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Zero supermode-based multipartite entanglement in χ(2) nonlinear waveguide arrays
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We show that arrays of χ (2) nonlinear waveguides in the second-harmonic generation regime are a promising
source of continuous-variable entanglement. We indeed demonstrate analytically that optical arrays with an
odd number of waveguides injected with the zero-eigenvalue fundamental supermode entangle this fundamental
supermode with a collective harmonic field. Moreover, the fundamental individual modes are multipartite
entangled and their entanglement grows with propagation length. The device is scalable, robust to losses, does
not rely on specific values of nonlinearity and coupling, and is easily realized with current technology. It thus
stands as an unprecedented candidate for generation of multipartite continuous-variable entanglement for optical
quantum information processing.
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Einstein, Podolsky, and Rosen’s (EPR) celebrated
gedanken experiment focused on the nonlocality of quantum
mechanics by considering the case of two spatially separated
quantum particles that both have maximally correlated
momenta and maximally anticorrelated positions [1]. Besides
the philosophical implications of that work, it gave rise to the
concept of quantum entanglement, which underpins current
quantum technology [2]. Remarkably, that paradigmatic
example dealt with continuous variables (CVs), i.e., variables
that can take a continuous spectrum of eigenvalues [3].
Nowadays, CV-based quantum information can be encoded
in the fluctuations of the optical-field quadratures and
entanglement has extended from bipartite to multipartite
systems. Recent table-top experiments have demonstrated
multipartite CV entanglement in the spatial, frequency, and
temporal domains [4–6]. However, scalability, stability, and
transfer to real technologies are milestones far from feasible
with bulk-optics systems. Integrated optics is a leading
substrate technology for real-world light-based quantum
information technologies: miniaturization, subwavelength
stability, and generation, manipulation, and detection of
entanglement have recently become available on chip in the
discrete variable regime where individual photons are usually
considered [7]. In the CV regime, bipartite entanglement has
very recently been demonstrated on chip in a nonscalable
scheme [8]. In this Rapid Communication we present a simple
and practical protocol for the generation of spatial multipartite
CV entangled states of light on chip. Bipartite and tripartite
CV entanglement has been predicted in arrays of nonlinear
waveguides in the spontaneous and stimulated parametric
downconversion regime [9]. However, in that configuration
tripartite entanglement is only produced for critical values
of the involved parameters. We consider here the case
of a χ (2) nonlinear waveguide array with an odd number
of waveguides in the second-harmonic generation (SHG)
regime. We demonstrate that the zero-eigenvalue fundamental
supermode of the equivalent linear array is squeezed along
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propagation leading to multipartite entanglement between
the individual modes. We have found analytical solutions
to this system and our method is scalable for any odd
number of waveguides. The scheme relies on coupling and
nonlinearity within the array but not on the specific values
of the parameters, which makes it all the more robust and
attractive. The necessary technology to implement this
protocol is currently available: discrete quadratic solitons,
competing nonlinearities, and nonclassical biphoton states
have been demonstrated in periodically poled lithium niobate
(PPLN) arrays in the last few years [10–12]. We point out
that this work presents a rigorous demonstration of (i) an
analytical dynamical solution for SHG in waveguide arrays
and (ii) scalable integrated CV multipartite entanglement.

We consider an array of χ (2) nonlinear waveguides,
sketched in Fig. 1, made of an odd number N of identical χ (2)

waveguides. These nonlinear waveguides can be created in
noncentrosymmetric materials such as, for instance, lithium
niobate or potassium tytanyl phosphate through proton or ion
exchange, diffusion, and etching. The strong confinement of
the propagating fields produces a high nonlinear interaction
[13]. In each waveguide, an input fundamental field (FF) at
frequency ω f is up-converted into a second-harmonic field
(SHF) at frequency ωh. We assume that the phase-matching
condition �κ ≡ κ (ωh) − 2κ (ω f ) = 0, with κ (ω f ,h) the
propagation constant at frequency ω f ,h, is fulfilled only in the
coupling zone. The energy of the propagating fundamental
modes is exchanged between the coupled waveguides through
evanescent waves, whereas the interplay of the generated
second-harmonic waves is negligible for the considered
propagation lengths due to their high confinement into
the guiding region. We consider a homogeneous nonlinear
array and continuous-wave propagating fields. The physical
processes involved are described by the following system of
equations [14]:

dÂ f , j

dz
= iC(Â f , j−1 + Â f , j+1) + 2igÂh, j Â

†
f , j,

dÂh, j

dz
= igÂ2

f , j, (1)
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FIG. 1. Sketch of the zero-eigenvalue fundamental supermode
propagation in a quadratic nonlinear waveguide array with an odd
number of waveguides; seven in this example. The numbers on the
left indicate the relative magnitude of the input field amplitudes. In
red are the fundamental modes (FF). In blue are the harmonic gener-
ated modes (SHF). The nodes are the individual fundamental modes;
the vertices stand for entanglement. The maximally connected square
indicates genuine four-partite entanglement.

where Â f ,0 = 0 and Â f ,N+1 = 0, and j = 1, . . . , N is
the individual mode index. Â f (h), j ≡ Â j (z, ω f (h) ) are
monochromatic slowly-varying amplitude annihilation
operators of fundamental ( f ) and second-harmonic (h)
photons corresponding to the jth waveguide where
[Â j (z, ω), Â†

j′ (z
′, ω′)] = δ(z − z′)δ(ω − ω′)δ j, j′ . g is the

nonlinear parameter proportional to χ (2) and the overlap of the
FF and SHF in each waveguide, C the linear coupling constant
between neighboring waveguides assumed constant, and z is
the coordinate corresponding to the direction of propagation.
C and g are taken as real without loss of generality.

To solve the system of equations (1), we apply the lin-
earization method by means of quantum-fluctuation opera-
tors â f (h), j = Â f (h), j − α f (h), j with α f (h), j the mean values
corresponding to the input operators Â f (h), j [15]. These new
operators exhibit zero mean values and the same variances
as the input ones. It is natural to use here the fundamental
supermode (normal) basis which diagonalizes the linear part
of Eqs. (1). This change of basis corresponds to the trans-
formation â f = Mb̂ f , where â f = (â f ,1, . . . , â f ,N )T and b̂ f =
(b̂ f ,1, . . . , b̂ f ,N )T are annihilation operator column vectors in
the individual and supermode basis, respectively, and M is the
transformation matrix with elements given by [16]

Mj,k = sin
( jkπ

2l

)
√

l
, (2)

with l = (N + 1)/2 and k = 1, . . . , N is the supermode index.
This is a real orthogonal matrix M = M−1 that operates on
quantum operators but also on the classical amplitudes. The
propagation constants of the slowly varying supermodes are
the eigenvalues of M: λk = 2C cos(kπ/2l ). Notably when
k = l, λl = 0. Thus, the lth supermode presents a zero eigen-
value and does not undergo discrete diffraction [17]. This
supermode only appears in arrays with an odd number of
waveguides [18].

Under the linearization approximation, the propagation
of the classical fields α f (h), j is firstly solved to obtain the
evolution of the quantum fluctuations. Here, we use the fun-
damental supermode basis to find the solutions of the classical
propagation equations for the amplitudes αh, j and β f ,k , where
β f ,k is the classical mean value of the kth supermode. In the
SHG regime, the harmonics initial conditions are αh, j (0) = 0.
We find that under the initial condition β f ,k (0) = δk,l , i.e.,
pumping with the fundamental lth supermode of zero eigen-

value, the propagation equations (1) are equivalent to those
related to a single waveguide given by (see Supplemental
Material [19])

dβ f ,l

dz
= 2igαh,lβ

∗
f ,l ,

dαh,2 j−1

dz
= dαh,l

dz
= ig

l
β2

f ,l , (3)

where we have used the fact that harmonic fields are only gen-
erated in the odd waveguides and all have the same evolution.
Notably, the supermode β f ,l remains phase matched along
propagation. Indeed, since the amplitudes of the nonzero input
supermode components are equal, the amplitudes of the har-
monic fields generated in the odd waveguides are also equal,
and fundamental and harmonic fields remain phase-matched.
The other supermodes β f ,m where m �= l produce nonlinear-
based detrimental phases which lead to supermodes coupling
and make the system of equations (1) nonintegrable in general
[20]. In contrast, β f ,l does not produce any nonlinear-based
cascade phase [21,22]. Below we present analytical dynamical
solutions for a system composed of an arbitrary odd number N
of coupled nonlinear waveguides in the SHG regime. This is
our first result. Note that the appropriate initial conditions can
be realized by means of off-the-shelf elements such as fiber
attenuators, phase shifters, and V-groove fiber arrays.

In order to solve Eqs. (3), we use dimensionless am-
plitudes and phases related to the classical fields through
β f ,l = √

P u f exp (i θ f ), αh,l = √
P/2l uh exp (i θh), with P ≡

|β f ,l (0)|2 = |β f ,l |2 + 2l|αh,l |2 the total energy in the device.
We introduce the energy per waveguide Pl as Pl ≡ P/l , and
the normalized propagation coordinate ζ = √

2Pl gz, which is
defined only in the coupling region where phase matching is
guaranteed. Applying this change of variables into Eqs. (3),
we obtain for the modes propagating in the nonlinear array

du f

dζ
= −u f uh sin(�θ ),

dθ f

dζ
= uh cos(�θ ),

duh

dζ
= u2

f sin(�θ ),
dθh

dζ
= u2

f

uh
cos(�θ ), (4)

with �θ ≡ θh − 2θ f . This system has the well-known solu-
tions given by [23]

u f (ζ ) = sech(ζ ), θ f (ζ ) = 0,

uh(ζ ) = tanh(ζ ), θh(ζ ) = π/2, (5)

where we have chosen θ f (0) = 0 as global input phase of the
supermode. Figure 2 shows dimensionless classical powers
for the fundamental lth supermode (blue, solid) and one har-
monic mode (yellow, dotted). The energy efficiently transfers
from the fundamental supermode to the harmonic fields and
full SHG conversion is obtained for long ζ . Energy conserva-
tion u2

f + u2
h = 1 is satisfied all along the propagation.

The solutions of the classical system of equations are
then fed into first-order equations in the quantum fluctuations
keeping only the linear terms. We are mainly interested in
the CV quantum noise features of the fundamental modes.
Thus we study the evolution of the amplitude (and phase)
superquadratures related to the fundamental lth supermode
X̂ s

l (Ŷ s
l ) = ∑l

2 j−1=1 Ml,2 j−1X̂ f
2 j−1(Ŷ f

2 j−1), where [X̂ s
l , Ŷ s

l ] = i.
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FIG. 2. Classical fields power propagation and superquadratures
squeezing after injection of the lth fundamental supermode. Dimen-
sionless fundamental supermode (blue, solid) and second-harmonic
fields (yellow, dotted) powers. Fundamental amplitude superquadra-
ture squeezing (blue, dashed) and harmonic phase superquadrature
squeezing (yellow, dot-dashed). The squeezing plots are normalized
to the shot noise. ζ is the normalized propagation coordinate.

The harmonic fields do not have supermodes. However, we
use a linear combination of individual harmonic quadra-
tures, or effective harmonic superquadratures, X̂ h(Ŷ h) =
(1/

√
l )

∑l
2 j−1=1 X̂ h

2 j−1(Ŷ h
2 j−1) [24], where [X̂ h, Ŷ h] = i, to

capture the propagation of the quantum field quadratures in
a simple set of equations

dX̂ s
l

dζ
= − tanh(ζ )X̂ s

l −
√

2 sech(ζ )Ŷ h,

dŶ s
l

dζ
= tanh(ζ )Ŷ s

l +
√

2 sech(ζ )X̂ h,

(6)
dX̂ h

dζ
= −

√
2 sech(ζ )Ŷ s

l ,

dŶ h

dζ
=

√
2 sech(ζ )X̂ s

l .

The solution of this system of equations is given by ξ̂ s(ζ ) =
Us(ζ ) ξ̂ s(0), where ξ̂ s = (X̂ s

l , Ŷ s
l , X̂ h, Ŷ h)T stands for the su-

perquadratures and the evolution operator is given by

Us(ζ ) =

⎛
⎜⎝

sx
s 0 0 sy

h
0 sy

s sx
h 0

0 hy
s hx

h 0
hx

s 0 0 hy
h

⎞
⎟⎠, (7)

with sx
s = sech(ζ )[1 − ζ tanh(ζ )], sy

s = sech(ζ ), sx
h =

[sinh(ζ ) + ζ sech(ζ )]/
√

2, sy
h = −√

2 tanh(ζ ) sech(ζ ), hx
s =

[tanh(ζ ) + ζ sech2(ζ )]/
√

2, hy
s = −√

2 tanh(ζ ), hx
h = 1 −

ζ tanh(ζ ), and hy
h = sech2(ζ ). The amplitude (phase)

fundamental superquadrature couples only to the phase
(amplitude) harmonic superquadrature. We obtain in our
multimode system a result similar to what was obtained in
Ref. [15] for one fundamental mode but we use collective
quadratures [25].

We now consider the quantum properties of this system.
We deal with vacuum, coherent, or squeezed states. Thus,
experimentally, the most interesting observables for these
Gaussian states in terms of their CV features are the second-
order moments of the quadrature operators, which are the ele-
ments of the covariance matrix Ṽ: Ṽ (ξi, ξ j ) = 1

2 (〈�ξ̂i�ξ̂ j〉 +
〈�ξ̂ j�ξ̂i〉), with �ξ̂ ≡ ξ̂ − 〈ξ̂ 〉 [26]. Ṽ is a real symmetric
matrix that contains all the useful information about quantum
field correlations and it can be efficiently measured by means
of homodyne detection [27] or quasiresonant analysis cavities
in the case of bright beams [28]. The covariance matrix at any
normalized propagation plane ζ for Gaussian input fields is
given in general by

Ṽ(ζ ) = (1/2)Ũ(ζ ) ŨT (ζ ), (8)

with 1/2 the shot noise in our convention and Ũ the evolution
operator in a given basis, either individual or supermodes.

Applying Eq. (7) in Eq. (8) we obtain analytical solutions
Vs in the superquadratures basis ξ s (see Supplemental Ma-
terial). Figure 2 displays the evolution of normalized funda-
mental amplitude superquadrature squeezing (blue, dashed)
and harmonic phase superquadrature squeezing (yellow, dot-
dashed). As ζ increases, the supermode amplitude squeezing
is unlimited, whereas the maximum harmonic phase squeez-
ing is limited to 50% [15]. Remarkably, this solution leads
to our second result: the fundamental supermode noise is
collectively squeezed along propagation in the waveguide
array for any odd number of waveguides. It should be noted
here that the phase quadrature fluctuations of the fundamental
supermode diverge exponentially limiting the range of va-
lidity of the linearization approximation. We have checked
that for typical total powers Pl of hundreds of milliwatts
at telecom wavelengths, the linearization is safe for ζ � 6
[29].

Once Ṽ is known, the amount of CV entanglement in
bipartite splittings of the system is easily quantified through
the Peres-Horodecki-Simon criterion, which establishes that
a quantum state is entangled if the partially transposed
(PT) density matrix is nonpositive. In terms of continu-
ous variables, the entanglement criterion for single-mode
bipartite splittings is ν− < 1/2, with ν− the minimum sym-
plectic eigenvalue of the PT-covariance matrix with respect
to a subsystem j, ṼTj [30]. The closer the value of ν−
to zero, the higher the entanglement between two optical
modes (collective or individual). A well-known entangle-
ment quantifier is the logarithmic negativity EN , which is
easily computed from the minimum symplectic eigenvalue
as EN = max[0,− log2 2ν−] [31]. EN > 0 indicates entangle-
ment. Moreover, EN is a bound of the entanglement of forma-
tion EF , an entanglement witness with appealing properties
from an information-theoretic point of view [32]. Figure 3
displays the evolution of two-color entanglement between
the fundamental supermode and the collective harmonic field
[24]. The figure shows that entanglement exists at every ζ

and increases with distance and power. The entanglement
is directly related to the partial purities of the subsystems
[33]. For the fundamental supermode, the partial purity μ f

is 0.97 at ζ = 1 and decreases to ≈0.77 as ζ → 2 (see Sup-
plemental Material), such that it keeps a high value for typical
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FIG. 3. Two-color bipartite entanglement. Fundamental-
harmonic superquadratures entanglement (blue, solid). ν− < 1/2
indicates entanglement. Inset: EN > 0 indicates entanglement. ζ is
the normalized propagation coordinate.

PPLN lengths or power [34]. Notably, no array parameter—-
coupling or length—has to be finely set in order to obtain ev-
ergrowing entanglement. However, the measurement of two-
color entanglement is experimentally demanding [28]. The
measurement of individual FF quadratures only is best suited
here, since the same laser can be used in both generation and
detection stages simplifying setups and avoiding problems of
mode matching.

We now derive and compute what kind of CV quantum
correlations are created intrasupermode, i.e., between the
fundamental modes in the individual basis within the lth su-
permode that steadily grows, squeezes, and entangles with the
generated harmonics. To that end we trace out the harmonic-
mode subsystem and apply the following transformation to the
superquadrature covariance matrix:

V(ζ ) = Msy
(

1
2 1k �=l

f

)
Vs

f (ζ )(Msy)T , (9)

where Msy is the symplectic counterpart of the supermode
transformation matrix of Eq. (2) [35], 1

2 1k �=l
f stands for the shot

noise in the supermodes k �= l , and Vs
f is the covariance ma-

trix corresponding to the fundamental supermode subsystem.
This covariance matrix contains full CV quantum noise infor-
mation of the system in the basis of the individual modes ξ̂ =
(X̂ f

1 , Ŷ f
1 , . . . , X̂ f

N , Ŷ f
N )T (see Supplemental Material). Figure 4

displays the squeezing and entanglement achieved on the in-
dividual fundamental modes along propagation in waveguide
arrays with N = 3, 5, 7, and 9 waveguides. More precisely,
we obtain a steadily-growing amplitude quadrature squeezing
of each of the FFs [Fig. 4(a)] and entanglement between any
pair of single-mode propagating FFs [Fig. 4(b)] for typical
PPLN lengths or power (ζ < 2). The generated squeezing
in the supermode is equally shared between the parties and
mixed with the shot noise of the even noninjected channels.
This limits the maximum amount of squeezing per party to
(see Supplemental Material)

2V (X f , X f ) → l − 1

l
= N − 1

N + 1
< 1 ∀ odd N. (10)

FIG. 4. (a) Fundamental modes amplitude squeezing in waveg-
uide arrays with N = 1 (solid), 3 (dashed), 5 (dotted), 7 (dot-dashed),
and 9 (large dashed). Normalized shot noise in solid gray. (b) Bipar-
tite entanglement between fundamental individual modes in waveg-
uide arrays with N = 3 (dashed), 5 (dotted), 7 (dot-dashed), and
9 (large dashed). ν− < 1/2 indicates entanglement. Inset: EN > 0
indicates entanglement. ζ is the normalized propagation coordinate.

Thus for a large number of propagating modes the squeezing
approaches the shot noise but it is always below it. The
entanglement is equal between any pair of fundamental modes
propagating in the array. Maximum entanglement is reached
for N = 3 since the squeezing is shared only between the
two propagating modes or l = 2. As the number of parties
increases, the available bipartite entanglement is also limited
and gets lower. Bipartite entanglement saturates at long dis-
tances (or high power) for N > 3 due to the presence of extra
noise in the even channels as (see Supplemental Material)

ν− → 1

2

√
l − 2

l
= 1

2

√
N − 3

N + 1
<

1

2
,

EN → log2

(√
l

l − 2

)
= log2

(√
N+1

N−3

)
> 0 ∀ odd N � 3.

Notably, bipartite entanglement is always present indepen-
dently of the number N of waveguides in the array.

Measuring multipartite full inseparability in CV systems
requires the simultaneous fulfillment of a set of conditions
which leads to genuine multipartite entanglement when pure
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FIG. 5. Multipartite entanglement. Optimized van Loock–
Furusawa (VLF) inequalities. Simultaneous values under the thresh-
old value VLF = 2 (gray, solid) imply CV tripartite entanglement
(two degenerate inequalities, N = 5, dotted), quadripartite entangle-
ment (three degenerate inequalities, N = 7, dot-dashed), and pen-
tapartite entanglement (four degenerate inequalities, N = 9, large
dashed). We also show bipartite entanglement for comparison (N =
3, dashed). ζ is the normalized propagation coordinate.

states are involved [36,37]. This criterion, known as van
Loock–Furusawa (VLF) inequalities, can be easily calculated
from the elements of the covariance matrix V. Figure 5 shows
two, three, and four degenerate inequalities for arrays with,
respectively, three (N = 5), four (N = 7), and five (N = 9)
propagating modes. We also show bipartite entanglement
(N = 3) for comparison. The optimized violation (VLF < 2
in our notation) of two, three, and four inequalities [Eqs. (43)
of Ref. [36]) guarantees full inseparability. Since we deal with
pure states at the fundamental frequency level (mixed with
the collective harmonic mode), the propagating fundamental
modes are genuinely multipartite entangled in both cases.
The violations are degenerate for each N and saturate at (see
Supplemental Material)

VLF = 4V (X f , X f ) → 2
l − 1

l
= 2

N − 1

N + 1
< 2 ∀ odd N,

for large ζ . Thus, the multipartite entanglement is directly
related to the squeezing available per mode through Eq. (10).
Weakening of quantum correlations as the number of modes
increases due to additional vacuum contributions is also found
in bulk-optics approaches [4] and, due to practical reasons,
the number of vacuum modes is usually much larger than
the number of squeezed inputs, preventing scalability. Note
that in the case of N = 3 waveguides the inequality remains
above the EPR steering threshold VLF = 1 [37] and perfect
entanglement VLF → 0 is never obtained. The VLF criterion
thus detects the presence of vacuum in the central waveguide,
whereas the minimum PT-symplectic eigenvalue ν− does not.
Remarkably, the FFs exhibit multipartite entanglement at any
ζ independently of the number of propagating modes and
the number of entangled modes scales with l , i.e., linearly
with the number of waveguides. The multimode entanglement
can be improved applying an off-chip distillation protocol

by means of non-Gaussian operations [38]. Additionally,
this approach minimizes the resources necessary to gener-
ate multipartite entanglement in, for instance, telecommu-
nication bands since entanglement is created at the input
wavelength [22].

Finally, we conclude with a few comments about the feasi-
bility and the range of application of this method. The influ-
ence of losses on the CV entanglement can be easily included
in our analysis by inserting fictitious beam splitters with a
given effective transmittivity [22]. Our simulations indicate
that propagation losses have a small impact on squeezing and
entanglement considering typical values in PPLN waveguides
(see Supplemental Material) [8]. We have found that the effect
of losses is alleviated as the number of waveguides increases.
A drop of ≈1% in squeezing is obtained at ζ = 1 for N =
1, whereas for N = 9 this detrimental effect decreases to
≈0.3%. We also emphasize that for state-of-the-art figures
in PPLN waveguides, such as g = 25 × 10−4 mm−1 mW−1/2

and Pl = 200 mW [8,34], ζ = 1 is equivalent to z = 2 cm.
Our method can thus be implemented with current technology.
Moreover, a nonlinear efficiency more than an order of mag-
nitude higher is expected in nanophotonic PPLN waveguides
[39,40].

We have found an analytical dynamical solution for
quadratic nonlinear waveguide arrays with an odd number
of waveguides in the SHG regime. We have demonstrated
that this device is a versatile and efficient source of CV
entanglement. This configuration is scalable to any dimen-
sion, relies on coupling and nonlinearity within the array but
not on the specific values of the parameters, it is robust to
losses, and the present technology is ready to implement it.
Remarkably, our protocol can be extended to other arrays
supporting homogeneous zero-eigenvalue supermodes where
phase matching is preserved along propagation. This work
may open new avenues in the generation of multipartite en-
tangled states through supermode-supporting devices such as
multicore fibers and two- or three-dimensional waveguiding
structures in optics or Fermi-resonance interface modes in
solid-state physics [20]. To conclude, we would like to point
out that this is the first full demonstration of CV multipartite
entanglement in waveguide arrays. We have found an ana-
lytical solution in a usually nonanalytical framework. The
obtained physical insight on nonlinear waveguides can now be
put to good use: to optimize numerically input configurations
maximizing squeezing and entanglement by preventing the
mixing with the vacuum modes. In a forthcoming paper
we will extend this analysis to the spontaneous parametric
downconversion regime where careful pump shaping is re-
quired to select the desired set of generated fundamental
supermodes.
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14-CE26-0038), the Paris Île-de-France region in the frame-
work of DIM SIRTEQ through the project ENCORE, and
the Investissements d’Avenir program (Labex NanoSaclay,
reference ANR-10-LABX-0035).
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