ξ ≈ ξ(0) + βξ(1) + . . . , (67)

where the coefficients ξ(i) are given by

ξ(0) = min(ε, ω)√
4g2N + min(ε, ω)2

, (68)

ξ(1) = 2g2N (g2N − εω)

(4g2N + min(ε, ω)2)3/2
. (69)

These lead to the high-temperature expansion of the entangle-
ment of formation as follows,

Ē (ρ) ≈ S0

2
− β

4
(min(ω, ε)S0 + S1) + . . . , (70)

where

S0 = −1 − ξ(0)

2
log2

1 − ξ(0)

2
− 1 + ξ(0)

2
log2

1 + ξ(0)

2
,

(71)

and

S1 = ξ(1) log2
1 + ξ(0)

1 − ξ(0)
. (72)

One could clearly see from Eq. (70) that for generic values
of parameters of the system, in the high-temperature case
there will always be some entanglement between the fermion
of interest and the mesoscopic bath. The maximum value of
thermal entanglement in the high-temperature limit is 1

2 ; it
follows from the fact that S0 is bounded between 0 and 1. This
behavior is clearly confirmed by curves depicted in Fig. 11.

In order to explain the difference in the low-T behavior
between curves (1)–(3) and (4) and (5) in Fig. 11, one
needs to consider the low-T limit case of Eq. (63). The low-
temperature expansion of the coefficients pi reads

p0 ≈ e−βλ0 ,

p1 ≈
{

e−βλ1 , if ωε > g2N,

1 − e−β|λ1|, if ωε < g2N.
(73)

Substituting the above expansion in Eq. (64), one can obtain
the expression for ξ :

ξT =0 = �N − |ω − ε|√
(�N − |ω − ε|)2 + 16g2N

. (74)

Note that corrections ξ around T = 0 are exponentially small
and can be neglected. These lead to the explicit expression for
the entanglement of formation in the low-temperature limit,

Ē (ρ) =
⎧⎨
⎩

0, if ωε > g2N,

1
2

(
1 − |ω−ε|

�N

)
ST =0, if ωε < g2N,

(75)

where

ST =0 = −1 − ξT =0

2
log2

1 − ξT =0

2

− 1 + ξT =0

2
log2

1 + ξT =0

2
. (76)

The derived expression for the entanglement of formation
at T = 0 Eq. (75) explains the qualitative difference in the
behavior between curves (1)–(3) and (4) and (5) in Fig. 11.
The curves (1)–(3) in Fig. 11 are in the range of parameters
for which ωε < g2N , while curves (4) and (5) correspond to
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the case ωε > g2N . This transition in the behavior is identical
to the mean number of fermions just below and above the
Fermi surface in the zero-temperature case. The entanglement
of formation will have the Heaviside function behavior at the
point ωε = g2N . Physically, the behavior can be explained as
follows: In the case of ωε > g2N the fermion of interest and
the collective mode of the mesoscopic bath are in a localized
state. Due to the nature of the interaction with the fermionic
sea HSB at the zero temperature all excitations from the meso-
scopic bath are transferred to the fermionic sea. As a result
the steady-state populations of the fermion of interest and
the collective mesoscopic mode are zero, which leads to zero
entanglement. In the case ωε < g2N the fermion of interest
and the collective mesoscopic mode are in two delocalized
states and one of them is decoupled from the fermionic sea.
This leads to nonzero populations in the steady-state and
thermal entanglement at zero temperature.

IV. SUMMARY AND CONCLUSION

We have been studying the dynamics and thermalization
of a spinless fermion embedded in the mesoscopic bath of
spinless fermions which is in turn embedded in a fermionic
Markovian bath. We made a number of assumptions. First,
we considered the fermions in the mesoscopic bath to be
degenerate and their coupling to the fermion of interest the
same. These assumptions were taken in order to simplify
the calculations while focusing on the dynamics. On the
other hand, we noted that the model can be mimicked in
an experimental setup. Such an experimental setup can be
realized in the versatile platform of ultracold atoms in optical
lattices which offers an unprecedented degree of controllabil-
ity and flexibility in the preferred geometry [20,37,55,56]. The
expressions for the interaction in the Hamiltonian Eq. (2) and
Eq. (8) were based on the rotating wave approximation [44].
We started the derivations of the quantum master equation
from the general expression for the quantum master equation,
Eq. (25), in the Born-Markov approximation [1]. Finally, the
derived quantum master equation, Eq. (26), holds in the case
where N � 1.

Various plots for the mean number, the current density
and thermal entanglement were obtained: Figs. 2–11, which
allowed us to investigate the dynamics and thermalization
of the fermion of interest. The plots for the mean num-
ber or current density against the coupling strength, Fig. 2
or Fig. 3, respectively, were monotonically decreasing in
the weak coupling regime, and oscillating but exponentially
decaying in the strong coupling regime. As confirmed in
the literature [1,3,5,18], the behavior exhibited in the weak
coupling regime is Markovian signifying irreversible flow of
information from the subsystem of the fermion of interest to
the mesoscopic bath while that of the strong coupling regime
is non-Markovian where information also flows back into the
subsystem of the fermion of interest. The curves for the BLP
measure of non-Markovianity confirmed this observation. As
a further investigation of the loss of information from the
site of interest to the mesoscopic bath, we calculated the von
Neumann entropy which was plotted in Fig. 4 on the same
graph and with the same parameters as the BLP measure of

non-Markovianity. Comparison of the two curves confirmed
the above mentioned directionality of information flow and
linked the cause of backflow to fluctuations in correlations
(entanglement) between the fermion of interest and the meso-
scopic bath. In probing thermalization, it was observed that
in both the weak and strong coupling regimes, the behavior
of the graphs against time of the mean number, current den-
sity, non-Markovianity measure, and von Neumann entropy
is such that thermalization is achieved for long times. As
a verification for thermalization, analytical calculations for
both the mean number of the fermion of interest and the
current density, Eqs. (53) and (54), and Eqs. (55) and (56),
respectively, were performed confirming that thermalization
is indeed achieved as time approaches infinity. Keeping all
parameters the same, the graphs of the mean number or cur-
rent density against the coupling strength, Fig. 2 or Fig. 3, re-
spectively, show that the stronger the coupling the more rapid
the thermalization process. Keeping all parameters the same
and varying only the number of fermions in the mesoscopic
bath, thermalization is more rapid for an increased number
of fermions (Figs. 5 and 7). However, keeping all parameters
the same, variations in the temperature of the Markovian bath
displayed no effect on the rate of thermalization; neither do
variations in the temperature of the Markovian bath induce
any switch from Markovian to non-Markovian dynamics or
vice versa (Figs. 6 and 8).

The thermal mean number was also investigated with vari-
ations in both the coupling strength and temperature of the
Markovian bath (Figs. 9 and 10). We found that the switch
from Markovian dynamics to non-Markovian dynamics or
vice versa, is controlled by the coupling strength. The results
of this work display behavior which is expected from litera-
ture [1,3,5–7,17]. Figure 11 shows thermal entanglement of
formation as the function of inverse temperature (in logarith-
mic scale). One could see that in the high-temperature regime
the fermion of interest is entangled with the collective mode
of the mesoscopic bath. This is also confirmed by the high-
temperature expansion of the expression for the entanglement
of formation Eq. (70). In the low-temperature case, the sud-
den death of entanglement is observed [57]. The analytical
calculations of the zero-temperature thermal entanglement
of formation predict nonzero quantum correlations for the
ωε < g2N and zero entanglement otherwise Eq. (75). These
predictions are in perfect agreement with cases depicted in
Fig. 11. Thus, we have been able to link the cause of non-
Markovian behavior to fluctuations in entanglement (quantum
correlations) which is strongly dependent on the coupling
strength. It also becomes strongly dependent on temperature
in the thermal state. In the future we plan to take into ac-
count spin-spin interactions and consider more general initial
conditions.

ACKNOWLEDGMENTS

This work is based upon research supported by the
South African Research Chair Initiative of the Department
of Science and Technology and National Research Founda-
tion of South Africa. I.S. acknowledge support in part by
the National Research Foundation of South Africa (Grant
No. 119345).

052102-12



DYNAMICS AND THERMALIZATION IN A SIMPLE … PHYSICAL REVIEW A 99, 052102 (2019)

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[2] S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K. Pati,
Phys. Rev. A 95, 012122 (2017).

[3] Z. Man, N. B. An, and Y. Xia, Opt. Express 23, 5763 (2015).
[4] J. Cheng, W. Z. Zhang, Y. Han, and L. Zhou, Phys. Rev. A 91,

022328 (2015).
[5] T. J. Barreiro, Nat. Phys. 7, 927 (2011).
[6] S. Ajisaka, F. Barra, C. Mejía-Monasterio, and T. Prosen,

Phys. Rev. B 86, 125111 (2012).
[7] D. S. Kosov, T. Prosen, and B. Žunkovič, J. Phys.: Condens.
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