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Squeezed spin states have important applications in quantum metrology and sensing. It has been shown by
Sørensen and Mølmer [Phys. Rev. A 66, 022314 (2002)] that an effective one-axis-twisting interaction can
be realized in a cavity setup via a double off-resonance stimulated Raman scattering, resulting in a noise
reduction scaling ∝ 1/N2/3 with N being the atom number. Here, we show that, by making an appropriate
change of the initial input spin state, it is possible to produce a one-axis-twisting spin squeezing via a single
off-resonance stimulated Raman scattering, which thus can greatly simplify the realistic implementation. We also
show that the one-axis-twisting interaction can be transformed into a more efficient two-axis-twisting interaction
by rotating the collective spin while coupling to the cavity, yielding a Heisenberg limited noise reduction ∝ 1/N .
Considering the noise effects due to atomic decoherence and cavity decay, we find that substantial squeezing is
still attainable with current laboratory techniques.
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I. INTRODUCTION

Squeezed spin states (SSS) [1] play essential roles in
quantum information processing [2–4] and precision mea-
surement [5–7]. They have been shown to have many appli-
cations, such as detecting quantum entanglement, improving
precision in Ramsey spectroscopy, and making more precise
atomic clocks. Recently, various methods have been pro-
posed [8–16] to create such states, including quantum non-
demolition (QND) measurements of collective spins [17–23]
and nonlinear interaction between spins based on either one-
axis twisting (OAT) [1,8] or two-axis twisting (TAT) [12,13].
Among them, the QND-based methods have the advantage
of simple implementation, while, on the other hand, they
also suffer the drawback of being difficult to produce highly
spin-squeezed states because of inefficient noise-reduction
scaling ∝ N−1/2 with N being the total number of atoms.
On the contrary, the nonlinear-interaction-based methods have
been proved to work much more efficiently than the QND
scheme [1], as the theoretical limit of spin squeezing for OAT
scales as ∝ N−2/3, and the noise reduction for TAT can even
reach the Heisenberg limit ∝ N−1.

To date, much attention has been paid to realize both
OAT and TAT evolution in atomic systems. In atomic Bose-
Einstein condensates, the OAT Hamiltonian arises from binary
atomic collisions [24–26]. In free-space atomic samples, the
interference of multiple atom-light QND interactions can
induce atomic OAT and even TAT interactions [13,27,28]. The
most studied systems, however, for realizing nonlinear inter-
action between individual spins are atomic systems in cavi-
ties [8,11,12,14,29–33]. Among them, an impressive work by
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Sørensen and Mølmer proposed to realize OAT evolution via
double off-resonance stimulated Raman scattering (SRS) [8].
They showed that two classical driving fields (which have
different central frequency and resonant Rabi frequency) to-
gether with one vacuum cavity mode can simultaneously flip
a pair of atoms in a way that is analogous to the emission
of correlated photon pair in optical parametric amplification,
which creates the entanglement between individual spins, and
thus is the essence of OAT squeezing. One of the advantages
of this method is that it can produce unitary OAT spin
squeezing, which, as shown in Ref. [34], can yield better
clock stability than nonunitary squeezing. Another advantage
is that, due to the collective enhancement effect of the atom-
light coupling [35,36], this method is in principle possible to
work in any optical cavity, such as the bad cavity. Recently,
this method has also been extended to the case of TAT spin
squeezing by Borregaard et al. [12] via adding another two
classical driving fields.

In this paper, we show that by making an appropriate
change to the initial input atomic state it is possible to realize
unitary OAT spin squeezing by using a single SRS interaction
between atoms and light. Our approach inherits all the advan-
tages of Ref. [8]. Meanwhile, in contrast to the mechanism
in Ref. [8], our approach requires only a single classical driv-
ing field and can thereby significantly simplify the possible
experimental realizations. By an appropriate coherent control
of the collective spin by means of adding a rotation to the
spin-polarized direction during the OAT interaction, we also
show that the OAT can be converted into the TAT, leading to
faster and stronger squeezing. Compared to the TAT method
of Ref. [12] that uses four classical laser fields, our TAT
protocol has the advantages of less experimental resource
cost and simpler realization. Further investigation indicates
that the present schemes can be made robust with respect
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to realistic imperfections, including the atomic decoherence
and the cavity decay. During the preparation of this work,
we became aware of a proposal [37] that is similar to ours.
Compared to that work, in which pseudo-angular-momentum
operators connect to the ground and excited states of the atom,
our operators connect to the two ground-state sublevels, and
therefore our approach has the advantage of long coherence
time.

The rest of the paper is structured as follows. In Sec. II,
we first review some basic concepts and then give detailed
analysis of the processes of spin squeezing in an atomic
ensemble. Next, we will consider the noise effects. After that,
the experimental feasibility of the scheme is also discussed.
Finally, Sec. III contains brief conclusions.

II. GENERATION OF SPIN SQUEEZING

A. Ideal case

Let us first review the definition of spin squeezing. Con-
sider an atomic system consisting of N two-level atoms, which
can be described by the pseudo-angular-momentum operators
Ŝz = ∑

k (|1〉k〈1| − |2〉k〈2|)/2 and Ŝ+ = ∑
k |1〉k〈2|, where

the sum is over all the individual atoms, and |1〉, |2〉 are
the two internal states of the atoms. The spin components
in three orthogonal directions satisfy the commutation re-
lations [Ŝx, Ŝy] = ih̄Ŝz, where Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy =
(Ŝ+ − Ŝ−)/2i, resulting in the Heisenberg uncertainty relation
(�Sy)2(�Sz )2 � |〈�Sx〉|2/4. A commonly used measure for
the degree of squeezing in an atomic ensemble is Wineland
criterion [38], which is defined as

ξ 2 = min
θ

[
N (�Ŝθ )2

〈Ŝx〉2

]
, (1)

where Ŝθ = cos(θ )Ŝy + sin(θ )Ŝz is perpendicular to Ŝx, with
θ ∈ [0, 2π ]. If the squeezing parameter ξ 2 < 1, the collective
atomic state is said to be spin squeezed.

Our scheme relies on a system of N three-level atoms in-
teracting with one classical driving field (with Rabi frequency
� and frequency ω) and one quantized cavity mode ĉ with
frequency ω0 (see Fig. 1). The cavity mode is initially in a
vacuum state, and the atoms each are initially prepared in
the equal superposition of their ground states, forming the
coherent spin state (CSS) |�CSS〉 = 2N/2(|1〉 + |2〉)⊗N , which
is an eigenstate of the Ŝx operator with eigenvalue N/2. The
classical field is detuned from 1 → 3 resonance [with an
energy difference ω13 (hereafter we use the unit h̄ = 1)] by
an amount �, while the quantized field is involved in the off-
resonant atomic transition 2 → 3 (with an energy difference
ω23 ≡ ω13) with detuning � + δ, where δ = ω − ω0 is the
two-photon detuing [see Fig. 1(a)]. For such an atoms-light
system, the interaction Hamiltonian can be written as

Ĥ = ω0ĉ†c + ∑
kω13|3〉k〈3|

+∑
k

(
�

2
e−iωt |3〉k〈1| + gĉ|3〉k〈2| + H.c.

)
, (2)

where the first two terms describe the energy of the cavity field
and the atoms and the last term accounts for the atoms-light
interaction, with the coupling g = d

√
ω0/(2πε0V0), where d

is the dipole moment of the |2〉 → |3〉 transition, ε0 is the

FIG. 1. Schematic setup for spin squeezing. A laser beam enters
the optical cavity and interacts with an x-polarized collective spin to
realize the off-resonance coupling between the ground state |1〉 and
the exited state |3〉. The ground state |2〉 is coupled to the excited state
|3〉 by a cavity mode which is initially in a vacuum state. Adiabatic
elimination of the exited state leads to a nonlinear OAT evolution
for the collective spin. Adding a homogeneous magnetic field B to
the collective spin along the x direction enables the conversion of
OAT into more efficient TAT spin squeezing. (a) Level structure of a
single atom. (b) Joint level structure of two atoms. A double Raman
process takes an atom from |1〉 to |2〉 and another one from |2〉 to |1〉,
resulting in the simultaneous flipping of a pair of atoms.

vacuum permittivity, and V0 is the mode volume. Changing
to a rotating frame with respect to ω0ĉ†c + ∑

kω|3〉k〈3|, the
interaction Hamiltonian of (2) is changed into

Ĥ = �σ̂33 + �

2
σ̂31 + gε̂σ̂32 + H.c., (3)

where we have defined the new operator ε̂ = ĉeiδt and the
collective atomic operators σ̂uv = ∑

k |u〉k〈v| with u, v ∈
{1, 2, 3}. Corresponding to this Hamiltonian, one may eval-
uate the Heisenberg equations for light and atoms, yielding
the following Maxwell-Bloch equations:

˙̂σ11 = i
�

2
σ̂31 − i

�∗

2
σ̂13, (4)

˙̂σ22 = igε̂σ̂32 − ig∗σ̂23ε̂
†, (5)

˙̂σ12 = i
�

2
σ̂32 − ig∗σ̂13ε̂

†, (6)

˙̂ε = −ig∗σ̂23 + iδε̂, (7)

˙̂σ13 = −i�σ̂13 − i
�

2
(σ̂11 − σ̂33) − igε̂σ̂12, (8)

˙̂σ23 = −i�σ̂23 − i
�

2
σ21 − igε̂(σ̂22 − σ̂33), (9)

˙̂σ33 = i
�∗

2
σ13 − i

�

2
σ31 + ig∗σ̂23ε̂

† − igεσ̂32. (10)

Next, we assume that (i) the power of the classical driving
field is sufficiently weak and (ii) the detuning is very large
� � 1. With such assumptions, it is reasonable to suppose
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that the population of the excited state is very small, and
thus one may adiabatically eliminate the exited state, lead-
ing to σ33 � 0. Large detuning also makes it possible to
quickly drive the coherences σ13, σ23 into steady states, re-
sulting in σ̂13 � −(�σ̂11/2 + gε̂σ̂12)/�, σ̂23 � −(�σ̂21/2 +
gε̂σ̂22)/�. Furthermore, we also assume that the two-photon
detuning is large enough, δ � 1, such that there is no signifi-
cant photon excitation created in the cavity during interaction,
which enables the adiabatical elimination of the cavity field,
leading to ε̂= − g∗�σ̂21/2�δ. With these assumptions, the
equations for the atomic ground states can be written as

˙̂σ12 = −iκ0Ŝzσ̂12 − iχ0σ̂12, ˙̂σ11 = ˙̂σ22 = 0, (11)

where we have defined κ0 = |�|2|g|2/4δ�2 and χ0 =
|�|2/4�. In the language of pseudo-angular-momentum op-
erators, Eqs. (11) can be expressed as

˙̂Sx = κ0(ŜyŜz + ŜzŜy + Ŝy) + χ0Ŝy, (12)

˙̂Sy = −κ0(ŜxŜz + ŜzŜx + Ŝx ) − χ0Ŝx, (13)

˙̂Sz = 0. (14)

From these equations, one may infer that the atomic dynamics
are produced by the effective Hamiltonian

Ĥeff = −χ0Ŝz − κ0
(
Ŝz + Ŝ2

z

)
, (15)

which is exactly the OAT-type interaction [1]. The first term
in (15) arises because of ac-Stark shifts of the ground states,
while the rest of the terms stem from the two-photon off-
resonance Raman transition. The origin of the nonlinear term
in (15) can be understood by considering a double Raman
process as shown in Fig. 1(b). We assume that an atom
in the ground state |1〉 absorbs a photon from the classical
driving field and emits a photon to the cavity field that is
absorbed by another atom in the ground state |2〉, which then
emits back into the classical driving field again, resulting in
the effective transitions of the form |12〉 → |21〉. It is this
two-atom process that is kept on resonance and responsible
for the spin-spin entanglement (and thus the spin squeezing)
generation. The dynamics of such two-atom flipping can
be described by an effective Hamiltonian Ŝ−Ŝ+ = Ŝ2

x + Ŝ2
y =

N/2(N/2 + 1) − Ŝ2
z ∝ Ŝ2

z . It should be mentioned that there
exists a probability that the cavity photon emitted by an atom
is absorbed by the atom itself, which suppresses the two-atom
process. This is why we here take the equal-superposition spin
state as the input state, as the number of atoms in such a state
that participate in cavity-photon reabsorption is around N/2,
which can greatly suppress the effect of self-reabsorption and
therefore makes the two-atom process dominant.

Equation (12) can be readily solved to yield [1]
Ŝx(t ) = {Ŝ+(0) exp[iμ(Ŝz + 1/2 + ϕ/μ)] + exp[−iμ(Ŝz +
1/2 + ϕ/μ)]Ŝ+(0)}/2, with μ = −2κ0t and ϕ = −ϕ0t
with ϕ0 = χ0 + κ0. Its mean value, after writing
the CSS in the basis of Dicke states |�CSS〉 =∑S

m=−S 2−S√(2S)!/[(S + m)!(S − m)!]|m〉, can be calculated
as: 〈�CSS|Ŝx|�CSS〉 = S cos2S−1 μ

2 cos ϕ. For S � 1 and
|μ|, |ϕ|  1, one approximately has 〈Ŝx〉 � S, which means
that almost all the atoms are still polarized along the x
direction after the OAT interaction. One thus can use the
Holstein-Primakoff approximation [39] to define new atomic

quantum variables X̂a = Ŝy/
√

Sx, P̂a = Ŝz/
√

Sx, which satisfy
[X̂a, P̂a] = i and have zero mean 〈X̂a〉 = 〈P̂a〉 = 0 and a
normalized variance (�X̂a)2 = (�P̂a)2 = 1/2 for the initial
CSS. In this language, the solutions to Eqs. (13) and (14) can
be expressed as

X̂ out
a = X̂ in

a + αP̂in
a + β, P̂out

a = P̂in
a , (16)

where “in” and “out” refers to the atoms before and after the
interaction and we have defined the coupling constant α = Sμ

and the displacement parameter β = √
Sϕ that arises because

of the linear term of the Hamiltonian (15). Apparently, the
spin state of (16) is produced by first squeezing the spin state
via a Hamiltonian quadratic in P̂2

a , and then displacing the
SSS in the phase space along the P̂a direction by an amount
β. Since the displacement operation (linear operation) in
phase space does not reduce the atom-atom entanglement
created by the OAT evolution [40], the displacement β can
then be neglected when we estimate the amount of squeezing
of the atomic system. To see how much squeezing is created,
we rotate the spin state around the x axis by the unitary
transformation X̂ out

θ = exp(iθĤSR)X̂ out
a exp(−iθĤSR) =

cos θ X̂ in
a + (α cos θ + sin θ )P̂in

a , where ĤSR = −2Ŝx �
X̂ 2

a + P̂2
a is the spin-rotation Hamiltonian [41]. Optimizing

the variance (�X̂ out
θ )2 with respect to θ , we finally get ξ 2

OAT =
2(�X̂ out

θ )2 = 1 + α2/2 − (α4/4 + α2)1/2 ⇒ lim
α→∞ 1/α2, for

θ = arctan(2/α)/2 + π/2.
The amount of squeezing can be dramatically increased

if one can transform the OAT into the TAT [24]. To
do so, we add a rotation about the x direction during
OAT interaction with an angular frequency �0 [42–44]
(which can be realized by applying a homogeneous mag-
netic field along the x axis as shown in Fig. 1), result-
ing in the Hamiltionian ĤTAT = �0ĤSR/2 + Ĥeff = �0(X̂ 2

a +
P̂2

a )/2 − κ0SP̂2
a − √

Sφ0P̂a = κ0S(X̂ 2
a − P̂2

a )/2 − √
Sφ0P̂a for

�0 = κ0S, which is exactly the TAT-type interaction [1] and
squeezes the spin fluctuations at a rate that scales expo-
nentially with coupling constant, that is ξ 2

TAT = exp(−α). In
contrast to the OAT that creates squeezing polynomially, the
exponential scaling of the TAT method will greatly enhance
the entanglement between individual atoms and thus enable
us to perform nontrivial control of collective spin.

B. Noise effect

So far, we have neglected the noise effects. As in reality,
the photons leak out from the cavity into the environment at
a rate κ and the excited state decays to the ground state with
a radiative decay rate γ13 = γ23 ≡ γ = ω2

0d2/(3πε0c3) [45].
In the presence of decays as well as spin rotation about the x
direction, the time evolution of the atomic operators (see the
Appendix for more details) can be written as

d

dt

(
X̂a

P̂a

)
= G

(
X̂a

P̂a

)
−

√
S

(
ϕ0

η

)
+

√
2η

(
F̂y

F̂z

)

for the case of r0 = κ/2δ  1, with

G = �0

(
0 1

−1 0

)
− 2Sκ0

(
0 1
0 0

)
− η

(
1 0
0 1

)
,
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where η = χ0γ /� is the atomic decay parameter and
F̂y, F̂z are Langevin noise operators that have zero means
and satisfy 〈F̂y(t )F̂z(t ′)〉 = iδ(t − t ′)/2, and 〈F̂y(t )F̂y(t ′)〉 =
〈F̂z(t )F̂z(t ′)〉 = δ(t − t ′)/2. The first term of G represents
atoms turn with �0 around the x axis. The second term in G
denotes the coherent OAT interaction induced by light, while
the third term stands for the transverse decay of atoms caused
by optical pumping. Note that P̂a is now also displaced at a rate
proportional to η, which is due to the ground-state population
transfer from 1 to 2 induced by the strong light field. The
solution to this differential equation is(

X̂ out
a

P̂out
a

)
= A(t )

(
X̂ in

a
P̂in

a

)
− A(t )

∫ t

0
dτA−1(τ )

×
[√

S

(
ϕ0

η

)
−

√
2η

(
F̂y(τ )
F̂z(τ )

)]
, (17)

with the homogeneous solution A(t ) = exp(Gt ). For the
case of OAT squeezing (that is, �0 = 0), we have A(t ) =
e−ηt (

1 α

0 1 ) and obtain directly from (17)

X̂ out
a =

√
1 − η0

(
X̂ in

a + αP̂in
a + β ′) + √

η0F̂X , (18)

P̂out
a =

√
1 − η0

(
P̂in

a + β ′′) + √
η0F̂P, (19)

where we have defined the parameters η0 = 2ηt, β ′ =
β + η0α/4, and β ′′ = √

Sη0/2, and used the condition
η0  1. The modified noise operators are of the form
F̂X = 1√

t
e−ηt

∫ t
0 dτeητ [F̂y(τ ) − α(τ − t )/tF̂z(τ )], F̂P =

1√
t
e−ηt

∫ t
0 dτeητ F̂z(τ ), which can be easily checked to

have 〈F̂X 〉 = 〈F̂P〉 = 0, 〈F̂X F̂P〉 � i(1 − iα/2)/2, 〈F̂2
X 〉 �

(1 + α2/3)/2, and 〈F̂2
P〉 � 1/2. With help of the atomic

input-output relations (18) and (19), one may calculate the
variance (�X̂ out

θ )2, and thus obtain the optimized variance

2
(
�X̂ out

θ

)2 = 1 + α2

2

(
1 − 2

3
η0

)

−
√(

1 − 2

3
η0

)2
α4

4
+

(
1 − 1

2
η0

)2

α2

⇒ 1

α2
+ η0

3
, α � 1, (20)

for θ = arctan[(2 − η0)/(α − 2η0α/3)]/2 + π/2. Equation
(20) shows that the atomic decay sets a limit, that

is, η0/3, to the highest degree of squeezing that
can be achieved. For atoms situated on the cavity
antinode, the coupling g can be conveniently expressed in
terms of the excited-state linewidth [46] |g|2 = γ κdc/(4N ),
with the cavity optical depth (OD) dc = 2F

π
d0 = 2F

π
Nσ0
A0

,
where F is the cavity finesse, d0 = Nσ0/A0 is the sample’s
OD in free space, σ0 is the photon-absorption cross section
of an atom, and A0 is the effective cross-sectional area
of the antinode. The coupling constant α can then be
re-expressed as α = r0dcη0/2. Consequently, the amount
of squeezing for large α may be written as 2(�X̂ out

θ )2 =
1/(r0dcη0/2)2 + η0/3 � 31/3/(r0dc)2/3 ∝ 1/N2/3, which is
exactly the OAT scaling as mentioned above.

For the case of TAT squeezing (that is, �0 = Sκ0), we

have A(t ) = e−ηt (
cosh α

2 − sinh α
2− sinh α

2 cosh α
2

), and thus one may

derive the input-output relations for the atomic quadrature
X̂π/4 from Eq. (17),

X̂ out
π
4

=
√

1 − η0

[
e− α

2 X̂ in
π
4

+ β − β ′′
√

2

]
+ √

η0F̂ π
4
,

(21)

with F̂ π
4

= 1√
2t

e−(η0+α)/2
∫ t

0 dτe(η+Sκ0 )τ [F̂z(τ ) − F̂y(τ )]. Its
variance can be directly calculated to yield

2
(
�X̂ out

π
4

)2 = (1 − η0)e−α + η0[1 − (1 − η0)e−α]

η0 + α

⇒ η0

α
∝ 1

N
, α � 1, (22)

which indicates that the TAT scheme produces a Heisenberg-
scaling squeezing. Furthermore, it is also required to take into
account the effect of the x-component decay according to the
definition given in Eq. (3), which is 〈Ŝx〉2 � (1 − η0)N/2 [as
can be derived from Eq. (A2)]. Finally, we are able to calculate
the squeezing parameter ξ 2 � 2(�X̂ out

θ )2/(1 − η0) and plot
in Fig. 2(a) the amount of squeezing in their dependence on
coupling strength α for various values of atomic decay. As can
be seen from the figure that, if the atomic decay is small than
10%, a high degree of squeezing larger than 10 dB would be
obtainable for the interaction parameter α = 5. Besides, as ex-
pected, the TAT scheme works much more efficiently than the
OAT scheme even in the presence of noises. While a further
investigation of the performance of the protocols vs atomic
decay [as shown in Fig. 2(b)] indicates that the TAT protocol is

FIG. 2. (a) Performance of OAT (lines with diamond) and TAT (lines with circle) protocols varies with coupling strength α for various
values of atomic decay. (b) Squeezing difference of the two proposed squeezing protocols vs coupling strength α and atomic decay η0. (c) The
achievable squeezing of OAT (line with diamonds) and TAT (line with circles) vs cavity OD dc for r0 = 0.1.
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sensitive to noises, the OAT protocol, on the contrary, is much
more robust to the atomic decay. Consequently, an extremely
low decay rate is required to fully preserve the advantages
of the TAT protocol. In a realistic implementation, it is quite
convenient to use the accessible experimental parameter OD
to assess the performance of the proposed protocols. In Fig.
4(c), the best achievable squeezing (optimized with respect
to η0) of the two proposed protocols versus cavity OD dc

is also plotted. For room-temperature vapors whose OD in
free space is around 30 [2], if one set the parameter r0 =
0.1 and the finesse F � 100, degrees of squeezing created
by OAT and TAT should be as high as 13.4 and 19.6 dB,
respectively.

Giving an estimation of the relevant parameters is help-
ful for implementing realistic experiments. We consider an
atomic sample containing 5 × 106 atoms and chose a realistic
cavity coupling parameter g = (2π )100 kHz. If one chooses
the parameters γ = κ ∼ 102g,� ∼ 104g,� ∼ 105g, and δ ∼
5 × 102g, α � 5 is obtainable for interaction time t around
0.3 μs, and at the same time, we have η0 < 10%, r0  1.
With these settings, one is to obtain the amount of squeezing
larger than 10 dB.

III. CONCLUSION

In conclusion, we have presented a realistic scheme for
generating highly spin-squeezed state of an atomic ensemble
in an optical cavity. The process is based on off-resonance
SRS interaction between light and spin-polarized atomic en-
sembles. By sending a strong pulse through polarized atomic
vapors placed in an optical cavity that is initially in a vacuum
state, we find that unitary OAT squeezing can be realized.
As the interaction between cavity field and atoms increases,
so does the degree of squeezing. We also show that the
OAT protocol can be transformed into the more efficient
TAT protocol by just adding a homogeneous magnetic field
along the spin-polarized direction. The proposed schemes
are also tested by adding different noise effects, and we
found that (i) substantial squeezing off more than 10 dB
is still obtainable even in the presence of 10% atomic de-
cay, (ii) although the performance of the TAT protocol is,
in general, superior to the OAT protocol, it is much more
sensitive to the atomic decay, and (iii) the OAT protocol is
quite robust against noises. We thus believe that, although
the OAT protocol is not superior to the TAT protocol in
squeezing scaling, its good characteristics of easily surviv-
ing in a noisy environment as well as simpler experimental
setup make it applicable to a wide range of atomic systems.
We expect that the proposed protocols can be beneficial in
the context of quantum information processing and quantum
metrology.
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APPENDIX A: DETAILS OF THE DERIVATION OF THE
EQUATIONS OF MOTION WITH NOISES

In this Appendix, we analyze the performance of our
proposal in the presence of spontaneous emission and cavity
decay. By taking into account the noise effects, the Maxwell-
Bloch equations of (5)–(10) are then changed into [47]

˙̂σ11 = −�0Ŝy + i
�

2
σ̂31 − i

�∗

2
σ̂13 + γ σ̂33 + F11,

˙̂σ22 = �0Ŝy + igε̂σ̂32 − ig∗σ̂23ε̂
† + γ σ̂33 + F22,

˙̂σ12 = i�0Ŝz + i
�

2
σ̂32 − ig∗σ̂13ε̂

†,

˙̂ε = −κ

2
ε̂ − ig∗σ̂23 + √

κε̂in + iδε̂,

˙̂σ13 = −i
�0

2
σ23 − (i� + γ )σ̂13 − i

�

2
(σ̂11 − σ̂33)

−igε̂σ̂12 + F13,

˙̂σ23 = −i
�0

2
σ13 − (i� + γ )σ̂23 − igε̂(σ̂22 − σ̂33)

−i
�

2
σ̂21 + F23,

˙̂σ33 = i
�∗

2
σ̂13 − i

�

2
σ̂31 + ig∗σ̂23ε̂

† − igε̂σ̂32

−2γ σ̂33 + F33, (A1)

where we have introduced the radiative decay rate of the ex-
cited state |3〉, γ3 = γ13 + γ23 = 2γ (we assume γ13 = γ23 ≡
γ ), the Langevin noise operators Fuv for the atomic operators,
the cavity decay rate κ , and the input field ε̂in for the cavity
mode. The correlation functions of Langevin noise operators
can be derived by using the the generalized Einstein rela-
tion [47,48] 〈F̂uv (t )F̂u′v′ (t ′)〉 = 〈D(σ̂uvσ̂u′v′ ) − D(σ̂uv )σ̂u′v′ −
σ̂uvD(σ̂u′v′ )〉δ(t − t ′), where D(σ̂uv ) denotes the evolution
for σ̂uv obtained from the Heisenberg-Langevin equation but
with the Langevin noise omitted. The input cavity satisfies
[ε̂in(t ), ε̂†

in(t ′)] = δ(t − t ′). Here we assume without loss of
generality that there is no decay between 1 and 2 (as the co-
herence time of the ground state is normally much longer than
the interaction time t in a realistic implementation). Besides,
we also introduced a spin rotation to the system about the x
direction, which is obtained by adding to the Hamiltonian of
Eq. (3) a time-independent term �0Ĵx, resulting in the terms in
Eqs. (A1) that are proportional to �0. Corresponding to this
set of coupled equations, the evolution for the ground states
can be derived along the lines outlined in the main context
above to give

˙̂σ11 = −�0Ŝy − ησ̂11 + F̂11,

˙̂σ22 = �0Ŝy + ησ̂11 + F̂22,

˙̂σ12 = i�0Ŝz −
(

|�|2
4�∗

γ

+ i|�|2|g|2
2δ∗

κ/2��∗
γ

Sz

)
σ̂12 + F̂12,

(A2)

where η = χ0γ /� is an optical pumping rate and
we have defined δκ/2 = κ

2 − iδ,�γ = γ + i�, and
F̂11, F̂22, F̂12 are modified Langevin noise operators.
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In deriving Eqs. (A2), we have assumed the angular
frequency �0  � and thus neglected its influence on
the adiabatic-elimination procedure. From Eqs. (A2), one
may directly deduce the time evolution of the collective spin
operators

˙̂Sy = �0Ŝz − κ0

1 + r2
0

(ŜxŜz + ŜzŜx + Ŝx )

+ r0κ0

1 + r2
0

(ŜyŜz + ŜzŜy + Ŝy)

−χ0Ŝx − ηŜy +
√

2SηF̂y, (A3)

˙̂Sz = −�0Ŝy − Sη − ηŜz +
√

2SηF̂z, (A4)

where r0 = κ/2δ and we have neglected the ac-Stark shifts of
the ground states induced by the cavity mode. We also used
the relation σ̂11 � Ŝz + S in the right-hand side of Eq. (A4)
and defined the new vacuum noise operators F̂y = (F̂12 −
F̂†

12)/2
√

Sηi, F̂z = (F̂11 − F̂22)/2
√

Sη, which, according to
the Einstein relations, have the correlations 〈F̂y(t )F̂z(t ′)〉 �
iδ(t − t ′)/2 and 〈F̂y(t )F̂y(t ′)〉 = 〈F̂z(t )F̂z(t ′)〉 � δ(t − t ′)/2.
The above equations indicate that the noises cause a decay
of the transverse spin components and a redistribution of the
populations of the ground states [since 〈Ŝz〉 ∝ Sη, as can be
seen from Eq. (A4)]. Note that the second line of Eq. (A3)
arising because of cavity decay is negligible in the limit of
r0  1, which is the case in the main context.
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