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Cavity-embedded quantum emitters show strong modifications of free space radiation properties such as an
enhanced decay known as the Purcell effect. The central parameter is the cooperativity C, the ratio of the square
of the coherent cavity coupling strength over the product of cavity and emitter decay rates. For a single emitter,
C is independent of the transition dipole moment and dictated by geometric cavity properties such as finesse and
mode waist. In a recent work [Phys. Rev. Lett. 119, 093601 (2017)], we have shown that collective excitations in
ensembles of dipole-dipole coupled quantum emitters show a disentanglement between the coherent coupling to
the cavity mode and spontaneous free space decay. This leads to a strong enhancement of the cavity cooperativity
around certain collective subradiant antiresonances. Here, we present a quantum Langevin equations approach
aimed at providing results beyond the classical coupled dipoles model. We show that the subradiantly enhanced
cooperativity imprints its effects onto the cavity output field quantum correlations while also strongly increasing
the cavity-emitter system’s collective Kerr nonlinear effect.
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I. INTRODUCTION

The decay rate of a quantum emitter placed in an optical
resonator can be strongly modified from its bare free space
value. The effect stems from the cavity-induced modification
of the optical density of states around the emitter’s transition
frequency. This was predicted by Purcell in 1946 [1] and
measured in various systems employing Fabry-Perot optical
cavities, plasmonic modes, microwave cavities, etc. [2–4].
This indicates the possibility of modifying other properties of
materials by dressing them with strongly confined resonant
optical fields. For example, at the level of single molecules,
the Purcell effect has been employed to controllably tailor the
ratio of radiative decay rates from excited zero-phonon elec-
tronic states to different ground-state vibrational sublevels,
thus enhancing the quantum efficiency [5]. Experimental and
theoretical efforts on the collective strong coupling with or-
ganic molecules have shown strong modifications of energy
and charge transport [6–10], Förster resonance energy transfer
[11,12], chemical reaction rates [13,14], etc.

It has been recently predicted [15] that the collective dy-
namics of N interacting quantum emitters in the bad cavity
regime exhibits a scaling of the cooperativity with the emitter
number N beyond the expected linear one. Such a behavior
can be tested by scanning a probe laser around the common
resonance of the cavity mode and a single collective state of
the coupled emitters. A “hole-burning” effect occurs around
the common resonance with a frequency window character-
ized by the collective Purcell-modified emitter decay rate;
i.e., the emitters shut off transmission around this frequency.
At the single-particle level, such an antiresonance behavior
has been experimentally and theoretically discussed [16–18].
At the many-particle level, the key point is that closely
spaced quantum emitters are subject to intense dipole-dipole
interactions leading to collective scattering, as observed
experimentally [19] and theoretically discussed mostly in one-
and two-dimensional geometries [19–24]. Assuming uniform

illumination of the dense ensemble (characterized by particle
separations smaller than the wavelength of incoming light),
carefully chosen lattice constants can ensure that collective
subradiant states are addressed that can efficiently reflect light.
Theoretical proposals have been directed toward engineering
metamaterials with controlled transparency [25], the study of
collective motion of atomically thin metamaterials and their
interactions with light (optonanomechanics) [26–28], or the
enhancement of nonlinear effects [29,30]. Engineered inter-
actions via common coupling of emitters to guided modes of
a two-dimensional photonic crystal allowed for the theoretical
study of topological quantum optics [24]. In one and two di-
mensions, collective subradiant states have also been studied
for the possibility of robust light-storage devices [31,32].

One of the widely used theoretical approaches (including
in Ref. [15]) to describe the response of the quantum emitter
ensemble to a driving light field is based on a mapping
to a classical problem of coupled dipoles. The simplifying
assumption is that in the weak excitation regime the emitters
behave as classical oscillators. Collective effects such as
superradiance and subradiance are indeed recovered in such
an approach. For the treatment in Ref. [15], this approach
sufficed to give rise to a semianalytical expression of the
transmission of light through a cavity containing a collec-
tion of interacting emitters; the results indicated a strong
modification of the cavity cooperativity around collective
antiresonances associated with collective subradiant states.
However, questions regarding the quantum effect of subradi-
ance imprinted on the cavity outgoing light were left open.
This paper provides an extension to the quantum problem:
We focus here on describing the quantum properties of the
output cavity fields (transmitted and reflected) as well as
of the detected signal. Linearizing the quantum fluctuations
around the classical problem allows us to identify regimes of
cooperative enhancement of quadrature squeezing and
strongly modified signatures in the second-order correlation
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FIG. 1. Model schematic. Optical cavity containing N coupled,
closely spaced quantum emitters. The vacuum modes (not supported
by the cavity) mediate dipole-dipole interactions with strength �i j

and induce collective decay with γi j . Losses through the mirrors
occur at rates κA (left mirror) and κB (right mirror). The cavity is
pumped through the left mirror with nonzero amplitude Âin while
zero-average noise is entering via the right mirror as b̂in. Transmis-
sion and reflection are measured by detecting outgoing non-zero-
average operators Âout and B̂out.

functions. The treatment of the classical problem beyond the
weak excitation regime also allows an analysis of the collec-
tive Kerr effect: Around subradiant antiresonances, the third-
order nonlinear response of the system is greatly enhanced
even for limited numbers of emitters.

The paper is organized as follows: In Sec. II, we introduce
the full model of N quantum emitters interacting with a
cavity field both within the master equation formalism as
well as quantum Langevin equations (QLEs). We proceed
by justifying the linear approximation and deriving coupled
equations of motion for classical averages as well as fluctua-
tion operators. In Sec. III, we quickly review fundamentals of
cavity quantum electrodynamics (cavity QED) with a single
emitter such as occurrence of strong coupling, the Purcell
effect, and antiresonances. We then derive the classical re-
sponse in reflection and transmission for two-sided cavities.
We introduce operators for the detected signal and provide a
formalism for computing variances and correlations for intra-
cavity, outgoing, and detected fields. In Sec. IV, we describe
some fundamental aspects of vacuum-coupled quantum emit-
ter ensembles exhibiting subradiance and superradiance and
investigate some of their entanglement properties. Finally, in
Sec. V, we present the dynamics of coupled emitter ensembles
inside a common cavity mode, exhibiting a modified collec-
tive Purcell effect, and analytically derive cavity transmission
properties, equations of motion for the fluctuation operators,
and the modification of the collective third-order nonlinearity.

II. CAVITY DYNAMICS OF COUPLED
QUANTUM EMITTERS

We consider an ensemble of N quantum emitters each
with a ground state |g〉 j and an excited state |e〉 j (resonance

frequency ωe) located at r j . The corresponding raising and
lowering operators are denoted by Ŝ†

j and Ŝ j , respectively. The
emitters are placed within a plane orthogonal to the cavity axis
and inside the waist of a cavity mode at frequency ωc (see
Fig. 1). The cavity is laser driven at frequency ω� with power
P through the left mirror. The coherent cavity mode dynamics
are described by the Hamiltonian (in a frame rotating at ω�),

Hcav = −h̄�cÂ†Â + ih̄η(Â† − Â), (1)

where �c = ω� − ωc and η = √
2PκA/(h̄ω�). The cav-

ity damping rate is κ = (κB + κA)/2 (encompassing losses
via both left and right mirrors) and occurs via the col-
lapse operator Â contained in the Lindblad term, Lc[ρ] =
κ (2ÂρÂ† − Â†Âρ − ρÂ†Â).

In the single-mode limit, the emitter-cavity interaction is
described by the Tavis-Cummings Hamiltonian

Hint = h̄
∑

j

g j (Â
†Ŝ j + ÂŜ†

j ), (2)

where each of the emitters couples to the cavity mode with
a distinct rate g j which depends on the emitter positions as
well as the cavity mode profile. At dense spacing (d := |r j −
r j+1| < λe), one has to account for the vacuum-mediated
emitter-emitter interactions via the fields they emit due to their
transition dipole moments μ (assuming all dipole moments to
be identical). The total emitter Hamiltonian includes a free
part plus the collective coherent dipole-dipole interactions

He = −h̄
∑

j

�eŜ†
j Ŝ j + h̄

∑
j �=k

� jk Ŝ j Ŝ
†
k , (3)

where �e = ω� − ωe. The dipole-dipole interactions gov-
erned by the frequencies �i j are derived by eliminating the de-
grees of freedom for the surrounding vacuum modes exclud-
ing the single mode supported by the cavity (see Appendix D).
Doing so additionally leads to dissipation of the emitters in the
form of collective decay with rates γi j = γ hi j (where hi j is
maximally unity for i = j) that are described by the Lindblad
term [33]

Le[ρ] =
∑

j,k

γ h jk (2Ŝ jρŜ†
k − Ŝ†

j Ŝkρ − ρŜ†
j Ŝk ). (4)

While full numerical simulations for moderate numbers of
quantum emitters can be carried out based on the master equa-
tion description, ∂tρ(t ) = i[ρ(t ), H]/h̄ + L[ρ(t )], we move
to an equivalent quantum Langevin approach (see Appendix
A), which allows for the derivation of analytical results,

˙̂A = −(κ − i�c)Â − i
∑

j

g j Ŝ j + η + √
κAâin + √

κBb̂in, (5a)

˙̂S j = −(γ − i�e)Ŝ j + ig jÂŜz
j +

∑
k �= j

(i� jk + γ jk )Ŝz
j Ŝk −

√
2γ ξ̄ j (t ), (5b)

˙̂Sz
j = −2γ

(
Ŝz

j + 1
) + 2ig j (Â

†Ŝ j − Ŝ†
j Â) −

∑
k �= j

2γ jk (Ŝ†
j Ŝk + Ŝ†

k Ŝ j ) +
√

2γ ξ̄ z
j (t ). (5c)
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The convention in this paper is that non-zero-average op-
erators are denoted by capital letters while lowercase letters
denote fluctuation operators. The left mirror allows for a non-
zero-average input Âin = η/

√
κA + âin with the zero-average

white-noise term fulfilling 〈âin(t )â†
in(t ′)〉 = δ(t − t ′) (while

all other correlations vanish). The right mirror allows for
white noise only with all correlations vanishing except for
〈b̂in(t )b̂†

in(t ′)〉 = δ(t − t ′). One can also define an effective
input operator,

Ĉin =
√

κA

κA + κB
Âin +

√
κB

κA + κB
b̂in, (6)

in terms of which the QLE for the cavity field shows a single
compound input noise added as ĉin with 〈ĉin(t )ĉ†

in(t ′)〉 = δ(t −
t ′) and ĉin = Ĉin − η/

√
2κ . On the quantum emitter side, we

have defined effective noise operators affecting the emitters
(see Appendix A for more details) ξ̄ j (t ) = Ŝz

jξ j (t ) and ξ̄ z
j (t ) =

2[Ŝ†
j ξ j (t ) + ξ

†
j (t )Ŝ j]. In the absence of classical drive terms

for the quantum emitters, the noises are zero-average and δ

correlated in time; however, as the emitters are placed in the
near field of their neighbors, spatial correlations are included
in the pairwise decay terms, i.e., 〈ξi(t )ξ †

j (t ′)〉 = hi jδ(t − t ′).
A linearization procedure can be applied around the average
values (α = 〈Â〉, β j = 〈Ŝ j〉 and z j = 〈Ŝz

j〉), introducing zero-

average fluctuation operators â = Â − α, σ̂ j = Ŝ j − β j , and
σ̂ z

j = Ŝz
j − z j , respectively. We then proceed by neglecting

products of fluctuation operators. This allows us to derive
two distinct sets of equations, one for the classical averages
(which still includes nonlinear behavior as long as we keep
the equation for the population inversion) and one set for the
fluctuation operators (linearized). For the classical averages,
we find

α̇ = −(κ − i�c)α − i
∑

j

g jβ j + η, (7a)

β̇ j = −(γ − i�e)β j + ig jαz j +
∑
k �= j

(i� jk + γ jk )z jβk, (7b)

ż j = −2γ (z j + 1) + 2ig j (α
∗β j − β∗

j α)

− 4
∑
k �= j

γ jkRe{β∗
j βk}. (7c)

Note that, in this limit, we can express the inversion
average as z j = 〈2Ŝ†

j Ŝ j − 1〉 ≈ 2|β j |2 − 1 as a second-order
perturbation in η. Next-order terms, stemming from two
fluctuation operators averages such as 〈σ̂ †

j σ̂ j〉, are already
fourth-order corrections in η. We can then write QLEs for the
quantum fluctuations of all operators,

˙̂a = −(κ − i�c)â − i
∑

j

g j σ̂ j + √
κAâin + √

κBb̂in, (8a)

˙̂σ j = −(γ − i�e)σ̂ j + ig j
(
z j â + ασ̂ z

j

) +
∑
k �= j

(i� jk + γ jk )
(
z j σ̂k + βk σ̂

z
j

) −
√

2γ ξ̄ j (t ), (8b)

˙̂σ z
j = −2γ σ̂ z

j + 2ig j (α
∗σ̂ j + β j â

† − ασ̂
†
j − β∗

j â) − 2
∑
k �= j

γ jk (β∗
j σ̂k + βk σ̂

†
j + H.c.) +

√
2γ ξ̄ z

j (t ). (8c)

Let us now discuss the correlations of the emitter noise terms.
Assuming the environment for the emitter input noise to
be in a vacuum state, the effective noise terms are also of
zero average. However, they have the following nonvanishing
correlations,

〈ξ̄ j (t )ξ̄ †
k (t ′)〉 =

{
δ(t − t ′), if j = k

h jkz jzkδ(t − t ′), if j �= k,
(9a)

〈
ξ̄ z

j (t )ξ̄ z
k (t ′)

〉 =
{

2(z j + 1)δ(t − t ′), if j = k

4h jkβ
∗
j βkδ(t − t ′), if j �= k,

(9b)

〈
ξ̄ z

j (t )ξ̄ †
k (t ′)

〉 =
{−2β∗

j δ(t − t ′), if j = k

2h jkzkβ
∗
j δ(t − t ′), if j �= k,

(9c)

and 〈ξ̄ j (t )ξ̄ z
k (t ′)〉 = 〈ξ̄ z

k (t ′)ξ̄ †
j (t )〉∗.

III. SINGLE-EMITTER ANTIRESONANCE
SPECTROSCOPY

Let us first fully analyze the emitter-cavity mode hybridiza-
tion by solving Eqs. (5) for a single emitter. Steady-state so-
lutions for the operator averages already suffice to provide an

overview of effects such as cavity strong coupling (occurrence
of polaritons), antiresonances, and the Purcell modification
of the emitter’s decay rate. We then make the connection
between the intracavity dynamics and the amplitude and phase
transmission and/or reflection for asymmetric two-sided cav-
ities. In the next step, we describe the quantum properties of
the field inside the cavity and of the output fields (in trans-
mission and/or reflection). By assuming a particular detection
scheme which allows us to define nondimensional operators
for the detected field, we analyze the connection between the
detected signal and the continuous output fields. Finally, we
compute the next-order correction to the steady-state solution
to derive the scaling of the system’s Kerr nonlinearity.

A. Regimes of interaction

The classical equations of motion for the cavity field
amplitude and the dipole of the quantum emitter are sufficient
to characterize the different regimes of interaction inside the
optical cavity,

α̇ = −(κ − i�c)α − igβ + η, (10a)

β̇ = −(γ − i�e)β − igα. (10b)
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FIG. 2. Single emitter cavity mode hybridization. Plot of hybrid cavity-emitter decay rates (a) and frequencies (b) when sweeping the
coupling g past the strong coupling onset point of g = |(κ − γ )/2| (in the resonant case). The gray region shows the weak coupling but
strong cooperativity regime where the Purcell effect shows up as a modification of the emitter’s radiative rate. (c) Standard picture of avoided
resonances in the strong-coupling regime when the cavity detuning is scanned. (d) Intensity of transmitted, reflected, and scattered fields of
an emitter-cavity system in the Purcell regime (antiresonance regime) for a laser scan around the resonance. The parameters are g = κ/5,
γ = κ/20. (e) Cavity phase shift and emitter-only induced phase shift in the same regime. (f) Cavity response in transmission and reflection
as well as scattered field showing the signature of polaritons in the strong coupling regime (g = 2κ).

We denoted by κ the effective decay rate via both mirrors
κ = (κA + κB)/2. The diagonalization of the above equations
(under resonance conditions, i.e., fixed �c = �e = 0) leads to
the hybridized decay rates and frequencies,

�± = κ + γ

2
± Re

⎧⎨
⎩
√(

κ − γ

2

)2

− g2

⎫⎬
⎭, (11a)

ω± = ±Im

⎧⎨
⎩
√(

κ − γ

2

)2

− g2

⎫⎬
⎭. (11b)

The threshold g > |(κ − γ )/2| indicates the onset of the
strong coupling regime where the two frequencies combine
into distinct polariton branches. Far above this threshold
the polaritons are symmetrically displaced by ±g from the
original energies [see Fig. 2(b)]. The decay rates show a
different behavior as they already hybridize before the onset
of strong coupling and ultimately reach the algebraic average
(κ + γ )/2. We will be mostly interested in the weak coupling
regime, highlighted in gray in Figs. 2(a) and 2(b), where
for γ 	 κ , a strong modification of the emitter bare decay
rate by a factor 1 + C occurs [where C is the cooperativity
defined as C = g2/(κγ )]. This is the Purcell effect, and one
can cast the Purcell factor [1] given by Fp = 6πc3Q/(ω3

eV )
in terms of the cooperativity parameter. Using the defini-
tion of the quality factor Q = ωc/κ , the dipole coupling
strength g = μ

√
ωc/(2ε0h̄V ) and the free space decay rate

γ = ω3
eμ

2/(3π h̄c3ε0), we can express the Purcell factor as
Fp = 4C.

B. Antiresonance: Transmission, reflection, and absorption

Assuming steady state, we set the derivatives to zero in
Eqs. (10) and obtain

α = −igβ + η

κ − i�c
, (12a)

β = −igα

γ − i�e
. (12b)

Under the considered approximations, the dipole responds
linearly to the intracavity field; the cavity field in turn is the
result of interference between the pump signal and the dipole
reradiated amplitude. Solving the above equations, we find

α = η(γ − i�e)

(κ − i�c)(γ − i�e) + g2
, (13a)

β = −igη

(κ − i�c)(γ − i�e) + g2
. (13b)

The cavity output signal consists of three parts: The reflected
(rc), transmitted (tc), and scattered (sc) field. The latter is the
field leaking out of the sides of the cavity due to spontaneous
decay of the emitter. In order to investigate these three parts,
we make use of the input-output relations written separately
at both left and right mirrors,

Âin + Âout = √
κAÂ, (14a)

b̂in + B̂out = √
κBÂ. (14b)

As specified above, driving is done through the left mirror
such that 〈Âin〉 = η/

√
κA. Averaging of the equations above
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thus leads to

〈B̂out〉 = √
κBα, (15a)

η/
√

κA + 〈Âout〉 = √
κAα. (15b)

The amplitude transmission coefficient tc and the reflection
coefficient rc, respectively, are then given by

tc = 〈B̂out〉
〈Âin〉

=
√

κAκB

η
α, (16a)

rc = 〈Âout〉
〈Âin〉

= κA

η
α − 1 = tc

√
κA

κB
− 1. (16b)

While generally the cavity properties strongly depend on the
mirror asymmetry, let us focus on a perfectly balanced cavity
where κ = κA = κB and express the complex transmission
amplitude as

tc = κ

κ − i�c + g2/(γ − i�e)
, (17)

while the reflectivity is immediately derived as r = −1 + t .
This expression already contains the phenomenon of emitter
antiresonances [15,17,34], where the resonantly driven dipole
oscillates in a way to counteract the cavity drive leading to a
local minimum of transmission [35].

The respective intensities are given by the absolute squares
of the complex coefficients. We note that it is possible to
write down a similar input-output relation for the scattered
field in the linearized regime. However, for more general
purposes, one can use the fact that the sum of all the intensities
has to be conserved, namely |rc|2 + |tc|2 + |sc|2 = 1. This
gives the scattered intensity |sc|2 = 1 − |tc − 1|2 − |tc|2 =
2(Re{tc} − |tc|2). At resonance (�c = �e = 0), we can ex-
press all the intensities in terms of the cooperativity,

|tc|2 = 1

(1 + C)2 , (18a)

|rc|2 = C2

(1 + C)2 , (18b)

|sc|2 = 2C

(1 + C)2 . (18c)

An interesting point here is the scaling of the scattered field
with the cooperativity. Namely, not only does it vanish for

small cooperativity (where the emitter is simply never excited
and thus cannot scatter), but also for C 
 1 the radiation to
the side is suppressed. Since the transmission vanishes as well
in this regime, the entire input field is reflected [see Fig. 2(f)].

The phase shift of the field that passes through the cavity is
given by the transmission coefficient as

φ = Arg(tc) = arctan

(
Im{tc}
Re{tc}

)
. (19)

While this corresponds to the phase shift caused by the hybrid
system, in the resonant case one can approximate the phase
shift caused only by the emitter by subtracting the empty-
cavity response φc = arctan (�c/κ ) [see Fig. 2(e)].

C. Intracavity steady state

In a first step, we will write the QLEs in the single emitter
case and solve for the intracavity fluctuation operators in
steady state. For N = 1, Eqs. (8) reduce to

˙̂a = −(κ − i�c)â − igσ̂ + √
κ âin(t ) + √

κ b̂in(t ), (20a)

˙̂σ = −(γ − i�e)σ̂ + ig(ασ̂ z + zâ) −
√

2γ ξ̄ (t ), (20b)

˙̂σ z = −2γ σ̂ z + 2ig(α∗σ̂ + βâ† − ασ̂ † − β∗â) +
√

2γ ξ̄ z(t ).

(20c)

The correlation functions for the single-emitter input noise are
derived from Eqs. (9a)–(9c) for N = 1. We proceed by casting
the above set of equations in a more convenient matrix form
with the following definitions:

v :=

⎛
⎜⎜⎜⎝

â
â†

σ̂

σ̂ †

σ̂ z

⎞
⎟⎟⎟⎠, vin :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

âin

â†
in

b̂in

b̂†
in
ξ̄

ξ̄ †

ξ̄ z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

The system dynamics can then be written as a matrix-vector
differential equation,

v̇ = Mv + Nvin(t ). (22)

The matrix M is a drift matrix that is completely determined
by steady-state expectation values,

M =

⎛
⎜⎜⎜⎝

−(κ − i�c) 0 −ig 0 0
0 −(κ + i�c) 0 ig 0

igz 0 −(γ − i�e) 0 igα
0 −igz 0 −(γ + i�e) −igα∗

−2igβ∗ 2igβ 2igα∗ −2igα −2γ

⎞
⎟⎟⎟⎠. (23)

The input noise terms are multiplied with the matrix N, which is given by the decay rates for each dissipation channel,

N =

⎛
⎜⎜⎜⎝

√
κ 0

√
κ 0 0 0 0

0
√

κ 0
√

κ 0 0 0
0 0 0 0 −√

2γ 0 0
0 0 0 0 0 −√

2γ 0
0 0 0 0 0 0

√
2γ

⎞
⎟⎟⎟⎠. (24)
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Formal integration of the fluctuation operators’ QLEs,
Eq. (22), leads to

v(t ) = eMt v(0) +
∫ t

0
dt ′eM(t−t ′ )Nvin(t ′), (25)

where the first term is the transient solution. Assuming that
the system is stable, i.e., all the eigenvalues of the drift matrix
have negative real parts, this solution vanishes at large times
and the system reaches a unique steady state independent of
the initial conditions. One can then fully analyze the proper-
ties of the system in steady state by looking at the fluctuation
correlation matrix V = 〈v(t )v�(t )〉. The correlations of all
input noises can be jointly written as 〈vin(t )v�

in (t ′)〉 = δ(t −
t ′)C, where the noise correlation matrix is

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 −2β

0 0 0 0 0 0 0
0 0 0 0 0 −2β∗ 2(1 + z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

A diffusion matrix can afterward be constructed D = NCN�
and a simplified equation involving only the correlation
and the diffusion matrix can be obtained (see details in
Appendix B),

MV + VM� = −D. (27)

This is known as the Lyapunov equation and it allows one to
derive all two-point operator correlations for the system in the
long-time limit (steady-state condition).

D. Output fields

To derive quantum properties of the field exiting the cavity,
we use the input-output relations such as the ones in Eq. (14).
All input-output relations combined into a convenient vector
form read

vout(t ) = N�v(t ) − vin(t ). (28)

In the time domain, the output field is not δ correlated, which
makes calculations more cumbersome. However, a transfor-
mation to the Fourier domain provides an immediate simpli-
fication as the output is obtained as a matrix multiplication
of the input, ensuring that the δ correlations in the frequency
domain are still valid. First, we express the output Fourier
components in terms of input noise,

vout(ω) = F(ω)vin(ω), (29)

where F(ω) := [N�(iω1 − M)−1N − 1]. This allows one to
compute any correlations〈

vout(ω)v�
out(ω

′)
〉 = SSSout(ω)δ(ω + ω′), (30)

contained in the frequency spectrum matrix SSSout compactly
expressed as

SSSout(ω) = F(ω)CF�(−ω). (31)

As we will see in the following, the output spectrum matrix
contains all the information required to compute quantum

properties such as squeezing of the output field or of the
detected field or the variance of the detected photon number.

E. Time-integrated signal detection

We define detected field operators at some time t (chosen
already after reaching steady state) by integrating over the
continuous output fields during the detection window t − T to
t + T . While in Ref. [15] we have analyzed the antiresonance
behavior in terms of the classical average of the intracavity
field amplitude, we can here compute expectation values of
the detected field photon number operator and its variance. We
provide analytical expressions for these quantities as well as
for the quadrature variances and the second-order correlation
function at zero time g(2)(0).

1. Classical signal

The classical detected signal is defined as the time integral
(over the detection window 2T ) of the continuous output field
amplitude expectation value. The reflected signal is

〈Âdet(t )〉 = 1√
2T

∫ t+T

t−T
dt ′ 〈Âout(t

′)〉 =
√

2T η2

κ
rc, (32)

while in transmission one detects

〈B̂det(t )〉 = 1√
2T

∫ t+T

t−T
dt ′ 〈B̂out(t

′)〉 =
√

2T η2

κ
tc. (33)

The definition of the operators above fulfills the canonical
commutation relations [Âdet, Â†

det] = 1 and [B̂det, B̂†
det] = 1.

The transmission of the cavity shows the signature of the
antiresonance (both in amplitude as a dip and in phase as a
rapid phase switch when the laser is swept across the common
emitter-field resonance) as it is simply proportional to the
cavity transmission function derived in Ref. [15]. Notice that
for weak pumping, especially around the resonance dip, the
integration time has to be large in order to distinguish the
classical signal from shot noise.

2. Fluctuation correlation matrix of the detected field

According to the approach we employed to obtain higher
order correlations of the output, let us define a vector of
detected zero-average operators,

vdet(t ) = 1√
2T

∫ t+T

t−T
dt ′ vout(t

′). (34)

Note that the component v1
det(t ) = âdet(t ) is the detected sig-

nal fluctuation operator in reflection, and similarly v3
det(t ) =

b̂det(t ) is the detected signal fluctuation operator in transmis-
sion. Two-point correlations are needed in order to find the
expectation value of the photon number. Therefore, one has
to relate the correlation matrix of the output fields with the
intracavity correlations. As a general formulation, we write
the whole correlation matrix of the detected quantities as

Vdet(t ) = 1

2T

∫ t+T

t−T
dt ′

∫ t+T

t−T
dt ′′ 〈vout(t

′)vout(t
′′)�〉 . (35)

We now use the Fourier transformation of the output operators
(see Appendix C) to relate the detected correlation matrix to
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FIG. 3. Detected signal with a single emitter. Plots of quadrature squeezing [(a), (d)], average photon number and variance (shaded area)
[(b), (e)], and the photon correlation function g(2)(0) [(c), (f)] for a laser scan around the resonance (a)–(c) in the Purcell regime (g = 0.2κ)
and (d)–(f) in the strong-coupling regime (g = 2κ), respectively. The remaining parameters here are γ = κ/20, η = κ/20, and T = 103κ−1.
In panels (c) and (f), the effect of increasing integration time on bunching and antibunching is illustrated.

the spectrum matrix of output operators,

Vdet = 1

πT

∫ ∞

−∞
dω

[
sin2 ωT

ω2

]
SSSout(ω). (36)

In general, one can already compute the correlation matrix
from this expression. However, for long integration times
(longer than the inverse of the characteristic linewidth of the
spectrum), the sinc function inside the integral picks out only
frequencies close to zero (around the laser frequency). This
allows one to replace the sinc function with a δ function
and the detected correlation matrix is given by the simple
expression

Vdet = SSSout(0). (37)

We will use this result in the following subsections to derive
expressions in terms of matrix elements of SSSout(0) for the
variance in quadratures, photon number expectation value
and variance, and the second-order correlation function. The
detected time-integrated quadratures in transmission are

X̂det = 1√
2

(B̂det + B̂†
det ), (38a)

Ŷdet = −i√
2

(B̂det − B̂†
det ), (38b)

with similar expressions for the reflected field. With the help
of the above expressions for the correlation matrix, one can
compute their respective variances as

�X 2
det = 1

2 + S43
out(0) + Re

[
S33

out(0)
]
, (39a)

�Y 2
det = 1

2 + S43
out(0) − Re

[
S33

out(0)
]
. (39b)

In Fig. 3(a) the detected quadrature variances are shown
around the cavity resonance (by scanning the laser frequency

around it) exhibiting small squeezing properties around the
antiresonance dip. While the squeezing in the strong coupling
regime depicted in Fig. 3(d) is approximately of the same
magnitude, it is shifted by ±g from the cavity and emitter res-
onance, i.e., the squeezing occurs at the polariton resonances.

3. Photon number and its variance

The detected photon number operator for the transmission
is

N̂det(t ) = 1

2T

∫ t+T

t−T
dt ′

∫ t+T

t−T
dt ′′ B̂†

out(t
′)B̂out(t

′′), (40)

with an expectation value

Ndet = 〈N̂det(t )〉 = |〈B̂det(t )〉|2 + 〈b̂†
detb̂det〉. (41)

Notice that in the absence of any nonlinear terms in the
evolution, the detected photon number would be simply given
by the absolute square of the classical amplitude as is char-
acteristic for coherent states. However, the second term in
Eq. (41) is nonzero and can again be expressed in terms of
the output as 〈b̂†

detb̂det〉 = S43
out(0). We can then analyze the

behavior of the photon number at the detector which is plotted
for variable laser drive frequency (around the antiresonance)
in Fig. 3(b) and for the strong coupling regime in Fig. 3(e).
The behavior, as expected, mimics the cavity transmission
profile. More interesting aspects emerge when one analyzes
the variance of the photon number around the average; to this
end, we explicitly write the expression for the variance,

[�Ndet(t )]2 = 〈b̂†
detb̂detb̂

†
detb̂det〉 − 〈b̂†

detb̂det〉2

+ |〈B̂det〉|2[1 + 2〈b̂†
detb̂det〉] + 〈B̂det〉∗2〈b̂2

det〉
+ 〈B̂det〉2〈(b̂†

det )
2〉. (42)

043843-7



D. PLANKENSTEINER et al. PHYSICAL REVIEW A 99, 043843 (2019)

The two-operator averages emerge immediately from the
spectrum matrix as 〈b̂2

det〉 = S33
out(0) and 〈(b̂†

det )
2〉 = S44

out(0).
The task of evaluating four-point correlations is a bit more
cumbersome. However, we can apply Isserlis’ theorem to
the output (see Appendix C) to express any four-operator
correlations as sums over all permutations of two operator
correlations. After time integration, one derives an according
expansion for four detected operator correlations. This allows
one to compute quantities such as

〈b̂†
detb̂detb̂

†
detb̂det〉 = S43

out(0)S43
out(0) + S44

out(0)S33
out(0)

+S43
out(0)S34

out(0). (43)

Finally, the expression for the detected photon number vari-
ance after replacement of two- and four-operator correlations
in Eq. (42) becomes

[�Ndet(t )]2 = ∣∣S44
out(0)

∣∣2 + |〈B̂det〉|2
[
1 + 2S43

out(0)
]

+ 2Re
{〈B̂det〉2S44

out(0)
} + S43

out(0)S34
out(0). (44)

The result is illustrated in Fig. 3(b) (in the antiresonance
regime) and in Fig. 3(e) (in the strong coupling regime). The

variance is included as a shaded region around the mean pho-
ton number. Owing to the weak coupling and large integration
time, the result corresponds to the standard shot noise of a
detected coherent state. The contribution from the two-photon
terms S33 and S44, while showing up as quadrature squeezing,
have little effect on the photon number variance.

4. Second-order correlation function of the photon number

In order to understand the photon statistics of the trans-
mitted light from the cavity, we calculate the second-order
correlation function [36] at zero delay g(2)(0) defined by

g(2)(0) = 〈B̂†
detB̂

†
detB̂detB̂det〉

〈B̂†
detB̂det〉2

. (45)

Note that for a coherent state g(2)(0) = 1, which is charac-
teristic for Poissonian light. However, terms in the output
spectrum such as S44

out(0) denote the presence of photon-
photon correlations coming from nonvanishing expectation
values of 〈b̂†

detb̂
†
det〉. After evaluating the different terms in

the expression above and rewriting all occurring four-point
correlations as before (see Appendix C), one finds

g(2)(0) = |〈B̂det〉|4 + 4|〈B̂det〉|2S43
out(0) + 2Re

{〈B̂det〉2S44
out(0)

} + ∣∣S44
out(0)

∣∣2 + 2S43
out(0)S43

out(0)

|〈B̂det〉|4 + 2|〈B̂det〉|2S43
out(0) + S43

out(0)S43
out(0)

. (46)

For different detection time windows, the behavior of the
second-order correlation function is shown in Fig. 3(c) (for the
antiresonance regime) and in Fig. 3(f) (for the strong coupling
regime). Longer detection times have the tendency of washing
out the photon bunching and antibunching effects.

F. Nonlinear effects

A single quantum emitter is a nonlinear object as its
response (the amplitude of the stimulated transition dipole
moment) is not only proportional to the driving field ampli-
tude. In the next order of approximation, a small component
emerges from the AC Stark shift of the excited state level
proportional to the field intensity, the so-called Kerr effect. At
the macroscopic level, this effect is seen as a modification of
the index of refraction with increasing light field intensities.
For the hybrid cavity-emitter system, we analyze the response
of the transition dipole moment to the driving laser amplitude
η. As opposed to the bare free space nonlinearity expected
from a two-level system, the cavity can lead to a modified
“vacuum-dressed emitter” nonlinearity. Inside the cavity, we
analytically derive this small correction by assuming that z =
(2|β|2 − 1) and obtaining the new steady-state solution from

0 = −(κ − i�c)α + η − igβ, (47a)

0 = −(γ − i�e )β + igα(2|β|2 − 1). (47b)

We can find a solution for β = β (1) + β (3) where the linear
term β (1) is the previously derived response of the emit-
ter’s dipole in Eq. (13b) proportional to η. The next order

correction is

β (3) = −2β (1)|β (1)|2
(

1 − ig

η
β (1)

)
. (48)

The Kerr nonlinearity is proportional to the field intensity
η2 (we considered the field amplitude real) and leads to a
modification of the cavity transmission function from the
computed t (1) expression in Eq. (17),

tc = t (1)
c

(
1 + 2g2|β (1)|2[1 − i(g/η)β (1)]

(γ − i�e )(κ − i�c)

)
. (49)

Notice that the nonlinearity matches the behavior of the linear
response in that it is largest around the antiresonance. Maxi-
mal nonlinear response occurs when the linear one is maximal
as well. We can then find a simple and instructive expres-
sion β (1)(� = 0) = −iC/(1 + C)η/g, which shows that an
increase in the cooperativity (by, for example, suppressing the
radiative rate while keeping g constant) brings the nonlinearity
to a saturation value.

IV. FREE SPACE COLLECTIVE DYNAMICS:
SUPER- AND SUBRADIANT STATES

Before analyzing the physics of a cavity mode interacting
with an ensemble of coupled quantum emitters, let us briefly
review some properties of the bare coupled emitter ensemble
(in free space). In general, it is not possible to diagonalize the
Hamiltonian including dipole-dipole interactions. However, a
common approach is to truncate the Hilbert space at small
or even single excitations [31,37]. Then, at extremely small
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FIG. 4. Free space radiation patterns of exciton states. The spatial intensity profile of the emitted field is plotted in arbitrary units but to
scale. (a) For a single emitter, we observe the standard dipole radiation. (b) For two emitters placed far apart (d 
 λe), they hardly interact
and the chosen state therefore has little effect on the emitted field. (c) When the two emitters are placed much closer (d = 0.3λe) than a single
wavelength, the interactions become very strong, leading to superradiant loss (m = 1) and subradiance (m = 2), where the emitted field is
predominantly radiated into the axis along which the emitters are placed. (d)–(f) The same effect is even more distinct for a closely spaced
(d = 0.3λe) equidistant chain of emitters (here N = 6). With increasing phase asymmetry (increasing m) there are more field nodes. Note that
some of the shown field intensities had to be scaled since they are orders of magnitude smaller than the superradiant field of the chain. This is
indicated (where needed) by the scaling factor in the bottom right. The dipole moments have been chosen along the y axis and the profile in
the x-y plane is observed at a transverse distance z = 2λe.

distances, one can use the fact that |�ii+1| 
 |�ii+2| to make
the nearest-neighbor (NN) approximation. The full Hamilto-
nian then becomes a tridiagonal symmetric Töplitz matrix,
which can be analytically diagonalized. The resulting set of
eigenstates {|m〉}N

m=1 is given by

|m〉 =
√

2

N + 1

∑
j

sin

(
πm j

N + 1

)
σ̂+

j |g〉⊗N . (50)

They correspond to collective excitations of different symme-
tries with corresponding energies

ωm = ωe + 2�12 cos

(
πm

N + 1

)
, (51)

ranging from −2�12 to 2�12 around the bare noninteracting
energy ωe. These expressions illustrate what is required to
faithfully excite a specific collective state: One needs to match
both the local phases given by the coefficients of the states
as well as the shifted resonance energies. While the latter
is quite straightforward, addressing an ensemble of emitters
with large local phase differences within a small volume can
be challenging. A number of proposals on how this could
be achieved have been brought forward in recent studies.
The suggested schemes involve among others a magnetic
field gradient [31] or light that imprints the phases due to a
polarization gradient [15,38].

The reason for these extensive studies of preparation
schemes is that large phase differences cause the emitter
dipole fields to interfere destructively [see Fig. 4(f)], thus
yielding an extremely small total field. Thereby, the lifetime
of states with large phase differences (subradiant states) is

vastly enhanced, making them ideal candidates for precision
spectroscopy or quantum memories. This gain in lifetime
becomes even more significant when considering the fact
that symmetric excitation in dense emitter ensembles leads to
superradiance [39], which in the limit of vanishing separation
leads to a factor N enhancement in spontaneous emission.

This behavior due to phase (a-)symmetry can be investi-
gated by computing the field radiated by the dipoles of the
emitters taking into account the fact that they interfere with
one another. Namely, the free electric field is just

Ê(r, t ) = Ê(+)(r, t ) + H.c., (52)

where

Ê(+)(r, t ) =
∑
k,λ

√
h̄ωk

2ε0V
ek,λÂk,λ(t )eik·r. (53)

Because of the dipole coupling of all emitters to the field,
the photon annihilation operators simply follow the emitter
coherence operators,

˙̂Ak,λ(t ) = −igk,λ

∑
j

Ŝ j (t )e−ik·r j ei(ωk−ωe )t . (54)

Resolving the sum over wave vectors as an integral (due to
the density of modes) and in addition making the Markov
approximation allows one to find an expression for the electric
field containing only emitter operators and geometric factors
(see Appendix D for details).

The intensity of the resulting field is illustrated in Fig. 4
for a single emitter, two emitters, and a chain of emitters.
While for a single emitter we observe dipole radiation [see
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FIG. 5. Entanglement of emitters in a free space chain in a
subradiant state. A six-emitter equidistant chain with a separation of
d = 0.1λe is initialized in the state |m = N〉 and left to evolve freely.
We plot the logarithmic negativity of each emitter with respect to the
N − 1 remaining emitters in the chain at different point in times (the
leftmost bar for each site corresponds to γ t = 0).

Fig. 4(a)], interference occurs when more than one emitter
is present. If the separation between emitters is large, there
are no substantial interactions enhancing or suppressing ra-
diation. As illustrated in Fig. 4(b), the radiated field is then
independent of the chosen state. As soon as the emitters are
close (separation smaller than half a wavelength), the state in
which they are prepared has a significant effect on the field.
The radiated intensity is either enhanced due to constructive
interference (superradiance) or suppressed due to destructive
interference (subradiance).

These phenomena are even more dominant for more emit-
ters. In Figs. 4(d)– 4(f), we see the radiated intensity for dif-
ferent choices of m for an equidistant chain of N = 6 emitters.
While the field is quite large in the symmetric case (m = 1),
we can see that for other choices of m, destructive interference
occurs. Namely, for the smallest asymmetric choice of states,
m = 2, there is only one change in sign of the phase which
occurs in the middle of the chain. It is clear that at this
point the fields radiated by each half of the chain cancel
each other. For m = N this effect culminates in maximal
destructive interference, which widely inhibits spontaneous
emission from the chain.

Another property of these collective states (both super- and
subradiant ones) is that they commonly feature high degrees
of entanglement [31,40]. As such, they form an interesting
resource for quantum information processing, where highly
subradiant states are even more useful due to the increased
lifetime of correlations.

Even though subradiant systems show only moderate two-
pair correlations, the overall entanglement is large. Specifi-
cally, each of the emitters is highly entangled with all the other
emitters. In order to illustrate this point, we plot the logarith-
mic negativity [41], which is an entanglement monotone. For
a bipartite system consisting of the subsystems A and B, it is
defined as

EN (ρ) = log2(|ρTA |), (55)

where ρTA denotes the partial transpose with respect to the
subsystem A and | · | is the trace norm. In Fig. 5, we initialize a
chain of emitters in the state with the highest phase difference
(m = N) and let it evolve freely over time. At distinct time

points, we compute the logarithmic negativity for each emitter
(i.e., we choose our bipartite system to consist of the ith
emitter and the rest of the chain). One can see that the amount
of entanglement is even in the initial state significantly larger
in the center of the chain. Over time, this behavior is retained,
and correlation is only slowly lost due to excitation loss of
the chain. Even at t = 100γ −1, there still is considerable
entanglement in the system.

V. SPECTROSCOPY OF THE COLLECTIVE
PURCELL EFFECT

We now generalize the formalism developed for the single
quantum emitter case to many coupled quantum emitters with
special focus on addressing collective subradiant states. In a
first step, we derive the cavity transmission function in the
linear regime showing the occurrence of collective resonances
of different radiative natures (subradiant and superradiant)
and the scaling of the cooperativity when proper illumination
techniques (matching phase and energy of the collective sub-
radiant resonances) are employed. We then look at collective
cooperative effects on output field squeezing, photon-photon
correlations, and the enhancement of the overall ensemble
Kerr nonlinearity. We find that in all these investigations,
enhancement is always reached in the cooperative collective
regime (where the interacting ensemble shows a much higher
cooperativity than a noninteracting ensemble).

A. Subradiant enhancement of cavity-emitter cooperativity

In order to perform a classical analysis of the response of
a cavity weakly coupled to N interacting quantum emitters
(deriving the amplitude transmission), it suffices to solve
the coupled equations of motion for classical averages. In a
compact matrix form, this is written as the following equa-
tions of motions [15],

α̇ = −(κ − i�c)α + η − iG · β, (56a)

β̇ = i�eβ − i�β − iGα − �β, (56b)

where now β and G are column vectors with entries βi and
gi. The matrices � and � have the elements �i j and γi j ,
respectively. In steady state, the transmission coefficient for
the cavity amplitude reads

tc = κ

−i�c + κ + G�G/[−i�eff(�e) + γeff(�e)]
, (57)

where the effective �e-dependent collective energy shifts and
linewidths are given by

�eff(�e) = Im

{
G�G

G�(−i�e1 + i� + �)−1G

}
, (58a)

γeff(�e) = Re

{
G�G

G�(−i�e1 + i� + �)−1G

}
. (58b)

In analogy to the single emitter case, we can define an
effective N-emitter cooperativity by

Ceff(�e) = G�G
κγeff(�e)

. (59)
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FIG. 6. Scaling of the effective cooperativity with the number
of emitters in an equidistant chain. Strong collective effects are
present when the emitters are closely spaced at d = 0.1λe, leading
to distinct scalings of the cooperativity. As a reference, we plot the
cooperativity for independent emitters, which scales linearly with
the number of emitters. The dashed line indicates the scaling of the
subradiant case with N4 (note that a simple polynomial fit returns
a scaling of approximately N3.81±0.01). The super- and subradiance
is caused by symmetric (gi = g) and asymmetric [gi = (−1)ig] cou-
pling, respectively. We chose the parameters γ = κ/20 = 5g such
that for all N we are in the regime where NC 	 1.

The message of the above equation is that the numerator and
denominator no longer share the same dependency on the
individual emitter properties (such as the dipole moment).
Thus, a much larger effective cooperativity can be reached if
one manages to excite a subradiant collective state for which
the effective decay rate is small.

Note that, as mentioned before, in addition to matching
the symmetry of the collective state one wants to address,
one also has to match the state’s energy. The cavity has to
be tuned to fulfill the condition �eff(ωc − ωe) = 0, such that
at the point of resonance where ωc = ω� the collective state
is also resonant. This is straightforward to do numerically.
The distinct scaling of the cooperativity is shown in Fig. 6.
It can be seen that the subradiant enhancement of the effective
cooperativity shows a beneficial scaling with the number of
emitters with approximately N4. It has been shown that the
lowest decay rate theoretically possible reduces exponentially
with the number of emitters [42]. The most robust states that
can be reached in reality, though, scale with N−3 [43]. This,
combined with the collective enhancement of the coupling
to the cavity mode with N , yields the scaling observed in
Fig. 6. Deviations from the N4 scaling are due to imperfect
addressing of subradiant states as well as to finite-size effects.

On the other hand, the superradiant decay almost com-
pensates the enhancement of the coupling with N for small
numbers of emitters, since in that case also the decay rate
scales approximately linear. This keeps the effective cooper-
ativity constant at the value for a single emitter. Again, due
to imperfect resonance matching and finite-size effects, the
decay rate does not show perfect linear scaling and saturates
at some point. The enhanced coupling is therefore no longer
perfectly compensated for larger N and we again observe
a linear enhancement of the cooperativity. However, the
effective cooperativity affected by superradiance can never
surpass the cooperativity of the same number of independent
emitters.

Besides the number of quantum emitters, another parame-
ter on which the collective modification of the cooperativity

strongly depends is the distance between the emitters. It
governs the strength of the dipole-dipole interactions and sub-
sequently any enhancement or reduction of the light-emitter
interactions. Systematic investigations of the dependence of
super- and subradiance on the emitter separation have been
performed [42,43]. At sufficiently small distances—which is
the regime we consider here—the collective decay has been
shown to be a monotonous function of the particle-particle
separation [42]; i.e., collective effects increase as the dis-
tance between emitters decreases. Furthermore, disorder in
the emitter positions only marginally affects subradiance and
can even lead to more long-lived states [31].

B. Nonclassical collective effects in detected fields

We can follow the same procedure as for a single emitter
to investigate the squeezing at the output port. From Eq. (22),
we obtain the vector equations for the quantum fluctuations in
the form

˙̂a = −(κ − i�c)â − iG · σ̂ + √
κ âin + √

κ b̂in, (60a)

˙̂σ = Aσ̂ + Bσ̂z + iGzâ − ξ̄, (60b)

˙̂σ
z = −2γ σ̂z + Kσ̂ + K∗σ̂† + 2iGβ â† − 2iG∗

β â + 2ξ̄
z
.

(60c)

We have defined the modified coupling vectors Gz =
(z1g1, . . . , zN gN )� and Gβ = (β1g1, . . . , βN gN )�. The cou-
pling matrices are given by

A jk = −(γ − i�e)δ jk + (1 − δ jk )(i� jk + γ jk )z j, (61a)

B jk = δ jk

⎛
⎝ig jα +

∑
l �= j

(i� jl + γ jl )βl

⎞
⎠, (61b)

K jk =
⎛
⎝2ig jα

∗ − 2
∑
l �= j

γ jkβ
∗
l

⎞
⎠δ jk − 2(1 − δ jk )γ jkβ

∗
j .

(61c)

We can now express Eqs. (60) in vector form, v̇ = Mv +
Nvin, in analogy with the single-emitter case, with the proper
matrix definitions. The drift matrix is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(κ − i�c) 0 −iG� 0� 0�

0 −κ − i�c 0� iG� 0�

iGz 0 A 0 B

0 −iGz 0 A∗ B∗

−2iG∗
β 2iGβ K K∗ −2γ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (62)

where 0 is a vector containing N zeros and 0 is a N × N
matrix with only zero elements. The matrix multiplying the
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FIG. 7. Cooperative effects of four coupled emitters. Plots of
(a) the variance of the detected x quadrature, (b) the g(2)(0) func-
tion, and (c) the photon number with its variance for four coupled
emitters around the antiresonance for subradiant, superradiant and
independent cases. The parameters are g = 2γ = κ/10, η = κ/100,
and T = 2 × 104κ−1, with the emitter dipoles oriented perpendicular
to the cavity axis and a separation of the emitters of 0.3λe.

input noise operators is

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
κ 0

√
κ 0 0� 0� 0�

0
√

κ 0
√

κ 0� 0� 0�

0 0 0 0 −√
2γ 1 0 0

0 0 0 0 0 −√
2γ 1 0

0 0 0 0 0 0
√

2γ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (63)

Finally, the input noise correlation matrix in the many emitter
case is

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0� 0� 0�

0 0 0 0 0� 0� 0�

0 0 0 1 0� 0� 0�

0 0 0 0 0� 0� 0�
0 0 0 0 0 Cββ Cβz

0 0 0 0 0 0 0
0 0 0 0 0 C†

βz Czz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (64)

where Cββ is the correlation matrix whose elements are given
by Eq. (9a), and analogous for the other indexed C matrices
(see Appendix E). Note that Cβz = C†

zβ .
With the help of these matrix definitions, it is straight-

forward to compute all figures of interest. All expressions
for the field operators and variances are the same as for the
single-emitter case; we merely have to insert the correspond-
ing output spectrum matrix elements obtained for the many
emitter case. The output spectrum matrix can be computed
with the matrices above using Eq. (31).

The resulting higher order averages are shown in Fig. 7.
There, we compare four independent, subradiant [asymmetric
coupling, gi = (−1)ig] and superradiant (symmetric coupling,
gi = g) emitters. Note that, as in the discussion of the effective
cooperativity, we match the cavity to the addressed collective
state by choosing the cavity resonance such that �eff(ωc −
ωe) = 0.

The detected photon number and its standard deviation
is depicted in Fig. 7(c) and, as in the single-emitter case, it
exhibits the same behavior as the transmission obtained from
the average amplitude [15]. The superradiance broadens and
lessens the antiresonance, while the subradiant emitters lead
to a very deep but narrow antiresonance.

As for the quadrature variance and second-order coherence
function shown in Figs. 7(a) and 7(b), the clear overall point
here is this: Compared to independent emitters, superradiance
(slightly) diminishes all nonlinear effects (see insets), while
subradiance offers enhancements by orders of magnitude.
Squeezing and antibunching both occur around the resonance
(as for the single emitter in the weak coupling regime). How-
ever, both effects are distinctly larger in a frequency range
much smaller than the cavity linewidth when the emitters are
in a subradiant state. This enhancement is a signature of the
counterintuitive effect that subradiant systems exhibit stronger
classical dipoles: The stationary excited state population and
thus the stationary magnitude of the induced dipole moment
are inversely proportional to the spontaneous decay rate of
the considered state. Therefore, as we see in Fig. 7, nonlinear
effects such as squeezing and antibunching increase in conse-
quence of the inhibited decay of a subradiant state. In contrast
to this, superradiant states exhibit smaller stationary values for
their collective dipole moments. However, the broadening of
the effective linewidth due to superradiance is less prominent
compared to the suppression of the decay in subradiant states.
Going from the independent emitter to the superradiant case,
there is thus a decrease in these quantum effects. Compared
to the large enhancement due to subradiance, however, this
reduction is somewhat less significant.

C. Collective nonlinear effects

The vector of individual classical dipoles can be expressed
in steady state as

βββ (1) = −iη[(κ − i�c)(i� + � − i�e1) + GG�]−1G. (65)

We then find the next order correction, similarly to the single-
emitter case, by writing βββ ≈ βββ (1) + βββ (3) (see Appendix F for
details) and obtain a compact expression

βββ (3) = 2iη
∑N

j=1 P jβββ
(1)βββ (1)†P j

(κ − i�c)(i� + � − i�e1) + GG�

×
(

G − i

η
[(κ − i�c)(i� + �̃) + GG�]β(1)

)
, (66)

where �̃ = � − γ 1 and P j is the projector on the jth unit
vector. This describes the collective cooperative Kerr effect
where the induced nonlinear polarization of each emitter
in the ensemble depends on the collective response of all
the other emitters. As a basis for comparison, we estimate
that for independent emitters, illuminated symmetrically, the
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FIG. 8. Kerr nonlinearity for coupled quantum emitters. Plot of
transmission functions in the linear and nonlinear approximations for
(a) symmetric and (b) asymmetric excitation of four equally spaced
emitters at distance d = 0.07λe. The corresponding nonlinearity is
plotted in (c) for symmetric and (d) for asymmetric addressing com-
pared to the independent emitter case (dashed line obtained setting
d 
 λe). The remaining parameters here are g = κ/10, γ = κ/20,
and η = κ/100. Note that no frequency matching was assumed, such
that ωe = ωc and a scan of the laser frequency will consequently
hit all the collective states (�c = �e = �), producing a set of four
antiresonances.

maximum linear response per emitter (they all respond
equally to the excitation) is β

(1)
j (� = 0) = iCeff/(1 +

Ceff )η/(Ng). In particular, for N = 1, one would have
β (1)(� = 0) = iC/(1 + C)η/g. Notice that an increase in N
leads to an increase in the cooperativity such that the factor
Ceff/(1 + Ceff ) increases but eventually saturates at unity. The
other factor decreases with N such that, in the many-emitter
limit, the per-emitter nonlinearity decreases. Emitter-emitter
coupling, on the other hand, can strongly modify the width
of the antiresonance and consequently strongly enhance the
overall nonlinearity.

This is illustrated in Fig. 8. We consider a system of four
coupled emitters exhibiting four collective states with ener-
gies approximately given by Eq. (51). Three of these states
are subradiant while the superradiant state is energetically
located at the frequency ωe + 2�12 cos(π/5) on the right of
the cavity resonance. We drive the system either symmet-
rically with G = (g, g, g, g)� or asymmetrically with G =
(g,−g, g,−g)�. On the left side, in Figs. 8(a) and 8(c), the
symmetric addressing partially overlaps with one subradiant
state and one superradiant state. The coupling to the other
two states is negligible. At the point where the laser fits the
displaced collective states, the collective nonlinearity (shown
as the norm of the βββ (3) vector) exhibits a large enhancement.
The superradiant antiresonance, on the other hand, shows a
decrease from the independent emitter’s maximum nonlin-
earity (dashed line evaluated at the origin). Notice that in
the independent case the four collective states have the same
degenerate energy equal to ωe. For asymmetric driving, the

FIG. 9. Behavior of the Kerr nonlinearity. (a) The nonlinearity
as a function of N for a chain with separation d = 0.07λe. We
observe different scaling laws in the limit where N 
 1. While
for independent emitters the nonlinearity attains the scaling with
1/

√
N7, in the case of asymmetric driving (subradiance) a much

more robust scaling with 1/
√

N is found. Even for symmetrically
coupled emitters (superradiance) the nonlinearity remains larger due
to the presence of collective shifts. (b) The two-emitter nonlinearity
as a function of the interparticle distance d . The light blue area
highlights where the nonlinearity for asymmetric addressing (blue,
solid line) is larger than for symmetric addressing (red, dash-dotted
line). The orange region highlights the opposite case. The regions
coincide with γ12 > 0 (blue) and γ12 < 0 (orange, 0.5λe � d � λe).
Note that at extremely small distances the energetic shift �12 is
so dominant that even under symmetric addressing the nonlinearity
surpasses the independent one, despite the emitters being almost
perfectly superradiant. Note that we chose a small driving strength,
η = 10−4κ , in order to ensure that the excited state population re-
mains sufficiently small. This is why at a first glance the nonlinearity
appears to be a lot smaller than the one shown in Fig. 8. The
remaining parameters were γ = κ/20, g = κ/10.

laser encounters two subradiant collective states and shows
the corresponding enhancement in the nonlinearity.

In order to further investigate the physics here, we can
look at two special cases. First, consider an ensemble of
independent emitters all of which couple equally to the cavity
mode. At resonance, we find that the magnitude of the Kerr
nonlinearity is

|β(3)(� = 0)| = 2η3

N

√
(NC)3

γ 3(1 + NC)8κ3
. (67)

In the limit of many emitters, N 
 1, one can see that the
nonlinearity at resonance scales as 1/

√
N7. This is expected as

in this limit the ensemble of emitters more closely resembles
a harmonic oscillator making the entire system linear. The
situation is much less trivial for coupled emitters. The scaling
of the collective Kerr nonlinearity with the number of emitters
is shown in Fig. 9(a). There, it can be seen that depending
on the symmetry of the coupling to the cavity mode, the
scaling down with N is drastically different. Namely, we
find that even under symmetric addressing which leads to
superradiance, the nonlinearity is larger than for uncoupled
emitters. As shown below, this is due to the presence of
collective shifts. Eventually, though, the nonlinearity attains
a scaling close to the independent case in the limit of many
emitters. Asymmetric addressing, on the other hand, leads
to a completely different behavior. Since not only collective
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shifts are present, but also the linewidth is reduced due to
subradiance, the resulting Kerr nonlinearity is much more
robust; i.e., it scales down with 1/

√
N .

The second special case we want to look at is the smallest
collective system, which consists of two emitters only. If we
consider symmetric (+) and asymmetric (−) addressing, i.e.,
G = (g,±g)T , the collective shifts amount to ±�12. Matching
the cavity frequency to this collective resonance, we find the
Kerr nonlinearity at resonance (� = �c = �e ∓ �12)

|β(3)(� = 0)| =
√

C3
eff

(1 + Ceff )3

η3
√(

γ 2 + �2
12

)
√

[γeff(1 + Ceff )]5κ3
. (68)

The first term above is the same as in β (1). The second term, on
the other hand, exhibits some peculiarities. Specifically, while
it is inversely proportional to the width of the antiresonance
γeff(1 + Ceff ), it also depends on the collective shifts �12.
Making use of subradiance can significantly decrease the
antiresonance width. However, it is eventually limited by the
decay channel constituted by the cavity with the rate Ng2/κ .
The shifts, though, can still compensate the broadening by the
cavity and increase the nonlinearity above the one exhibited
by decoupled emitters. At extremely small distances, where
the shifts start to diverge, this effect is so predominant that
it can even compensate for an additional broadening of the
antiresonance due to superradiance. This can be seen in
Fig. 9(b), where the behavior of the two-emitter nonlinearity
as a function of the interparticle distance is depicted. Since
the shifts also increase with the number of emitters, the same
argument applies to the fact that the symmetric nonlinearity
surpasses the independent one in Fig. 9(a). At moderate
particle-particle separation, the shifts are not too large, such
that the nonlinearity is essentially governed by the collective
decay [see Fig. 9(b)]. As the mutual decay rate γ12 changes
sign, symmetric addressing and asymmetric addressing switch
roles, such that the system becomes subradiant under symmet-
ric addressing and subsequently is more nonlinear.

VI. CONCLUSIONS

We have followed a quantum Langevin equations approach
to the input-output problem of an optical cavity containing
an ensemble of N coupled quantum emitters. Linearization
of operators around steady-state values in the weak exci-
tation regime allows one to compactly write the evolution
of quantum fluctuations and derive expectation values not
only for two-operator products but products of any number
of operators. In particular, we focused on describing the
properties of the reflected and transmitted output field as
well as of the detected fields (assuming a flat-window time
integration). We have developed the formalism first for the
case of a single quantum emitter coupled to an optical cavity
applicable both in the Purcell and strong coupling regimes. We
have then extended this formalism to the case of many emit-
ters where numerical simulations become difficult and found
the signature of collective cooperative behavior: N emitters
do not only imprint an N times larger effect on the cavity
field but far beyond this linear scaling. The results originally
shown in Ref. [15] were extended. There, the cooperativity
was shown to increase drastically with N when asymmetric,

energetically matched excitation schemes were employed to
prepare collective subradiant states. The formalism developed
allows one to go beyond the classical problem and describe
quantum properties of the output field. Moreover, the same
cooperative collective effects, stemming from the coupling
among emitters, lead to a strong enhancement of the nonlinear
response of the cavity-embedded ensemble around specific
antiresonances. A more detailed study of such effects (which
are promising for nonlinear quantum optics applications) will
be tackled in a future publication aiming at deriving precise
conditions for the antiresonance points where the effect could
be optimized even for distances achievable by optical lattice
trapping techniques.
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APPENDIX A: COLLECTIVE NOISE IN QUANTUM
LANGEVIN EQUATIONS

For a system operator Ô, for each individual Lindblad
collapse operator ĉ acting at rate γc and with associated input
noise ĉin, one can derive the QLE including the noise terms as
[46]

˙̂O = i

h̄
[H, Ô] − [Ô, ĉ†]{γcĉ +

√
2γcĉin}

+ {γcĉ† +
√

2γcĉ†
in}[Ô, ĉ] (A1)

However, collective incoherent dynamics represented by
nondiagonal Liouvillian terms cannot be directly cast into
Langevin equations. One instead has to first write the total
decay term as a sum of independent decay channels. This is
achieved by a basis transformation with the matrix T (such
that T−1 = T�) that diagonalizes the decay rate matrix �,

diag(λ1, . . . , λN ) = T��T, (A2)

where λ j is the jth eigenvalue of the decay matrix. Defining a
set of damping operators

�̂ j :=
∑

k

(T�) jk Ŝk, (A3)

we may write [42]

Le[ρ] =
∑

i

λi(2�̂iρ�̂
†
i − �̂

†
i �̂iρ − ρ�̂

†
i �̂i ). (A4)

Obviously, this Lindblad term is diagonal and hence the QLE
may be cast into the form given by Eq. (A1). The input noise
terms of the emitter operators σ̂i,in follow the transformation
rules given by Eq. (A3). Transforming the QLE for any emitter
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operator Ô back into the nondiagonal form gives the usual
terms for the deterministic parts. For the noise terms, however,
we have∑

j

[Ô, �̂
†
j ]
√

λ j�̂ j,in = √
γ
∑

j

[Ô, Ŝ†
j ]ξ j (t ), (A5)

∑
j

[Ô, �̂ j]
√

λ j�
†
j,in = √

γ
∑

j

[Ô, Ŝ j]ξ
†
j (t ), (A6)

where we have implicitly defined our correlated emitter noise
terms ξ j as

ξ j (t ) :=
∑
k,l

√
λk

γ
T jk (T−1)kl σ̂

−
l,in. (A7)

Hence, the QLE for any emitter operator Ô is

˙̂O = i[H, Ô] −
∑

i j

[Ô, Ŝ†
i ][γi j Ŝ j + δi j

√
2γ ξi(t )]

+
∑

i j

[γi j Ŝ
†
j + δi j

√
2γ ξ

†
i (t )][Ô, Ŝi], (A8)

with the spatially correlated white noise ξi. From the definition
of the noise, it is straightforward to show that

[ξi(t ), ξ †
j (t ′)] = hi jδ(t − t ′). (A9)

In order to evaluate the correlation functions of the modi-
fied collective input noise terms,

ξ̄ j = Ŝz
j (t )ξ j (t ), (A10)

ξ̄ z
j (t ) = 2[Ŝ†

j (t )ξ j (t ) + ξ
†
j (t )Ŝ j (t )], (A11)

we need to consider the commutation relations of the sys-
tem operators with the input noise terms ξ j (t ). To this end,
we write the collective input-output relation [46] which is
straightforward from the diagonal form of the QLEs,

�̂ j,in(t ) + �̂ j,out(t ) = √
2λ j�̂ j (t ). (A12)

Because of causality, it is clear that for any system operator
Ô,

[Ô(t ), �̂ j,in(t ′)] = 0, t ′ > t ; (A13)

i.e., the system does not depend on future input noise. For the
output, we can invert this reasoning such that �̂ j,out(t ′) com-
mutes with Ô(t ) if t ′ < t . Using these findings in combination
with the input-output relation from Eq. (A12), we obtain [46]

[Ô(t ), �̂ j,in(t ′)] = �(t − t ′)
√

2λ j[Ô(t ), �̂ j (t
′)], (A14)

where we defined � as the step function with the half-
maximum convention, i.e., �(0) = 1/2. Using the transfor-
mation between the diagonal operators and the correlated
noise operators, ξk (t ) = ∑

j

√
λ j/γ Tk j�̂ j,in(t ), we find the

commutation relations of a system operator with the corre-
lated input noise,

[Ô(t ), ξk (t ′)] = �(t − t ′)
√

2γ
∑

l

hkl [Ô(t ), Ŝl (t
′)]. (A15)

Using this, we can compute the correlation functions of the
modified input noise operators,

〈ξ̄ j (t )ξ̄ †
k (t ′)〉 = h jkδ(t − t ′)

〈
Ŝz

j (t )Ŝz
k (t ′)

〉
+ 〈

Ŝz
j (t )ξ †

k (t ′)ξ j (t )Ŝz
k (t ′)

〉
, (A16)

where we used the commutation relation from Eq. (A9). Using
the commutation rules from Eq. (A15), one can show that the
second term is proportional to �(t − t ′)�(t ′ − t ). Thus, it is
only finite if t = t ′ and does not contribute as a distribution.
In other words, an integral over any time interval (such as
our detection window) of this term vanishes. We can therefore
neglect this term and arrive at

〈ξ̄ j (t )ξ̄ †
k (t ′)〉 = h jkδ(t − t ′)

〈
Ŝz

j (t )Ŝz
k (t ′)

〉
, (A17)

which in the linearized regime yields Eq. (9a).
Proceeding, we have〈

ξ̄ z
j (t )ξ̄ z

k (t ′)
〉 = 4[h jkδ(t − t ′) 〈Ŝ†

j (t )Ŝk (t ′)〉
+ 〈Ŝ†

j (t )ξ †
k (t ′)ξ j (t )Ŝk (t ′)〉]. (A18)

Since ξ j (t ) and Ŝk (t ′) commute if t � t ′ and ξ j (t ) applied to
the right vanishes, the second term in the above expression is
zero for t � t ′. The same reasoning applies to ξ

†
k (t ′) and Ŝ†

j (t )
for t � t ′, such that we have〈

ξ̄ z
j (t )ξ̄ z

k (t ′)
〉 = 4h jkδ(t − t ′)

〈
Ŝ†

j (t )Ŝk (t ′)
〉
, (A19)

which after linearizing gives the expression in Eq. (9b). Fi-
nally, we can use the same line of argument to derive the
correlation function 〈ξ̄ j (t )ξ̄ z

k (t ′)〉 in Eq. (9c).

APPENDIX B: STEADY-STATE LYAPUNOV EQUATION

The general solution for a system of N linearly coupled
QLEs with constant coefficients reads

v(t ) = eMt v(0) +
∫ t

0
dt ′eM(t−t ′ )Nvin(t ′). (B1)

When the real part of all eigenvalues of the drift matrix M
are negative, the system is stable and goes toward a steady
state where eMt vanishes and the transient solution (containing
information about the initial state) plays no role. In such
a case, for times t large enough such that steady state is
already reached, one can define (a time-independent) corre-
lation matrix V = 〈v(t )v�(t )〉 that is easily constructed with
the steady-state solution only,

V =
∫ t

0
dt ′eM(t−t ′ )DeMT (t−t ′ ),

where we have use 〈vin(t ′)vin(t ′′)�〉 = Cδ(t ′ − t ′′) and defined
the diffusion matrix as D = NCNT . The expression for C can
be computed from the input correlations and the results is
listed in the main text as Eq. (26). We can then derive a Lyua-
punov equation for the covariance matrix using integration by
parts

MV + VM� =
∫ t

0
dt ′MeM(t−t ′ )DeMT (t−t ′ ) + V M�

= eM(t−t ′ )DeM�(t−t ′ )
∣∣∣t
t ′=0

− VM� + VM�

= −D (B2)
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Notice that one can write a similar equation for
the symmetrized covariance matrix defined as Vi j =
(〈viv j〉 + 〈v jvi〉)/2, by a simple replacement of the diffusion
matrix with the symmetrized one D = N(C + C�)N�/2.

APPENDIX C: FOURIER ANALYSIS OF THE OUTPUT
AND THE DETECTED SIGNAL

1. Output spectrum

We define the Fourier transform for an arbitrary operator
Ô(t ) as

Ô(t ) = 1√
2π

∫ ∞

−∞
dωeiωt Ô(ω), (C1)

which we employ to transform the linear set of differential
equations to a set of coupled equations,

iωv(ω) = Mv(ω) + Nvin(ω). (C2)

This allows us to express the intracavity quantum fluctuations
in terms of the input noise as

v(ω) = (iω1 − M)−1Nvin(ω), (C3)

Furthermore, using input-output relations in the time domain

vout(t ) = N�v(t ) − vin(t ) (C4)

allows us to connect the output to the input as a simple matrix
multiplication,

vout(ω) = F(ω)vin(ω), (C5)

where F(ω) = [N�(iω1 − M)−1N − 1]. In the frequency
space, the response of the system ensures the preservation of
δ correlations,

〈vout(ω)v�
out(ω

′)〉 = SSSout(ω)δ(ω + ω′). (C6)

The system response for two-operator correlations is com-
pletely encoded in the spectrum matrix given by

SSSout(ω) = F(ω)CF�(−ω). (C7)

2. Time-integrated correlations

The output can be used directly to compute correlations for
time-integrated operators at equal times,

Vdet(t ) = 1

2T

∫ t+T

t−T
dt ′

∫ t+T

t−T
dt ′′ 〈vout(t

′)vout(t
′′)�〉 . (C8)

We then expand operators in terms of their Fourier compo-
nents and use the δ correlations in the frequency space. This
leads to the evaluation of the following integral:∫ t+T

t−T
dt ′

∫ t+T

t−T
dt ′′eiωt ′

e−iωt ′′ =
[

2 sin ωT

ω

]2

. (C9)

For sufficiently long detection times (much longer than the
characteristic bandwidth of the spectrum matrix), the sinc
function picks only the zero-frequency component (since we
are in a rotating frame, this corresponds to the laser fre-
quency),

Vdet = 1

πT

∫ ∞

−∞
dω

[
sin2 ωT

ω2

]
SSSout(ω) ≈ SSSout(0). (C10)

3. Resolving four-point correlations

Let us generally write expectation values for any combina-
tion of detected operators as Ri1i2i3i4 = 〈vi1

detv
i2
detv

i3
detv

i4
det〉. We

then connect these expectation values to the output operators
combinations for which Isserlis’ theorem applies, allowing
one to express any product of operators in sums of all different
products of two-point correlations as〈

v
i1
out(ω1)vi2

out(ω2)vi3
out(ω3)vi4

out(ω4)
〉

= S i1 i2
out (ω1)S i3 i4

out (ω3)δ(ω1 + ω2)δ(ω3 + ω4)

+S i1 i3
out (ω1)S i2 i4

out (ω2)δ(ω1 + ω3)δ(ω2 + ω4)

+S i1 i4
out (ω1)S i2 i3

out (ω2)δ(ω1 + ω4)δ(ω2 + ω3). (C11)

The integration over the detection time window will, of
course, again give rise to the sinc functions in the integrand;
in the long detection time limit, we then write the general
expression

Ri1i2i3i4 =S i1 i2
out (0)S i3 i4

out (0)+S i1 i3
out (0)S i2 i4

out (0)+S i1 i4
out (0)S i2 i3

out (0),

(C12)

which we can make use of to evaluate any four-point operator
correlations. For example, we can evaluate the first term in the
left-hand side of Eq. (42) as

〈b†
detbdetb

†
detbdet〉 = S43

out(0)S43
out(0) + S44

out(0)S33
out(0)

+S43
out(0)S34

out(0). (C13)

APPENDIX D: FREE SPACE SPATIAL FIELD DISTRIBUTION

In order to express the electric field amplitude as function of the emitter operators Ŝi, we follow an approach along the lines of
Ref. [33]. Recall that the Heisenberg equation for the photon annihilation operator of a mode with wave vector k and polarization
λ coupled to N identical quantum emitters is

˙̂Ak,λ(t ) = −igk,λ

∑
j

Ŝ j (t )e−ik·r j ei(ωk−ωe )t . (D1)

Here, gk,λ = √
ωk/(2h̄ε0V ek,λ · μ is the dipole interaction between the mode and the emitter with dipole moment μ. Note that

the equation above is already written in a frame rotating at ωk − ωe. The formal solution of the above equation is

Âk,λ(t ) = Âk,λ(0) − igk,λ

∑
j

∫ t

0
dt ′Ŝ j (t

′)e−ik·r j ei(ωk−ωe )t ′
. (D2)
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The initial value above corresponds to the input of the mode. Assuming that the modes surrounding the emitters are in vacuum,
this term does not contribute to any averages. We therefore drop it in the following calculation.

Performing the Markov approximation, we can already see that it is possible to express the field annihilation operators at any
time directly by the emitter operator at equal time.

Inserting the expression obtained for Âk,λ results in the electric field amplitude

Ê+(r, t ) = −i
∑

j

Ŝ j (t )
∑

k

f (k)
∫ t

0
dt ′e−i(ωk−ωe )(t−t ′), (D3)

where

f (k) =
∑

λ

√
h̄ωk

2ε0V
gk,λek,λeik·(r−r j ) = ωk

2ε0V

(
μ − μ · k

k2
k
)

eik·(r−r j ). (D4)

In the last step, we exploited the liberty of choosing μ to lie in the plane spanned by k and ek1 to resolve the sum over the
polarization λ = 1, 2.

Since the set of free space modes is continuous, we can replace the sum over wave vectors by an integral

∑
k

→ V

(2πc)3

∫
dωkω

2
k

∫
d�k, (D5)

where we have already written the integral in spherical coordinates in k space. The part of the expression that has an angular
dependence can be separated and the solid angle integral can be solved (for arbitrary r and k),

∫
d�k

(
μ − μ · k

k2
k
)

eik·r = 2π

(
μ + (μ · ∇r )

k2
∇r

)∫ π

0
dθ sin θeikr cos θ . (D6)

Here, we already solved the polar angle integral obtaining 2π and written the products with k as derivatives of the exponential
function. The remaining integral is straightforward to solve and the problem of solving the solid angle integral surmounts to
applying the ∇ operator.

Inserting the result back into the electric field, we obtain

Ê+(r, t ) = −iμ

ε0(2π )2c3

∑
j

Ŝ j (t )
∫

dωkω
3
k

∫ t

0
dt ′e−i(ωk−ωe )(t−t ′)

∑
i∈{x,y,z}

Fi(k|r − r j |)ei, (D7)

where ex,y,z is the respective unit vector in Cartesian coordinates and

Fx(kr) = − cos θ sin θ cos φ

[
sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

]
, (D8a)

Fy(kr) = − cos θ sin θ sin φ

[
sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

]
, (D8b)

Fz(kr) = sin2 θ
sin(kr)

kr
+ (1 − 3 cos2 θ )

[
cos(kr)

(kr)2
− sin(kr)

(kr)3

]
. (D8c)

In order to solve the time integral, we make use of the Sokhotski formula,

∫
dωkω

3
k

∫ t

0
dt ′e−i(ωk−ωe )(t−t ′)Fi(kr) =

∫
dωkω

3
k

[
−iP 1

ωk − ωe
+ πδ(ωk − ωe)

]
Fi(kr), (D9)

where P denotes the principal value. The integral proportional to the δ distribution is straightforward to solve, while the principal
value integrals require some more elaborate (yet standard) methods of complex contour integration.

Finally, the resulting electric field is given by

Ê+(r, t ) = −i
3γ

4μ

∑
j

S j (t )
∑

m∈{x,y,z}
[Fm(ke|r − r j |) − iGm(ke|r − r j |)], (D10)
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with

Gx(kr) = − cos θ sin θ cos φ

[
cos(kr)

kr
− 3

sin(kr)

(kr)2
− 3

cos(kr)

(kr)3

]
, (D11a)

Gy(kr) = − cos θ sin θ sin φ

[
cos(kr)

kr
− 3

sin(kr)

(kr)2
− 3

cos(kr)

(kr)3

]
, (D11b)

Gz(kr) = sin2 θ
cos(kr)

kr
− (1 − 3 cos2 θ )

[
sin(kr)

(kr)2
+ cos(kr)

(kr)3

]
. (D11c)

Note that one can easily calculate the dipole interaction with the field given by Eq. (D10). This selects the component parallel
to the dipole moment μ (the z component) and we obtain the effective emitter dipole-dipole interactions [33],

�i j = −3γ

4
Gz(ke|ri − r j |), (D12)

γi j = γ hi j = 3γ

2
Fz(ke|ri − r j |). (D13)

The intensity shown in Fig. 4 is the average intensity at t = 0 given by

I (r) = 〈Ê(r) · Ê(r)〉 = 〈Ê+(r) · Ê−(r)〉 . (D14)

APPENDIX E: CORRELATION MATRIX FOR MANY EMITTERS

The definition of the many-emitter autocorrelation matrix as given in Eq. (64) is rather condensed. Hence, here we specify
once again what the matrix elements required to write this matrix down are. In essence, it boils down to the noise correlation
functions given in Eqs. (9). In particular, the N × N matrices used to define the overall autocorrelation matrix C have the matrix
elements

〈ξ̄ j (t )ξ̄ †
k (t ′)〉 = C jk

ββδ(t − t ′), (E1a)

〈ξ̄ z
j (t )ξ̄ z

k (t ′)〉 = C jk
zz δ(t − t ′), (E1b)

〈ξ̄ z
j (t )ξ̄ †

k (t ′)〉 = C jk
zβδ(t − t ′), (E1c)

〈ξ̄ j (t )ξ̄ z
k (t ′)〉 = C jk

βzδ(t − t ′). (E1d)

APPENDIX F: NONLINEAR CORRECTION

Starting from the QLEs for N emitters which are given by

α̇ = −(κ − i�c)α + η − iG�β, (F1)

β̇ = [(i�e − γ )1 + z(i� + �̃)]β + izGα, (F2)

where we define �̃ = � − γ 1, z = ∑N
j=1 z jP j , and P j = e je�

j (e j being a Cartesian basis vector). By employing the relation
z j ≈ 2|β j |2 − 1, we obtain the equations

α̇ = − (κ − i�c)α + η − iG�β, (F3)

β̇ = −(i� + � − i�e)β − iGα + 2|β|2(i� + �̃)β + i2|β|2Gα, (F4)

with the matrix |β|2 = ∑N
j=1 P jββ†P j . For the steady-state scenario with α̇ = 0, we obtain α = (η − iG�β)/(κ − i�c).

Substituting this into the steady-state equation (β̇ = 0) of Eq. (F4) results in

0 = −[(−i�c + κ )(−i�e1 + i� + �) + GG�]β − iGη + i2|β|2Gη + 2|β|2[(i�c + κ )(i� + �̃) + GG�]β. (F5)

With the linear solution being

β(1) = −iη[(κ − i�c)(i� + � − i�e1) + GG�]−1G, (F6)
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the next order of correction can be found by introducing the perturbative ansatz β ≈ β(1) + β(3) into Eq. (F5), which leads to

β(3) = 2[(κ − i�c)(i� + � − i�e) + GG�]−1

⎛
⎝ N∑

j=1

P jβ
(1)β(1)†P j

⎞
⎠(iηG + [(κ − i�c)(i� + �̃) + GG�]β(1) ). (F7)

Here, we have ignored all terms with O(η4). The term β(3) describes the collective Kerr nonlinearity of the N-emitter system.
For N = 1, this simplifies to β (3) = −2β (1)|β (1)|2[1 − i(g/η)β (1)].

The modified transmission amplitude can be obtained from the relation t = [κ − i(κ/η)G�(β(1) + β(3) )]/(κ − i�c). For a
single emitter, we have

tc = t (1)
c

(
1 + 2g4η2

[(γ − i�e)(κ − i�c) + g2]|(γ − i�e )(κ − i�c) + g2|2
)

, (F8)

where t (1)
c = κ/[(κ − i�c) + g2/(γ − i�e)] is the result for the transmission in the linear case.
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