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We present high-precision calculations of local Lorentz invariance (LLI) violating parameters of the
3d 2D3/2;5/2 states in Ca+. We have employed three variants of the relativistic coupled-cluster (RCC) theory
to determine these coefficients by gradually including electron correlation effects through the single, double, and
triple excitation determinants from the Dirac-Hartree-Fock wave function. A precise estimate of the energy shift
due to LLI violation depends on accurate evaluations of the expectation values of the square of the momentum
operator (〈p2〉) and a second rank tensor (〈T (2)

0 〉). It is found that the 〈T (2)
0 〉 values converge smoothly with the

systematic inclusion of higher-order correlation effects in an expectation value evaluation approach, however,
that is not the case for 〈p2〉. Similar trends were also observed in the finite-field approach. To circumvent these
problems, we determine 〈p2〉 values very precisely by developing and applying an analytic gradient approach in
the RCC framework. Corrections due to the Breit and quantum electrodynamics interactions are also estimated.
Further, these calculations are validated by evaluating the energies and the quadrupole moments of the above
states at different levels of approximations.
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Local Lorentz symmetry invariance (LLI) and Einstein
equivalence principle (EEP) are two very fundamental re-
quirements to validate the standard model (SM) of particle
physics and general theory of relativity [1–4]. It is believed
that these fundamental theories are valid only at much larger
than Planck scales, but they can break at very high energy
(∼1019 GeV) or due to spontaneous symmetry breaking [5–7].
Breaking of LLI also implies violation of combined charge
conjugation, parity, and time-reversal (CPT) symmetries in
a local quantum-field theory [5,8]. Probing such violation
can validate models that are attempting to unify gravity with
the SM [9]. Therefore, testing invariance of these theories
quantitatively are now of general interest. Present accelerator
facilities are incapable of testing physics at the order of
1019 GeV energy. Therefore, by combining high-precision
data from table-top low-energy experiments with accurate
quantum mechanical calculations one can infer deviations
from known physics. Such departures can validate plausible
new physics by relating them with relics from the Planck
scale [1,7]. There has been widespread search for LLI and
EEP violating physics in the last two decades but without
unambiguous signature thus far. One of the most well-known
tests of this type is Michelson-Morley (MM) like experi-
ments to verify the isotropy of the speed of light [10,11].
In an atomic system, LLI should ensure that kinetic energy
of an electron must be independent of the direction of its
velocity.

In a recent work [12], violation of LLI for electrons is
demonstrated by performing an analog of a MM experiment
in the singly charged calcium ion (Ca+). In this experi-
ment, anisotropic electron momentum distributions in the
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manifolds of the 3d 2D5/2 state of 40Ca+ were interfered
by trapping a pair of ions in the Paul trap. The quantiza-
tion axis was defined by applying a static magnetic field
and interference was created in the Ramsey-type interfero-
metric scheme by changing the direction of the magnetic
field with respect to location of the sun. The energy dif-
ference between the MJ = ±5/2 and MJ = ±1/2 sublevels
of the 3d 2D5/2 state was measured by creating a product
state |�P〉 = 1

2 [| − 1/2〉 + | − 5/2〉] ⊗ [| + 1/2〉 + | + 5/2〉]
after applying π/2- and π - pulse lasers to the 4s 2S1/2 −
3d 2D5/2 transition. Under common noise induced by a fluc-
tuating magnetic field, this product state was transformed
to a mixed state |�R〉 = 1

2 [| − 5/2,+5/2〉 + | − 1/2,+1/2〉]
with 50% probability. Similarly, a mirror state |�L〉 =
1
2 [| + 5/2,−5/2〉 + | + 1/2,−1/2〉] was created to measure
the average frequency difference between the time evolution
of these states. Measurements were performed for about 95
ms to suppress the systematics due to gradient of external
magnetic fields. Repeating the experiment for about 23 h,
a sensitivity of the oscillation frequency of 11 mHz was
observed. This was then attributed to residual variation of
the energy correlated with Earth’s rotation to violation of
LLI. To infer limits on various parameters describing LLI
violation, the measured frequency was combined with the
corresponding electronic calculations. In Ref. [12], theoretical
results for both the 3d 2D3/2;5/2 states of Ca+ were obtained
by employing a variety of many-body methods including
relativistic coupled-cluster (RCC) theory. Large discrepancies
among these calculations were found and the final values
were reported with relatively large error bars. In this Rapid
Communication, we analyze these calculations further by
accounting for higher-order corrections and adopting different
procedures in the RCC theory to appraise limits on the LLI
violating parameters scrupulously.
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The electronic quantum electrodynamics (QED) La-
grangian, in a coordinate system in which a hypothetical LLI
violation in light is manifested, is given by [8,13]

L = 1
2 ιψ̄e(γν + c′

μνγ
μ)

←→
D νψe − meψ̄eψe, (1)

where ψe is the Dirac spinor for an electron, me is electron
mass, γ are Dirac matrices, ψ̄e

←→
D νψe = ψ̄eDνψe − ψeDνψ̄e

with the covariant derivative Dν , and c′
μν is a frame-dependent

dimensionless matrix involving even and odd components
with μ, ν = 0, 1, 2, 3 being the space-time coordinates. The
c′
μν = cμν + kμν/2 matrix actually carries LLI violation infor-

mation for both the electron (denoted by cμν component) and
photon (denoted by kμν component). In the Ca+ experiment,
c′
μν was specified in the sun-centered celestial-equatorial

frame (SCCEF). The time-dependent values of this tensor
can transform from SCCEF to the local laboratory frame on
Earth due to its rotation. Hence, they can vary in time when
measurements are performed in the laboratory. In an atomic
system, this can give rise to an interaction Hamiltonian for a
bound electron with momentum 	pe [14,15] ,

HLLI = −�L
	p2

e

2me
− 1

6me
C(2)

0 T (2)
0 , (2)

where �L = C(0)
0 − 2U

3c2 c00 for speed of light c, (2U/3c2)c00

representing the gravitational redshift anomaly for the Newto-
nian potential U , and C(0)

0 = c00 + 2
3 (c11 + c22 + c33); C(2)

0 =
c11 + c22 − 2c33, and T (2)

0 = cγ 0(γ j p j − 3γ 3 p3). The first-
order energy shift due to the above Hamiltonian is given by
δE (1) = 〈HLLI〉. By combining the measured value of δE (1)

with atomic calculations of 〈 	p2
e〉 and 〈T (2)

0 〉 in a given state, it
is possible to infer the LLI violating C(0)

0 and C(2)
0 parameters.

These two parameters can be deduced by determining δE (1)

values at least either in two independent atomic states or
differential shifts between two atomic transitions.

The coupled-cluster theory is one of the leading quantum
many-body methods, referred to as the gold standard for treat-
ing electron correlation, and has been applied to the atoms,
molecules, condensed matter systems, and nuclei [16–18].
Thus, it can be anticipated that 〈 	p2

e〉 and 〈T (2)
0 〉 values can be

estimated precisely using RCC theory. Besides, it was demon-
strated recently by employing RCC theory at various levels of
approximation that trends of electron correlation effects vary
diversely in the determination of properties having different
radial and angular factor dependencies [19]. Therefore, it is
necessary to verify convergence in the calculation of any
property with the inclusion of higher-order effects to gauge its
accuracy. The exact wave functions of the 3d 2D3/2;5/2 states
in Ca+ can be expressed in the RCC theory as (e.g., see [19])

|�v〉 = eT {1 + Sv}|
v〉, (3)

where |
v〉 = a+
v |
0〉 with the Dirac-Hartree-Fock (DHF)

wave function |
0〉 of the Ca2+ ground-state configuration
and the corresponding valence orbital v = 3d3/2;5/2. In the
above expression, T is the RCC excitation operator embody-
ing electron correlation effects from |
0〉 and the Sv operator
incorporates core-valence and valence electron correlation
effects from |
v〉. To demonstrate the role of electron cor-
relation effects for accurate evaluations of 〈 	p2

e〉 and 〈T (2)
0 〉,

we want to give results at various levels of approximation in

the RCC theory, as described below, and compare them with
the values obtained using the DHF method and the second-
order relativistic many-body perturbation theory [RMBPT(2)
method].

Excitation levels by the RCC operators are denoted by

T = T1 + T2 + · · · + Tn, (4)

and

Sv = S1v + S2v + · · · + Snv, (5)

where subscript k = 1, 2, . . . n stands for level of excitation
with n = 18 indicating number of core electrons. Due to
computational challenges, RCC theory is often approximated
to the dominantly contributing single and double excitations
(RCCSD method). With the availability of modern supercom-
puters, it has become possible to apply RCC theory with
single, double, and triple excitations (RCCSDT method) and
occasionally up to quadruple and pentuple excitations by
freezing low-lying core orbitals. Here, we consider up to the
RCCSDT method to demonstrate convergence in the results
by exciting all the core electrons. We also present results only
by considering the linear terms in the RCCSD method (de-
noted by RLCCSD method) to highlight contributions due to
the nonlinear terms. Similarly, we give results by suppressing
T3 but including only S3v in the RCCSDT method (referred to
as the RCCSDTv method) to show importance of correlation
effects through both the T3 and S3v operators. Amplitudes of
these RCC operators, and energies are obtained by solving

〈

L

0

∣∣H̄at
N |
0〉 = δL,0�E0, (6)

and
〈

L

v

∣∣H̄at
N {1 + Sv}|
v〉 = �Ev

〈

L

v

∣∣{δL,0 + Sv}|
v〉, (7)

with H̄at
N = e−T Hat

N eT for the normal ordered atomic Hamil-
tonian Hat

N , superscript L indicating Lth excited determinant,
�E0 the correlation energy of Ca2+, and �Ev the electron
affinity (EA) of the electron in the v orbital of Ca+. The
energies are determined by

�E0 = 〈
0|Hat
N |
0〉, (8)

and

�Ev = 〈
v|Hat
N {1 + Sv}|
v〉. (9)

In the RCCSD method, when partial valence triple excitations
are included through Eq. (9), we refer to it as the RCCSD(T)
method. After obtaining wave functions, we calculate expec-
tation value of an operator O as

< O >= 〈
v|{1 + S†
v}eT †

OeT {1 + Sv}|
v〉
〈
v|{1 + S†

v}eT † eT {1 + Sv}|
v〉
. (10)

In this expectation value evaluation (EVE) expression, both
eT †

OeT and eT †
eT contain finite terms in the RLCCSD method

but they are nonterminating when all nonlinear terms are
included in the RCC theory. To account for contributions that
are significant from these nonterminating series, we have used
the generalized Wick’s theorem to divide them into effective
one-body, two-body, and three-body terms in order to compute
both the nonterminating series systematically as described
in [20]. We also calculate the above expression retaining
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TABLE I. The 〈|p2|〉 values and 〈||T (2)||〉 reduced matrix el-
ements in atomic units from the EVE approach of RCC theory.
Corrections from the Breit and lower-order QED interactions are
added subsequently. The results for 〈|p2|〉 show peculiar trends, but
the 〈||T (2)||〉 values converge after inclusion of triples. We have also
quoted values from different methods used in Ref. [12] and experi-
mental 〈|p2|〉 values as two times the EAs [22] in the nonrelativistic
limit of VT.

〈|p2|〉 〈||T (2)||〉 Reference

Method 3D3/2 3D5/2 3D3/2 3D5/2

DHF 3.050 3.039 5.454 7.116 This work
3.05 3.04 5.45 7.12 [12]

RMBPT(2) 1.279 0.794 7.052 9.092 This work
RPA 0.66 0.66 5.72 7.47 [12]
CI+SD 0.73 0.73 6.89 8.98 [12]
RLCCSD −0.037 −0.887 7.551 9.682 This work
All-order 0.83 0.83 7.09 9.25 [12]
RCCSD2 0.421 −0.298 7.295 9.375 This work
RCCSD 0.392 −0.311 6.956 8.878 This work
RCCSD(T) 0.389 −0.318 6.975 8.901 This work
RCCSDpT 0.244 −0.412 6.965 8.875 This work
RCCSDTv 0.065 −0.630 6.953 8.867 This work
RCCSDT 0.011 −0.787 6.961 8.879 This work

Relativistic corrections
+Breit 0.012 −0.786 6.966 8.889 This work
+QED 0.012 −0.786 6.967 8.890 This work

Final Unsure Unsure 6.97(5) 8.89(7) This work
0.75(9) 0.75(9) 7.09(12) 9.25(15) [12]

VT 0.748 0.748 [22]

only the terms that appear in the RLCCSD method but use
amplitudes from the RCCSD method (RCCSD2 method). This
can demonstrate roles of nonlinear terms in the determination
of wave functions. Again, we include contributions from the
valence triple excitations perturbatively in the above expres-
sion after evaluating wave functions using the RCCSD(T)
method (RCCSDpT method) to show differences in the results
due to inclusion of triple effects through the perturbative
approach and in the exact form in the RCCSDT method. It
is worth mentioning here that we compute these terms adopt-
ing exclusion-principle-violating (EPV) Goldstone diagrams
[21]. The unphysical contributions involved in this approach
can cancel out through the direct and exchange terms in the
exact formulation of RCC theory, but it can result in some
errors in an approximated method. Such errors can be mini-
mized by including higher-level terms. All the above exercises
to perform calculations at different levels of approximations
are intended to help us in a comprehensive understanding of
roles of electron correlation effects to explain the reasons for
discrepancies in results among various many-body methods.

In Table I, we present 〈 	p2
e〉 and 〈T (2)

0 〉 values of the
3d 2D3/2;5/2 states in Ca+ that are obtained by employing
the aforementioned RCC methods along with the results that
are reported in [12]. In the table, the methods from top to
bottom can be viewed as encompassing more physical effects
than the previous method. The results are also quoted after
adding corrections from the Breit interaction and QED effects

subsequently. In the earlier study [12], it was found that RPA
values are smaller than the All-order results. These All-order
values were obtained by employing RCC theory with the
similar approximation to our RLCCSD method (SD method)
but by including perturbative triples and scaling the dominant
terms of the higher-order RCC theory. A hybrid method of
configuration interaction and the SD (CI+SD) method was
also employed in that work giving intermediate values be-
tween the RPA and All-order calculations. In the above work,
the final values were given in atomic units (a.u.) as 〈 	p2

e〉 =
0.75(9) for both the states, and the reduced matrix elements as
〈3D3/2||T (2)

0 ||3D3/2〉 = 7.09(12) and 〈3D5/2||T (2)
0 ||3D5/2〉 =

9.25(15). The 〈 	p2
e〉 values were actually taken as twice the

EA from the National Institute of Science and Technology
(NIST) database [22] in the nonrelativistic limit of the Virial
Theorem (VT). Our RLCCSD and RCCSD2 results for 〈T (2)

0 〉
are found to be closer to the final values of Ref. [12], but
the 〈 	p2

e〉 values differ significantly. Further attempt to include
higher-order correlation effects through the nonlinear terms
in the RCCSD, RCCSDTv, and RCCSDT methods lower the
〈T (2)

0 〉 values in both the states but we find that the 〈 	p2
e〉 values

show peculiar trends. We ascribe this unusual behavior in
〈 	p2

e〉 to two reasons; first the correlation effects are found to
be very large (as seen from the difference between the DHF
and RCC results) and secondly, truncation in Eq. (10) may
cause instability in the calculations due to EVE diagrams. By
analyzing finite-size basis functions used in the calculations
and trends in the correlation effects from the RCCSD to
RCCSDT methods, we recommend the final values for 〈T (2)

0 〉
as 6.97(5) a.u. and 8.89(7) a.u. in the 3d 2D3/2 and 3d 2D5/2

states, respectively. They are accurate to within 1%, whereas
the EVE approach is unable to provide reliable results for 〈 	p2

e〉.
In an attempt to get 〈 	p2

e〉 reliably, we also used the finite-field
(FF) approach in which the effective Hamiltonian is consid-
ered as HN = Hat

N + λ 	p2
e for an arbitrary small perturbative

parameter λ and express the EA value obtained using this
effective Hamiltonian as

�Ev = �E (0)
v + λ�E (1)

v + O(λ)2. (11)

Hereafter superscripts (0) and (1) represent results from Hat
N

and its first-order correction, respectively. From the above
expression, we can get

〈 	p2
e

〉 ≡ �E (1)
v � ∂�Ev

∂λ

∣∣∣∣
λ=0

, (12)

by neglecting O(λ)2 contributions. The 〈 	p2
e〉 values obtained

from the FF approach with λ = 1.0 × 10−5 are given in
Table II for both the 3d 2D3/2 and 3d 2D5/2 states at different
levels of RCC theory along with the DHF and RMBPT(2)
methods. We observe that when triples are included in various
forms through the amplitude equations, the results dwindle
gradually. It should be noticed that O(λ)2 contributions are
being neglected to estimate the 〈 	p2

e〉 values. Given the fact
that this property shows strong correlation effects in the
EVE approach, neglecting higher-order corrections in the FF
approach may be leading to large uncertainties.

To circumvent the problems from the EVE and FF proce-
dures for reliable determination of 〈 	p2

e〉, we have developed
and applied the analytic gradient (AG) approach as discussed
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TABLE II. Comparison of the 〈|p2|〉 values in atomic units in
the FF and AG frameworks of the RCC theory at different levels of
approximation. Corrections from higher-order relativistic effects are
also quoted. As seen, FF values do not converge after inclusion of
triples while AG procedure offers converged values decisively in the
RCC theory.

FF approach AG approach

Method 3D3/2 3D5/2 3D3/2 3D5/2

DHF 0.646 0.645 3.050 3.039
RMBPT(2) 0.728 0.726 2.142 1.889
RLCCSD 0.741 0.739 0.591 0.589
RCCSD 0.725 0.723 0.785 0.779
RCCSD(T) 0.718 0.716 0.750 0.745
RCCSDTv 0.240 −0.009 0.677 0.673
RCCSDT 0.203 −0.035 0.658 0.656

Relativistic corrections
+Breit 0.205 −0.033 0.660 0.658
+QED 0.205 −0.033 0.661 0.658

Final Unsure Unsure 0.660(5) 0.660(5)

below. In this approach, we perturb the wave function and
energy explicitly due to 	p2

e as

|�v〉 = ∣∣� (0)
v

〉 + λ
∣∣� (1)

v

〉 + · · · , (13)

�Ev = �E (0)
v + λ�E (1)

v + · · · , (14)

and obtain 〈 	p2
e〉 ≡ �E (1)

v directly by solving
(
Hat

N − �E (0)
v

)∣∣� (1)
v

〉 = (
�E (1)

v − 	p2
e

)∣∣� (0)
v

〉
, (15)

where |� (1)
v 〉 is the first-order perturbed wave function to

|� (0)
v 〉. In the RCC theory, it yields

∣∣� (1)
v

〉 = eT (0)(
(1 + T (1) )S(0)

v + S(1)
v

)|
v〉. (16)

Amplitudes of the perturbed RCC operators are obtained by
solving the following equations:

〈

L

0

∣∣H̄at
N T (1) + 	̄p2|
0〉 = 0, (17)

and
〈

L

v

∣∣(H̄at
N − �E (0)

v

)
S(1)

v + (
H̄at

N T (1) + 	̄p2 − E (1)
v

)

×{
1 + S(0)

v

}|
v〉 = 0, (18)

where 	̄p2 = e−T (0) 	p2eT (0)
. It follows that

�E (1)
v = 〈
v|H̄at

N S(1)
v + (

H̄at
N T (1) + 	̄p2){1 + S(0)

v

}|
v〉. (19)

From a careful scrutiny, one can easily see that λ does not
appear anywhere in the evaluations of �E (1)

v and |� (1)
v 〉 in the

AG approach in contrast to the FF procedure. Moreover, all
the terms involved in the AG approach terminate. We have
given the 〈 	p2

e〉 values from this approach in Table II at different
approximations of the RCC theory including their DHF and
RMBPT(2) values. These calculations show convergence in
the values gradually in the inclusion of nonlinear terms both
in the RCCSD and RCCSDT methods. The reason for the
discrepancies between the results from the AG approach and
those that are inferred using VT (given in Table I) could

TABLE III. Demonstration of convergence of EA and � values
of the 3d 2D3/2;5/2 states in Ca+ using different approximations of
RCC theory compared to their available experimental values. It
clearly suggests the importance of including triples for studying
properties of the considered states.

Electron affinity (in cm−1) � value (in a.u.)

Method 3D3/2 3D5/2 3D3/2 3D5/2

DHF 72617.49 72593.39 1.712 2.451
RMBPT(2) 82128.31 82051.23 1.287 1.845
RLCCSD 83538.93 83448.59 1.243 1.782
RCCSD 81753.82 81670.99 1.305 1.870
RCCSD(T) 80863.66 80783.04 1.297 1.860
RCCSDTv 81885.55 81805.00 1.292 1.852
RCCSDT 81938.03 81860.75 1.290 1.847

Relativistic corrections
+Breit 81976.09 81914.00 1.281 1.844
+QED 81982.01 81919.47 1.280 1.843

Final 81982(150) 81919(150) 1.280(7) 1.843(7)
Experiment 82101.68 [22] 82040.99 [22] 1.83(1) [23]

be due to neglecting relativistic effects and assumption of
the isotropic nature of electronic orbitals by VT. The final
values are estimated as 0.660(5) a.u. for both the 3d 2D3/2 and
3d 2D5/2 states after including the Breit and QED corrections.
These are about 1% accurate, as compared to the previously
reported values with 12% uncertainty [12].

We also validate our calculations of 〈 	p2
e〉 and 〈T (2)

0 〉 by
reproducing some of the measured quantities employing the
above approximated RCC methods. For this purpose, we
determine EAs and electric quadrupole moments (�) of the
3d 2D3/2;5/2 states of Ca+. EAs are taken as input to obtain
wave functions in our RCC theory and, again, evaluation of
EAs depends on the accuracies of the 〈 	p2

e〉 values. Similarly,
we assess accuracies of 〈T (2)

0 〉 with that of � values as
both are described by rank-two operators. In Table III, we
have quoted the EA and � values from different many-body
methods and compared them with the available experimental
results [22,23]. We find quite a good agreement between our
calculations and experimental values. From the calculations,
it can be seen that the EAs improve drastically from the
RCCSD method to the RCCSDT method. In fact, we also
find significant improvement in the � values due to triples and
this is more precise than measurement. This implies inclusion
of triples is crucial for studying properties of the 3D3/2;5/2

states in Ca+. It now asserts the validity of our 〈 	p2
e〉 and

〈T (2)
0 〉 calculations. Substituting these values, we get changes

in energies in the above states as

δE3D3/2 = [ − 2.17(2)�L + (
2.13(2) − 1.71(1)M2

J

)
C(2)

0

]
,

(20)

and

δE3D5/2 = [ − 2.17(2)�L + (
2.08(2) − 0.713(6)M2

J

)
C(2)

0

]
,

(21)

in units of ×1015 Hz for the corresponding sublevel MJ . This
in combination with the measurement can provide stringent
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limits on the LLI coefficients C(0)
0 and C(2)

0 . It yields the
difference between the MJ = 5/2 and MJ = 1/2 sublevels of
the 3d 2D5/2 state as

δE3D5/2 (MJ = 5/2) − δE3D5/2 (MJ = 1/2)

= −4.28(4)C(2)
0 × 1015 Hz. (22)

Considering its experimental value as 11 mHz, we get

C(2)
0 � 2.6 × 10−18, (23)

after 95 ms of averaging [12]. This limit can be used further
in the SCCEF by expressing it as

C(2)
0 = A +

∑

j

(Cj cos(ω jT ) + S j sin(ω jT )), (24)

where Cj , S j , and ω j are the amplitudes and angular frequency
that are listed in Ref. [12] and T is the time since vernal
equinox of 2014. It would be desirable to carry out similar

measurement in the 3d 2D3/2 state to affirm the above result
and to infer limit on C(0)

0 .
In summary, we have employed the RCC theory with

single, double, and triple excitations to determine energy
shifts in the 3d 2D3/2;5/2 states of 40Ca+ due to LLI violation.
This is necessary for accurate evaluations of the expectation
values of the square of the momentum operator and a second
rank tensor. We have estimated them to within 1% accuracies
by analyzing the calculations in different frameworks of the
RCC theory. As a result, the energy shifts due to the LLI
interaction Hamiltonian are also obtained to within 1% ac-
curacies. Combining our calculation with the measurement
in the 3d 2D5/2 state, a precise limit on the C(2)

0 coefficient
pertaining to the LLI tensor cμν is quoted. We also suggest that
a similar measurement could be carried out for the 3d 2D3/2

state to impose a stringent limit on C(0)
0 .

Computations were carried out using the Vikram-100
high-performance computer of Physical Research Laboratory,
Ahmedabad, India.
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