
PHYSICAL REVIEW A 99, 043842 (2019)

Cross-spectral purity of nonstationary light
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The concept of cross-spectral purity of light, established by Mandel for stationary optical fields, is extended
to nonstationary fields. Separability conditions that ensure the cross-spectral purity of nonstationary light are
derived in the space-frequency and space-time domains. It is also shown that the property of cross-spectral purity
is not strictly preserved on propagation of fields with any appreciable spectral bandwidth. Further, we introduce a
method for generating cross-spectrally pure (stationary and nonstationary) fields from spatially incoherent light
sources by means of achromatic Fourier-transform systems.
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I. INTRODUCTION

The concept of cross-spectral purity, introduced by Mandel
in 1961 [1], is one of the most fundamental yet least widely
recognized concepts in optical coherence theory. Physically,
in the case of stationary fields, cross-spectral purity amounts
to two-beam interference with the superposition field having
the same normalized spectrum as the input waves. Mathemat-
ically it is manifested in a reduction formula which expresses
the complex degree of coherence as a product of spatial and
temporal coherence factors [2]. The concept of cross-spectral
purity has more recently been extended to electromagnetic
fields [3–7] and examined in the context of spectral modula-
tion [8], diffusers [9], ghost imaging [10], statistical similarity
[11], and scattering [12]. All of the studies on cross-spectral
purity thus far have dealt with stationary optical fields.

In this paper we extend the concept of cross-spectral purity
into the domain of nonstationary fields, such as trains of short
optical pulses. We begin, in Sec. II, by briefly recalling the
concept of cross-spectral purity of stationary light and estab-
lishing the relevant terminology. The extension to nonstation-
ary fields is presented in Sec. III, where the criteria for cross-
spectral purity of nonstationary light fields are established.
We proceed to show that, unlike with stationary fields, cross-
spectral purity of nonstationary wave fields requires that the
path difference involved in the two-beam interference is zero.
Reduction formulas for cross-spectrally pure nonstationary
light in the space-frequency and space-time domains are then
derived. In Sec. IV we show that the property of cross-spectral
purity is, in general, not preserved on propagation. We further
introduce, in Sec. V, methods for generating cross-spectrally
pure optical fields from incoherent sources with the aid of
achromatic Fourier-transform systems. Conclusions and some
final remarks are provided in Sec. VI.

*matias.koivurova@uef.fi

II. CROSS-SPECTRALLY PURE STATIONARY LIGHT

Let us consider a superposition of light from two points r1

and r2 of a wave field with a spectral representation E (r; ω),
formed at some observation point R. Denoting by τ the
temporal delay between the fields originating from r1 and r2,
the superposition field has the spectral representation

E (R; ω) = E (r1; ω) + E (r2; ω) exp(iωτ ). (1)

Superpositions of this kind can be implemented with a
variety of interferometric schemes, but we do not specify
any particular approach. One of the possible methods is
the classic Young’s two-pinhole interferometer [13], which,
however, involves somewhat inconvenient (weakly frequency-
dependent) proportionality factors. These can be avoided by
forming the superposition with wavefront folding or shearing
interferometers.

The spectral density (or the spectrum) of the field at
point r is defined as S(r; ω) = 〈|E (r; ω)|2〉, where the an-
gle brackets denote ensemble averaging. A stationary light
field is called cross-spectrally pure if the normalized spectral
density

s(r; ω) = S(r; ω)∫ ∞
0 S(r; ω)dω

(2)

of the superposition is the same as the normalized spectra of
the fields at the two points r1 and r2 for some value τ = τ0 of
the time delay, i.e., if

s(R; ω) = s(r1; ω) = s(r2; ω), (3)

when τ = τ0. It is then possible to show (see Sec. 4.5.1 of
[13]) that the condition for cross-spectrally pure stationary
light is

μ(r1, r2; ω) = γ (r1, r2; τ0) exp (iωτ0), (4)

where μ(r1, r2; ω) is the complex degree of spectral (spatial)
coherence of the light field at points r1 and r2 and γ (r1, r2; τ0)
is the corresponding complex degree of (temporal) coherence
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at τ = τ0. Moreover, the so-called reduction formula [13]

γ (r1, r2; τ ) = γ (r1, r2; τ0)γ (r, r; τ − τ0), (5)

where r = r1 or r = r2, holds. This formula expresses the
complex degree of coherence as a product of a term that
characterizes the spatial coherence (at points r1 and r2) and
a term that characterizes the temporal coherence of the field at
a single point (r1 or r2).

III. CROSS-SPECTRALLY PURE
NONSTATIONARY LIGHT

In the case of nonstationary light, coherence in the space-
frequency domain is characterized by the two-frequency
cross-spectral density (CSD) function, introduced at points r1

and r2 as the ensemble average:

W (r1, r2; ω1, ω2) = 〈E∗(r1; ω1)E (r2; ω2)〉. (6)

We define the cross-spectral purity of a nonstationary
field by demanding that not only the normalized form
(2) of the spectral density S(r; ω) = W (r, r; ω,ω) but also
the two-frequency complex degree of spectral (spatial)
coherence

μ(r1, r2; ω1, ω2) = W (r1, r2; ω1, ω2)√
S(r1; ω1)S(r2; ω2)

, (7)

evaluated at a single point r1 = r2, is the same at points r1, r2,
and R:

μ(R, R; ω1, ω2) = μ(r1, r1; ω1, ω2) = μ(r2, r2; ω1, ω2).

(8)

On inserting Eq. (1) into the definition (6), we find that the
two-frequency CSD at point R is given by

W (R, R; ω1, ω2) = W (r2, r2; ω1, ω2) exp[−i(ω1 − ω2)τ ]

+ W (r2, r1; ω1, ω2) exp(−iω1τ )

+ W (r1, r2; ω1, ω2) exp(iω2τ )

+ W (r1, r1; ω1, ω2). (9)

In particular, the spectral density at point R takes on the form

S(R; ω) = S(r1; ω) + S(r2; ω)

+ 2Re[W (r1, r2; ω,ω) exp(iωτ )], (10)

where the CSD Hermiticity property W (r2, r1; ω,ω) =
W ∗(r1, r2; ω,ω) has been used and Re denotes the real part.
Equation (10) constitutes a spectral interference law for non-
stationary light.

Let us first consider the necessary condition of Eq. (3)
for cross-spectrally pure nonstationary light and denote
S(r2; ω) = CS(r1; ω), where C = C(r1, r2) is a spatial pro-
portionality factor. Making use of Eq. (7), we may cast
Eq. (10) into the form

S(R; ω) = S(r1; ω){1 + C + 2
√

C|μ(r1, r2; ω,ω)|
× cos[α(r1, r2; ω,ω) + ωτ ]}, (11)

where α(r1, r2; ω,ω) is the phase of μ(r1, r2; ω,ω). This
result shows that we must demand τ = 0 for the equalities in
Eq. (3) to hold; otherwise spectral interference fringes would
appear. Hence nonstationary light can be cross-spectrally pure
only in the zero-time-delay region. This is in stark contrast
to stationary light, which never exhibits spectral interference
effects due to the inherent spectral incoherence.

On the basis of the result obtained above, Eqs. (9) and (10)
can be simplified into the forms

W (R, R; ω1, ω2) = W (r1, r1; ω1, ω2) + W (r2, r2; ω1, ω2) + W (r1, r2; ω1, ω2) + W (r2, r1; ω1, ω2) (12)

and

S(R; ω) = S(r1; ω){1 + C + 2
√

CRe[μ(r1, r2; ω,ω)]}, (13)

respectively. Again, the factor in the braces in Eq. (13) must not depend on frequency ω for Eq. (3) to hold. Making use
of Eq. (7) and the latter equality of Eq. (8), we find that W (r2, r2; ω1, ω2) = CW (r1, r1; ω1, ω2). We may then—after some
manipulations—express the complex degree of spectral coherence at point R in the form

μ(R, R; ω1, ω2) = μ(r1, r1; ω1, ω2)
1 + C + [W12(ω1, ω2) + W21(ω1, ω2)]/W11(ω1, ω2)

1 + C + 2
√

CRe[μ(r1, r2)]
, (14)

where in the numerator we have denoted the spatial dependence with subscripts for brevity and have written
Re[μ(r1, r2; ω,ω)] = Re[μ(r1, r2)] in the denominator. For the first equality in Eq. (8) to hold it is required that

W (r1, r2; ω1, ω2) + W (r2, r1; ω1, ω2)

W (r1, r1; ω1, ω2)
= 2

√
CRe[μ(r1, r2)]. (15)

The left-hand side of this equation, which is generally com-
plex valued, depends on two frequency coordinates ω1 and
ω2, whereas the real-valued right-hand side is independent of
frequency.

When r2 = r1, whereby both C and μ(r1, r1) are unity,
Eq. (15) is identically satisfied. It is conceivable that there

exist correlation functions which satisfy Eq. (15) at some
special points. However, we demand this equality to hold for
all values of r2 within the wave field; when r2 differs from r1,
this condition is fulfilled given that the space and frequency
dependencies of the CSD separate

W (r1, r2; ω1, ω2) = Ws(r1, r2)Wf (ω1, ω2), (16)
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where Ws(r1, r2) and Wf (ω1, ω2) are correlation functions. In
this case the left-hand side of Eq. (15) is also independent of
frequency and reduces precisely to the right-hand side, which
is a function of the spatial coordinates r1 and r2 only.

The result expressed by Eq. (16) shows that nonstation-
ary light is cross-spectrally pure over the whole field, if
the two-point two-frequency CSD separates into a product
of space- and frequency-domain correlation functions. The
spectral density is thus expressible as

S(r; ω) = Ws(r, r)Wf (ω,ω) = Ss(r)Sf (ω). (17)

Further, the complex degree of spectral coherence can be cast
into the form

μ(r1, r2; ω1, ω2) = μs(r1, r2)μf (ω1, ω2). (18)

Here the spatial correlation factor

μs(r1, r2) = Ws(r1, r2)√
Ss(r1)Ss(r2)

(19)

is independent of frequency, and the spectral correlation factor
is given by

μf (ω1, ω2) = Wf (ω1, ω2)√
Sf (ω1)Sf (ω2)

. (20)

We refer to Eq. (18) above as the space-frequency domain
reduction formula for cross-spectrally pure nonstationary light
fields.

Considering correlations in the space-time domain, we
make use of the two-time mutual coherence function (MCF)
of nonstationary fields, defined as

�(r1, r2; t1, t2) = 〈E∗(r1; t1)E (r2; t2)〉, (21)

where

E (r; t ) =
∫ ∞

0
E (r; ω) exp (−iωt )dω (22)

are the space-time domain realizations of the electric field.
In view of Eqs. (6), (21), and (22), the CSD and MCF are
connected by the Fourier-type relationship

�(r1, r2; t1, t2) =
∫∫ ∞

0
W (r1, r2; ω1, ω2)

× exp [i(ω1t1 − ω2t2)]dω1dω2. (23)

Hence the separability condition (16) for the CSD immedi-
ately implies a separability condition

�(r1, r2; t1, t2) = Ws(r1, r2)�t (t1, t2) (24)

for the MCF, where

�t (t1, t2) =
∫∫ ∞

0
Wf (ω1, ω2)

× exp [i(ω1t1 − ω2t2)]dω1dω2. (25)

The temporal intensity of a cross-spectrally pure field is
therefore

It (r; t ) = Ws(r, r)�t (t, t ) = Ss(r)I (t ), (26)

i.e., the spatial intensity distribution is the same in both
domains. The normalized form of the MCF, namely, the two-
point two-time complex degree of coherence, defined as

γ (r1, r2; t1, t2) = �(r1, r2; t1, t2)√
I (r1, t1)I (r2, t2)

, (27)

therefore factors into the product

γ (r1, r2; t1, t2) = γs(r1, r2)γt (t1, t2). (28)

Here the spatial correlation factor is time independent, and
fulfills

γs(r1, r2) = μs(r1, r2), (29)

whereas the temporal correlation factor is

γt (t1, t2) = �t (t1, t2)√
It (t1)It (t2)

. (30)

Equation (28), which we call the space-time domain reduction
formula for cross-spectrally pure nonstationary fields, is the
counterpart of the reduction formula (5) for stationary fields.
On the other hand, Eq. (29) is the nonstationary equivalent of
formula (4).

IV. PROPAGATION OF LIGHT FROM
CROSS-SPECTRALLY PURE SOURCES

Let us assume that the spectral electric field is known at
the plane z = 0, where the transverse coordinate is denoted
by ρ = (x, y), and consider its propagation into the positive
half space z > 0. The free-space propagation is governed
rigorously by the well-known angular spectrum representation
(see [13], Sec. 3.2), which states that the field at an arbitrary
point r = (x, y, z) is given by

E (r; ω) =
∫ ∞

−∞
A(κ; ω) exp[ikz(ω)z] exp (iκ · ρ)d2κ. (31)

Here κ = (kx, ky) is a two-dimensional spatial-frequency
vector,

A(κ; ω) = 1

(2π )2

∫ ∞

−∞
E (ρ; ω) exp (−iκ · ρ)d2ρ (32)

is the angular spectrum, and

kz(ω) =
√

(ω/c)2 − |κ|2 (33)

is the longitudinal component of the wave vector k (which is real for homogeneous waves and purely imaginary for evanescent
waves). The propagation law for the CSD of nonstationary fields is obtained by directly inserting Eq. (31) into Eq. (6). This
yields

W (r1, r2; ω1, ω2) =
∫∫ ∞

−∞
T (κ1, κ2; ω1, ω2) exp{−i[k∗

z1(ω1)z1− kz2(ω2)z2]} exp
[ − i(κ1 · ρ1 − κ2 · ρ2)

]
d2κ1d2κ2, (34)
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where

T (κ1, κ2; ω1, ω2) = 1

(2π )4

∫∫ ∞

−∞
W (ρ1, ρ2; ω1, ω2) exp[i(κ1 · ρ1 − κ2 · ρ2)]d2ρ1d2ρ2 (35)

is known as the (spectral) angular correlation function and

kz j (ω j ) =
√

(ω j/c)2 − |κ j |2, (36)

with j = 1, 2.
Let us now assume that the field at z = 0 is cross-spectrally

pure in the frequency domain, i.e., in view of Eq. (16) the CSD
can be expressed in the product form

W (ρ1, ρ2; ω1, ω2) = Ws(ρ1, ρ2)Wf (ω1, ω2). (37)

Then, it follows from Eq. (35) that

T (κ1, κ2; ω1, ω2) = T (κ1, κ2)Wf (ω1, ω2), (38)

where

T (κ1, κ2) = 1

(2π )4

∫∫ ∞

∞
Ws(ρ1, ρ2)

× exp[i(κ1 · ρ1 − κ2 · ρ2)]d2ρ1d2ρ2. (39)

Hence the angular correlation function is cross-spectrally
pure. However, if we insert Eq. (35) into Eq. (34), we immedi-
ately see that the cross-spectral purity of the CSD is generally
broken at points r1 and r2 beyond the plane z = 0. The same
conclusion is true also if paraxial propagation is considered
by approximating

kz j (ω j ) ≈ ω j

c
− c

2ω j

∣∣κ j

∣∣2
, (40)

which leads to the Fresnel propagation formula for nonsta-
tionary fields.

Since cross-spectral purity is not preserved on propagation
in the spectral domain, it is not preserved in the temporal do-
main either. However, if a narrow-band field with a spectrum
concentrated around some frequency ω = ω0 is considered,
we may approximate

kz j (ω j ) ≈
√

(ω0/c)2 − |κ j |2. (41)

In this case, considered by Mandel (for stationary fields) in
his original paper [1], cross-spectral purity is approximately
maintained throughout the half space z > 0. Of course, this
condition is not fulfilled for short optical pulses.

V. GENERATION OF CROSS-SPECTRALLY PURE LIGHT

Mandel and Wolf state in their classic text on optical
coherence (see the first paragraph of Sec. 4.5.1 of [13]) that
“We will now show that, under certain circumstances which
are often encountered in practice, the spectral composition of
the superposed light depends on the spectral composition of
the interfering beams in a relatively simple matter.” Such com-
monly encountered circumstances have, to our knowledge,
not been elaborated in the literature. In fact, it is difficult to
identify primary (or secondary) nontrivial natural light fields
that would fulfill the conditions for cross-spectral purity even
in the stationary case, let alone the nonstationary case. Apart

from narrow-band fields, polychromatic plane waves satisfy
these conditions [8], though in a trivial sense since they are
spatially fully coherent. In this section we introduce a scheme,
based on achromatic Fourier transformation [14–21], for gen-
erating cross-spectrally pure fields from spatially incoherent
light sources.

A. Stationary fields

Let us denote the transverse coordinates in the input and
output planes of an optical system by v and ρ, respectively,
and the impulse response of the system by K (ρ, v; ω). Then,
with stationary light, the CSD functions at the input and output
planes are related by

W (ρ1, ρ2; ω) =∫ ∞

−∞
W (v1, v2; ω)K∗(ρ1, v1; ω)K (ρ2, v2; ω)d2v1d2v2. (42)

It is of interest to consider two particular types of systems
that perform a spatial Fourier transform of the field in the
input plane. For a conventional Fourier-transforming system
realized with an achromatic lens of focal length F the impulse
response is given by

K (ρ, v; ω) = ω

i2πcF
exp

(
− iω

cF
ρ · v

)
. (43)

On the other hand, the impulse response of an achromatic
Fourier-transform system of focal length F , designed to op-
erate around some wavelength λ0 = 2πc/ω0, is

K (ρ, v; ω) = ω0

i2πcF
exp

(
− iω0

cF
ρ · v

)
. (44)

We note that achromatic Fourier-transforming systems can
be implemented in a number of ways with the aid of
purely refractive or hybrid refractive-diffractive optical sys-
tems [16–21]

Let us first assume that the field in the input plane is
spatially incoherent and that its normalized spectrum is in-
dependent of position. Then the CSD in the input plane of the
system is of the form

W (v1, v2; ω) = s(ω)Ss(v1)δ(v1 − v2). (45)

This field is cross-spectrally pure, but in a somewhat trivial
sense since the field is spatially delta correlated.

If a conventional Fourier-transform (Köhler illumination)
system is used, the CSD at the output plane is well known to
be

W (ρ1, ρ2; ω) =
( ω

cF

)2
s(ω)S̃s

( ω

cF
�ρ

)
, (46)

where �ρ = ρ2 − ρ1 and

S̃s(f ) = 1

(2π )2

∫ ∞

−∞
Ss(v) exp (−if · v)d2v. (47)
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The complex degree of spectral (spatial) coherence

μ(ρ1, ρ2; ω) = S̃s(ω�ρ/cF )

S̃s(0)
(48)

thus satisfies Wolf’s scaling law [22]. With an achromatic
Fourier-transform system, the output-plane CSD has the form

W (ρ1, ρ2; ω) =
( ω0

cF

)2
s(ω)S̃s

( ω0

cF
�ρ

)
, (49)

and the complex degree of coherence is

μ(ρ1, ρ2; ω) = S̃s(ω0�ρ/cF )

S̃s(0)
= μ(ρ1, ρ2; ω0). (50)

It is also readily seen that

γ (ρ1, ρ2; 0) = μ(ρ1, ρ2; ω0). (51)

In view of Eqs. (4), (15), and (51), the resulting field is cross-
spectrally pure around the time delay τ = τ0 = 0. Hence
an achromatic Fourier-transform system provides a simple
means to generate cross-spectrally pure stationary fields from
incoherent light sources.

B. Nonstationary fields

Proceeding to consider the nonstationary case, the relation-
ship between the CSD functions in the input and output planes
is

W (ρ1, ρ2ω1, ω2)

=
∫∫ ∞

−∞
W (v1, v2; ω1, ω2)K∗(ρ1, v1; ω1)

× K (ρ2, v2; ω2)d2v1d2v2. (52)

Let us assume that the CSD in the input plane is of the form

W (v1, v2; ω1, ω2) =
√

s(ω1)s(ω2)c(ω1, ω2)

× Ss(v1)δ(v1 − v2), (53)

where c(ω,ω) = 1. Here again the normalized spectrum s(ω)
of the field is taken to be independent of position. In addition,
the spectral correlation function c(ω1, ω2) is assumed to be
position independent and, as in Sec. V A, the field is spa-
tially incoherent. These assumptions hold, at least to a good
approximation, if a spectrally partially coherent pulse train
passes through a rotating diffuser, so that each individual pulse
experiences a different roughness distribution.

The CSD at the output plane of a conventional Fourier-
transform system is obtained by inserting Eqs. (7) and (53)
into Eq. (52), with the result

W (ρ1, ρ2; ω1, ω2) = ω1ω2

(cF )2

√
s(ω1)s(ω2)c(ω1, ω2)

× S̃s[(ω2ρ2 − ω1ρ1)/cF ]. (54)

Hence the complex degree of coherence has the form

μ(ρ1, ρ2; ω1, ω2) = c(ω1, ω2)
S̃s[(ω1ρ1 − ω2ρ2)/cF ]

S̃s(0)
. (55)

If an achromatic Fourier-transform lens is used, the CSD at
the output plane becomes

W (ρ1, ρ2; ω1, ω2) =
( ω0

cF

)2√
s(ω1)s(ω2)c(ω1, ω2)

× S̃s(ω0�ρ/cF ), (56)

which is of the separable form of Eq. (16). The normalized
spectrum at the output plane is therefore equal to s(ω) and
the complex degree of spectral coherence is of the form of
Eq. (18), with

μs(ρ1, ρ2) = S̃s(ω0�ρ/cF )

S̃s(0)
(57)

and

μf (ω1, ω2) = c(ω1, ω2). (58)

Hence the output field is cross-spectrally pure. Its MCF is of
the separable form of Eq. (24), with

�t (t1, t2) =
∫∫ ∞

0

√
s(ω1)s(ω2)μf (ω1, ω2)

× exp [i(ω1t1 − ω2t2)]dω1dω2, (59)

and the complex degree of coherence follows Eq. (28).

VI. FINAL REMARKS

We have derived conditions under which nonstationary
light is cross-spectrally pure by demanding that, apart from
the spectrum, also the spatial self-correlation function in the
frequency domain (and thereby also in the temporal domain)
must have the same form as it has at any two selected
points on the incident wave front. Our conditions for cross-
spectral purity lead to strict separability criteria for the two-
frequency cross-spectral density function and the two-time
mutual correlation function. In particular, we have shown
that cross-spectral purity of nonstationary fields is possible
only in the zero-time delay region of a superposition of two
light beams. Spectral correlations, however minor, enforce
this conclusion. We have also shown that cross-spectrally pure
light cannot, in general, retain its purity upon propagation
unless the field is nearly monochromatic. It therefore follows
that fields associated with trains of short optical pulses with
broad spectra can be cross-spectrally pure across at most one
plane.

Thus far we have not been able to identify any nontrivial
naturally occurring fields (stationary or nonstationary) that
would intrinsically be cross-spectrally pure. However, we
have shown that transformation of fields from spatially inco-
herent sources into a cross-spectrally pure form is possible
by means of achromatic Fourier-transform systems. In this
paper we have considered only scalar wave fields, but an
electromagnetic extension of the results given here is possible
along the lines discussed in [3,4].

It is finally worth noting that, in the existing literature
on nonstationary fields, cross-spectral purity in the sense
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discussed here is sometimes assumed implicitly. This is the
case, for instance, in the works that deal with partially spa-
tially and spectrally coherent pulsed beams [23–25], where
the spatial beam parameters (beam width and coherence
width) are typically taken to be frequency independent. Such
an assumption is common also in the studies of stationary
partially coherent beams. To our knowledge, only Christov
[23] mentions the concept of cross-spectral purity explicitly in
this context, but in passing and without further justification or
elucidation.
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