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Few-photon optomechanical effects not only are important physical evidence for understanding the radiation-
pressure interaction between photons and mechanical oscillation, but also have wide potential applications in
modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade
and generation of the Schrödinger cat states under the assistance of a cross-Kerr interaction, which is an inherent
interaction accompanied by the optomechanical coupling in a generalized optomechanical system. By exactly
diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find
the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement.
The quantum properties in this generalized optomechanical system are studied by investigating the second-order
correlation function of the cavity field and calculating the Wigner function and the probability distribution of
the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the
few-photon optomechanical effects.
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I. INTRODUCTION

The radiation-pressure interaction between the optical and
mechanical degrees of freedom is at the center of the field of
cavity optomechanics [1–3]. This interaction takes the form as
a trilinear two-mode coupling, which describes that the cavity
photons exert a photon-number-dependent force on a mechan-
ical oscillator [4]. According to the magnitude of the op-
tomechanical coupling, people usually consider two kinds of
regime of the optomechanical coupling: (1) the many-photon
involved coupling case and (2) the few-photon involved
coupling case. Generally, the physical phenomena involving
many photons are easily observed because the coupling be-
tween the photons and phonons is effectively enhanced by a
factor of the square root of the cavity photon number under
the linearization frame. In the many-photon coupling case,
many advances have been made in relating topics such as
normal-mode splitting [5–8], quantum cooling of mechani-
cal resonators [9–16], optomechanical entanglement [17–20],
entanglement between mechanical resonators [21–23], op-
tomechanically induced transparency [24–26], and quan-
tum squeezing in light [27–30] and mechanical motion
[31–33].

In contrast, to observe the evidence of the optomechan-
ical coupling at the few-photon level, the single-photon
optomechanical-coupling strength is required to be suffi-
ciently large so that the physical phenomenon induced by
a single photon can be resolved from the noise in this sys-
tem [34–39]. The observation of the photon blockade ef-
fect [34,40–47] is an important task in cavity optomechanics
working in the single-photon strong-coupling regime, where
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the single-photon optomechanical-coupling strength is larger
than the cavity-field decay rate. Another interesting task in
the few-photon optomechanics is the generation of the me-
chanical Schrödinger cat states [48–56], which is based on
the conditional displacement mechanism of the optomechan-
ical coupling. To create quantum superposition of distinct
coherent states, the single-photon optomechanical-coupling
strength should be larger than the resonance frequency of the
mechanical mode [48]. Recently, some proposals have been
proposed to enhance the mechanical displacement induced by
single photons [56,57]. In addition, the mechanical displace-
ment effect induced by many photons has been used to create
distinct mechanical superposition [58,59].

The above mentioned two tasks require a sufficiently large
optomechanical coupling. However, the single-photon strong-
coupling regime has not been realized in current experiments.
Nevertheless, many proposals have been proposed to enhance
the optomechanical coupling [60–66] such that the systems
reach the single-photon strong-coupling regime. For example,
in Ref. [62] the authors proposed to enhance the single-photon
optomechanical coupling by utilizing the nonlinearity of the
Josephson junctions. With this method, the single-photon
optomechanical coupling can be enhanced several orders of
magnitude. Meanwhile, this circuit also creates a cross-Kerr
interaction [62,67–69] between the optical mode and the me-
chanical mode, and the magnitude of the cross-Kerr interac-
tion might be a fraction of the single-photon optomechanical
coupling strength. Based on the fact that the original motiva-
tion of the proposal based on the superconducting circuit is
to enhance the single-photon optomechanical coupling and
to further realize the few-photon optomechanical tasks, it
is therefore natural to ask the question: What is the effect
of the additional cross-Kerr interaction on the few-photon
optomechanical tasks such as the photon blockade and the
generation of the Schrödinger cat states?
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In this paper, we study the photon blockade effect and
the generation of quantum superposition of coherent states
in a superconducting quantum circuit proposed in Ref. [62].
In particular, we will focus on the effect of the cross-Kerr
interaction on the photon blockade and the mechanical cat
state generation. We will analyze the effective photon non-
linear interaction induced by the optomechanical coupling
and the cross-Kerr interaction by calculating the equal-time
second-order correlation function of the cavity photons. In
this case, the cross frequency modulation will change the
effective photon nonlinearity and the photon blockade. We
will also analyze the effect of the cross-Kerr interaction on
the magnitude of the single-photon mechanical displacement.
The cross frequency modulation will change effectively the
driving detuning of the single photon and hence change the
magnitude of the mechanical displacement.

The rest of this paper is organized as follows. In Sec. II we
introduce the physical model and present the Hamiltonian. In
Sec. III we study the effect of the cross-Kerr interaction on
the photon blockade effect in the optomechanical cavity. In
Sec. IV we study the generation of Schrödinger cat states in
the mechanical mode and investigate the Wigner function and
the probability distribution of the rotated quadrature operator
to analyze the quantum interference and coherence effects in
the generated cat states. We also study the influence of the
optical and mechanical dissipations on the cat state genera-
tion. Finally, we present some discussions on the experimental
implementation of this model and conclude this work in
Sec. V. A detailed derivation of the unitary evolution operator
associated with the generalized optomechanical Hamiltonian
is presented in the Appendix.

II. MODEL AND HAMILTONIAN

We consider a generalized optomechanical model, which
is composed of a single-mode optical field and a mechanical
mode [see Fig. 1(a)]. Here the optical mode is coupled to the
mechanical mode via both the optomechanical interaction and
the cross-Kerr interaction. The Hamiltonian of the generalized
optomechanical model reads (h̄ = 1)

Ĥgom = ωcâ†â + ωMb̂†b̂ − g0â†â(b̂† + b̂) − gcKâ†âb̂†b̂, (1)

where â (â†) and b̂ (b̂†) are, respectively, the annihilation
(creation) operators of the cavity mode and the mechanical
mode, with the corresponding resonance frequencies ωc and
ωM . The g0 term denotes the optomechanical coupling be-
tween the cavity field and the mechanical mode [4], with
g0 being the single-photon optomechanical-coupling strength.
The gcK term describes the cross-Kerr interaction between
the cavity field and the mechanical mode [62], with the
coupling strength gcK. Note that this model has been realized
in an electromechanical system which is proposed to enhance
the single-photon optomechanical coupling by utilizing the
nonlinearity of the Josephson junctions in Ref. [62]. The
cross-Kerr interaction is a by-product coupling in the hybrid
system consisting of a superconducting qubit coupled to both
a superconducting resonator and a mechanical resonator.

The photon number operator â†â in the generalized op-
tomechanical Hamiltonian Ĥgom is a conserved quantity due to
[â†â, Ĥgom] = 0. For a given photon number m, the Hamilto-

FIG. 1. (a) Schematic diagram of the generalized optomechani-
cal model, which is composed of a single cavity-field mode and a
single mechanical mode. The two modes are coupled to each other
through both optomechanical and cross-Kerr interactions. (b) Dia-
gram of the eigenenergy spectrum of the Hamiltonian Ĥgom in the
subspace associated with zero, one, and two photons.

nian Ĥgom is reduced to a Hamiltonian describing a displaced
harmonic oscillator of mode b̂. In particular, the displacement
force acting on the mechanical resonator is proportional to
mg0, and the resonance frequency of mode b̂ is normalized to
be ωM − mgcK, with a photon-number-dependent frequency
shift.

To calculate the eigensystem of Ĥgom, we introduce a con-
ditional displacement operator D̂(ξ̂ ) = exp[ξ̂ (b̂† − b̂)], where
the displacement amplitude ξ̂ is a nonlinear function of the
photon number operator â†â,

ξ̂ = g0â†â

ωM − gcKâ†â
=

∞∑
m=0

ξ [m]|m〉a 〈m|, (2)

with the m-photon-induced mechanical displacement

ξ [m] = mg0

ωM − mgcK
, (3)

where we introduce the number states |m〉a (m = 0, 1, 2, . . .)
of the cavity mode. The Hamiltonian Ĥgom can be diagonal-
ized as

ˆ̃Hgom = D̂†(ξ̂ )ĤgomD̂(ξ̂ )

= ωcâ†â + (ωM − gcKâ†â)b̂†b̂ − δ̂, (4)

where we introduce the optical nonlinearity as

δ̂ = g2
0â†ââ†â

ωM − gcKâ†â
=

∞∑
m=0

δ[m]|m〉a a〈m|, (5)
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with the m-photon energy shift

δ[m] = g2
0m2

ωM − mgcK
. (6)

The eigensystem of the Hamiltonian ˆ̃Hgom can be expressed as

ˆ̃Hgom|m〉a|n〉b = Em,n|m〉a|n〉b, (7)

where |n〉b (n = 0, 1, 2, . . .) are number states of the mechan-
ical mode. The corresponding eigenvalues are

Em,n = mωc + (ωM − mgcK)n − δ[m]. (8)

The eigensystem of the Hamiltonian Ĥgom can be obtained
as

Ĥgom|m〉a|ñ(m)〉b = Em,n|m〉a|ñ(m)〉b, (9)

where we introduce the m-photon displaced number states of
the mechanical mode as

|ñ(m)〉b ≡ exp[ξ [m](b̂† − b̂)]|n〉b. (10)

The eigenstates of the Hamiltonian Ĥgom are direct prod-
uct states of the photon number state |m〉a for mode â
and the photon-number-dependent displaced number state
|ñ(m)〉b for mode b̂. For a given photon state |m〉a, the m-
photon displaced number states for mode b̂ form a complete
set of basis in the Hilbert space of the mechanical mode:∑∞

n=0 |ñ(m)〉bb〈ñ(m)| = Ib, where Ib is the identity operator
for mode b̂. For studying few-photon optomechanical effects,
we show the eigenenergy levels of Ĥgom in the subspace asso-
ciated with zero, one, and two photons in Fig. 1(b). Physically,
the induced optical nonlinearity depicted by δ[m] [cf. δ[1] and
δ[2] in Fig. 1(b)] is the origin of the photon blockade effect in
this generalized optomechanical model. In the absence of the
cross-Kerr interaction, i.e., gcK = 0, this optical nonlinearity
becomes the Kerr nonlinearity in a standard optomechanical
model [34,38]. In addition, the photon-number-dependent
displacement ξ [m] in this model is not a linear function of
the photon number m. This nonlinear conditional photon
displacement can be used to create quantum superposition
states of the mechanical mode. When gcK = 0, the photon-
number-dependent displacement ξ [m] is reduced to mg0/ωM ,
which is the m-photon-induced mechanical displacement in
the case of a typical optomechanical model [48].

III. PHOTON BLOCKADE EFFECT

In this section, we study the photon blockade effect in the
generalized optomechanical system by seeking the approxi-
mate analytical results and the exact numerical results.

A. Analytical results

To show the photon blockade effect, we introduce a
monochromatic driving field to the cavity. The driving Hamil-
tonian is given by

Ĥd = �(â†eiωd t + âe−iωd t ), (11)

where � and ωd are the driving strength and driving fre-
quency, respectively. Then the total Hamiltonian of the system

becomes

Ĥsys = Ĥgom + Ĥd . (12)

For our convenience, we work in a frame rotating at the
driving frequency ωd , then the Hamiltonian of the total system
becomes

Ĥ (I )
sys = Ĥ (I )

gom + �(â† + â), (13)

with

Ĥ (I )
gom = �câ†â + ωMb̂†b̂ − g0â†â(b̂† + b̂) − gcKâ†âb̂†b̂,

(14)

where �c = ωc − ωd is the detuning of the cavity frequency
with respect to the driving frequency. The eigensystem of
Ĥ (I )

gom can be written as

Ĥ (I )
gom|m〉a|ñ(m)〉b = εm,n|m〉a|ñ(m)〉b, (15)

where the eigenvalue is defined by

εm,n = Em,n − mωd

= m�c + (ωM − mgcK)n − δ[m], (16)

where δ[m] is given by Eq. (6).
To analyze the photon blockade effect in the cavity, we

analytically calculate the equal-time second-order correlation
function of the cavity photons. To include the influence of the
photon dissipation on the photon blockade, we phenomeno-
logically add a non-Hermitian term to Hamiltonian (13) as

Ĥeff = Ĥ (I )
sys − i

κ

2
â†â, (17)

where κ is the decay rate of the cavity field. The non-Hermite
Hamiltonian (17) is based on the “quantum jump” approach
developed in quantum optics [70]. It is used to calculate the
analytical results of the photon statistics by including the
dissipation of the cavity field at temperature T = 0. This treat-
ment is based on the condition that there are no detected cavity
photons leaked from the cavity (namely the no-count case).
An advantage of this analytical method is that we can capture
some main physics of the photon blockade in this system with
the wave-function method. In addition, from the analytical
results we can know the optimal driving frequency and the
concise forms of the correlation functions in Eq. (29). The ex-
act numerical results of the photon statistics will be calculated
by numerically solving the quantum master equation in the
next subsection. In the following analytical calculations, we
consider only the dissipation of the cavity mode because the
optical dissipation dominates the dissipations of the system.
However, the mechanical dissipation will be included in our
numerical calculations.

In the weak-driving regime (� � κ), the cavity is excited
weakly and the average photon number in the cavity is small,
then we can restrict the cavity field within the few-photon
subspace spanned by these basis states {|0〉a, |1〉a, |2〉a}. In
this subspace, a general state of the system can be written as

|ϕ(t )〉 =
∞∑

n=0

C0,n(t )|0〉a|n〉b +
∞∑

n=0

C1,n(t )|1〉a|ñ(1)〉b

+
∞∑

n=0

C2,n(t )|2〉a|ñ(2)〉b, (18)

043837-3



ZOU, FAN, HUANG, AND LIAO PHYSICAL REVIEW A 99, 043837 (2019)

where C0,n(t ), C1,n(t ), and C2,n(t ) are the probability ampli-
tudes corresponding to the basis states |0〉a|n〉b, |1〉a|ñ(1)〉b,
and |2〉a|ñ(2)〉b, respectively. Based on the Schrödinger equa-
tion i|ϕ̇(t )〉 = Ĥeff|ϕ(t )〉, the equations of motion for these
probability amplitudes can be obtained as

Ċ0,n = −iε0,nC0,n − i�
∞∑

l=0

b〈n|l̃ (1)〉bC1,l , (19a)

Ċ1,n = −(iε1,n + κ/2)C1,n − i�
∞∑

l=0

b〈ñ(1)|l〉bC0,l

− i
√

2�

∞∑
l=0

b〈ñ(1)|l̃ (2)〉bC2,l , (19b)

Ċ2,n = −(iε2,n + κ )C2,n − i
√

2�

∞∑
l=0

b〈ñ(2)|l̃ (1)〉bC1,l .

(19c)

In this system, the optical driving will induce the
transitions among the states corresponding to neighboring
photon numbers [i.e., the states in neighboring potential
wells in Fig. 1(b)]. The magnitudes of these transitions
are determined by the driving amplitude � and these
Franck-Condon factors, which are the inner products between
these displaced number states in neighboring potential
wells. This is because the optical driving induces photon
hopping one by one. The values of these Franck-Condon
factors can be calculated by the relation b〈ñ(m)|l̃ (m′)〉b =
b〈n| exp [(ξ [m′] − ξ [m] )(b̂† − b̂)]|l〉b (m, m′ = 0, 1, 2). Here
the matrix elements of the displacement operator in the
Fock-state space can be calculated using the following
relation [71]:

b〈n|Db(x)|l〉b =

⎧⎪⎨
⎪⎩

√
n!
l! e− |x|2

2 (−x∗)l−nLl−n
n (|x|2), l � n,√

l!
n! e

− |x|2
2 (x)n−lLn−l

l (|x|2), n > l,

(20)

where D̂b(x) = exp(xb̂† − x∗b̂) is a displacement operator and
Ll

n(x) are the associated Laguerre polynomials.
In the weak-driving case, Eq. (19) can be solved approxi-

mately by using a perturbation method, namely, discarding the
higher-order terms in the equations of motion for the lower-
order variables. We consider the case where initially the cavity
is empty, namely, C1,n(0) = 0 and C2,n(0) = 0, then the long-
time solution of Eq. (19) can be approximately obtained as

C0,n(∞) = C0,n(0)e−iε0,nt , (21a)

C1,n(∞) = −�

∞∑
l=0

b〈ñ(1)|l〉bC0,l (0)e−iε0,l t

ε1,n − ε0,l − iκ/2
, (21b)

C2,n(∞) =
√

2�2
∞∑

l,m=0

b〈ñ(2)|l̃ (1)〉b b〈l̃ (1)|m〉b

(ε2,n − ε0,m − iκ )

× C0,m(0)e−iε0,mt

(ε1,l − ε0,m − iκ/2)
. (21c)

Since we have made the perturbation approximation in
the solutions of these probability amplitudes, the state of the
system needs to be renormalized as

|ψ (t )〉 = N
∞∑

n=0

[C0,n(t )|0〉a|n〉b + C1,n(t )|1〉a|ñ(1)〉b

+C2,n(t )|2〉a|ñ(2)〉b], (22)

where we introduce the normalization constant

N =
[ ∑

s=0,1,2

∞∑
n=0

|Cs,n(t )|2
]−1/2

. (23)

In the following calculations, we omit this normalization
constant because of N ≈ 1 in the weak-driving case.

The equal-time second-order correlation function in the
weak-driving case can be written as

g(2)(0) ≡ 〈â†â†ââ〉
〈â†â〉2

= 2P2

(P1 + 2P2)2
≈ 2P2

P2
1

, (24)

where the photon probabilities are given by

Pm=0,1,2 =
∞∑

n=0

|Cm,n|2. (25)

It can be seen from Eq. (24) that if the two-photon proba-
bility P2 is largely suppressed, then the correlation becomes
g(2)(0) � 1, which is a signature of the photon blockade
effect.

We note that the normal-order correlation function g(2)(0)
is widely used to describe the photon correlation in optical
field because the photon detector devices are accessible for
experiments in the optical domain. In the microwave domain,
however, no high-efficient single-photon detectors exist yet.
Nevertheless, it has been reported that the measurement of
the photon correlation functions of the microwave frequency
radiation source at the few-photon level can be realized by us-
ing linear detectors instead of single-photon counters [72,73].
In these experiments, the normalized second-order correlation
of the field can be extracted from a measurement of the
quadrature amplitudes.

We consider the case where the initial state of the me-
chanical resonator is |0〉b, i.e., C0,n(0) = δ0,n, then the single-
and two-photon probabilities in the long-time limit can be
obtained as

P1 =
∞∑

n=0

∣∣∣∣ � b〈ñ(1)|0〉b

�c + n(ωM − gcK) − δ[1] − iκ/2

∣∣∣∣
2

, (26a)

P2 =
∞∑

n=0

∣∣∣∣∣
∞∑

l=0

√
2�2

b〈ñ(2)|l̃ (1)〉b

[2�c + n(ωM − 2gcK) − δ[2] − iκ]

× b〈l̃ (1)|0〉b

[�c + l (ωM − gcK) − δ[1] − iκ/2]

∣∣∣∣∣
2

. (26b)

By substituting Eq. (26) into Eq. (24), we can obtain the
analytical result of the equal-time second-order correlation
function g(2)(0). Note that this result is valid even in the pa-
rameter space g0 � ωM , under which the high-order phonon
sidebands are still important. A concise result can be obtained
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in the Lamb-Dicke-like regime in which the first-order side-
band is considered. When ξ [s] � 1 (s = 1, 2), we expand the
matrix elements of the displacement operator to the first order
of ξ [s], then the Franck-Condon factors can be approximated
as

b〈ñ(m)|l̃ (m′)〉b ≈ δn,l − (ξ [m] − ξ [m′] )
√

l + 1δn,l+1

+ (ξ [m] − ξ [m′] )
√

lδn,l−1. (27)

Accordingly, the approximate expressions of the photon prob-
abilities can be obtained as

P1 ≈ �2

(�c − δ[1] )2 + κ2/4
,

P2 ≈ 2�4

[(2�c − δ[2] )2 + κ2][(�c − δ[1] )2 + κ2/4]
. (28)

In this case, the second-order correlation function takes the
form

g(2)(0) ≈ 2P2

P2
1

= 4(�c − δ[1] )2 + κ2

(2�c − δ[2] )2 + κ2
. (29)

Based on these analytical results, we can obtain the optimal
driving frequencies corresponding to the single- and two-
photon resonance processes.

In the single-photon resonance (spr) case, �c = δ[1], the
correlation function becomes

g(2)
spr(0) ≈ κ2

(2δ[1] − δ[2] )2 + κ2
. (30)

Owing to 2δ[1] �= δ[2], we have g(2)
spr(0) < 1, which corre-

sponds to sub-Poisson distribution of photons. In particular,
when δ[2] − 2δ[1] � κ , the two-photon probability is largely
suppressed, and then the photon blockade effect takes place in
this generalized optomechanical system.

In the two-photon resonance (tpr) case, �c = δ[2]/2, the
correlation function is reduced to

g(2)
tpr (0) ≈ (δ[2] − 2δ[1] )2 + κ2

κ2
. (31)

Here the second-order correlation function could be much
larger than 1, and then we can observe photon-assisted tun-
neling in this system [39].

B. Numerical results

To include the dissipations of the cavity field and the
mechanical resonator, in this section we study the photon
blockade effect in the open-system case by using the method
of a quantum master equation. Under the Born-Markov ap-
proximation and the rotating-wave approximation, the quan-
tum master equation in the rotating frame is written as

d ρ̂(t )

dt
= −i

[
Ĥ (I )

sys, ρ̂(t )
] + κD[â]ρ̂(t ) + γM (n̄M + 1)

×D[b̂]ρ̂(t ) + γMn̄MD[b̂†]ρ̂(t ), (32)

where we assume that the cavity field is connected with a
vacuum bath, while the mechanical resonator is a heat bath
at temperature T . κ and γM are, respectively, the decay rates
of the cavity field and the mechanical oscillator. The n̄M =
(eh̄ωM/(kBT ) − 1)−1 is the average thermal phonon number

associated with the mechanical dissipation, with kB being
the Boltzmann constant. The Lindblad superoperators used in
Eq. (32) are defined by

D[ô]ρ̂(t ) = 1
2 [2ôρ̂(t )ô† − ô†ôρ̂(t ) − ρ̂(t )ô†ô] (33)

with ô = â, b̂, and b̂†. The three Lindblad superoperators
D[â]ρ̂(t ), D[b̂]ρ̂(t ), and D[b̂†]ρ̂(t ) in Eq. (32) describe the
cavity-field dissipation, the mechanical damping, and the
mechanical thermal excitation, respectively.

By numerically solving Eq. (32), we can get
the steady-state density operator ρ̂ss of the system,
and then the photon-number probabilities Pm=0,1,2 =
Tr[

∑∞
n=0 |m〉a|n〉b a〈m|b〈n|ρ̂ss] can be calculated numerically.

The second-order correlation function g(2)(0) can also
be obtained by g(2)(0) = Tr(â†â†ââρ̂ss )/[Tr(â†âρ̂ss )]2. In
our realistic numerical simulations, we need to truncate
the dimensions of the Hilbert spaces of the cavity field
and the mechanical resonator. In the weak-driving case, we
choose the truncation dimension of the cavity field as nc = 3.
In addition, the appropriate truncation dimension of the
Hilbert space of the mechanical resonator needs to be chosen
such that the numerical results of the photon statistics are
numerically stable. Here we choose the truncation dimension
of the mechanical resonant as nd = 30.

To seek an optimal driving detuning of the photon block-
ade, we investigate the dependence of the cavity photon-
number distributions on the driving detuning. In Fig. 2(a) we
plot both the analytical results (the colored solid curves) and
the numerical results (the circles) of the photon-number prob-
abilities Pm=0,1,2 as a function of the driving detuning �c/ωM .
Here we can see the relations P0 ≈ 1 and P0 � P1 � P2 in
the weak-driving case. In addition, Fig. 2(a) shows that there
are some peaks in the single-photon probability (the red solid
curve) and the two-photon probability (the green solid curve).
By analyzing the single- and two-photon resonance condi-
tions, we find that the locations of these peaks in the curves
of P1 and P2 are determined by the single- and two-photon
resonant transitions |0〉a|0〉b → |1〉a|ñ(1)〉b and |0〉a|0〉b →
|2〉a|ñ(2)〉b, respectively. To be clearer, we mark these peaks in
the single- and two-photon probabilities P1 and P2 as dn and
pn, respectively. The subscripts in dn and pn correspond to
the quantum numbers in the states |1〉a|ñ(1)〉b and |2〉a|ñ(2)〉b

involved in these transitions. It follows from the relation
g(2)(0) ≈ 2P2/P2

1 that the peak values of P2 and P1 are related
to the peaks and dips in g(2)(0), respectively. That is why we
mark the peaks in P1 as dn. In Table I we present the cor-
respondence among these transitions |0〉a|0〉b → |1〉a|ñ(1)〉b

and |0〉a|0〉b → |2〉a|ñ(2)〉b, the locations (i.e., the values of
�c/ωM) of these peaks and dips in g(2)(0), and the marks of
these peaks and dips.

The dependence of the photon blockade effect on the
driving detuning can be analyzed by plotting the correlation
function g(2)(0) as a function of �c/ωM . In Fig. 2(b) the red
solid curve is plotted based on the analytical results given
in Eq. (24), while the blue dashed curve is plotted using the
numerical solution of quantum master equation (32). We can
see that the analytical results can almost match well with
the numerical results. However, there is also a slight discrep-
ancy between the analytical and the numerical solutions. The
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FIG. 2. (a) The photon-number probabilities Pm=0,1,2 as a func-
tion of the driving detuning �c/ωM . The colored solid curves
and the circles are plotted based on the analytical and numerical
results, respectively. (b) The equal-time second-order correlation
function g(2)(0) as a function of the driving detuning �c/ωM .
The red solid curve and the blue dashed curve correspond to the
analytical and numerical results, respectively. The black dashed
lines correspond to the position of �c = δ[1]. Other parameters
are given by g0/ωM = 0.7, gcK/g0 = 0.25, κ/ωM = 0.1, γM/ωM =
0.001, �/κ = 0.01, and n̄M = 0.

discrepancy is caused for the following three reasons: (1) In
the derivation of the analytical results, we have made the
perturbation approximation. In the numerical calculation, the
quantum master equation is solved exactly with the numerical
method. (2) In the analytical calculation, we did not consider
the dissipation of the mechanical mode, which is included
in the numerical simulations. (3) In the analytical solution,
the initial state of the mechanical mode is assumed to be the
ground state |0〉b. However, the numerical calculations are
based on the steady state of the system. By comparing the

FIG. 3. (a) Plot of g(2)(0) as a function of gcK/ωM under g0/ωM =
0.5, 0.7 and the single-photon resonance �c = δ[1]. The red dashed
and blue dot-dashed curves correspond, respectively, to the cases
of g0/ωM = 0.5 and g0/ωM = 0.7. The two cases also correspond
to the two transverse (dash-dotted and dashed) lines marked in
panel (b). (b) Plot of g(2)(0) as a function of gcK/ωM and g0/ωM at
�c = δ[1]. The gray short dashed (oblique) curves refer to Eq. (34).
Other parameters are κ/ωM = 0.1, γM/ωM = 0.001, �/κ = 0.01,
and n̄M = 0.

correlation function g(2)(0) with the photon number probabil-
ities Pm=0,1,2, we see that the locations of these dips and peaks
of g(2)(0) correspond to single- and two-photon resonant tran-
sitions, respectively. Figure 2(b) also shows that the photon
blockade effect [g(2)(0) � 1, corresponding to the dips in the
correlation function] can be observed at the single-photon
resonance. In Figs. 2(a) and 2(b) the black dashed line is used
to mark the single-photon resonance point �c = δ[1], which
corresponds to the resonant transition |0〉a|0〉b → |1〉a|0̃(1)〉b.

We proceed to study the influence of the cross-Kerr in-
teraction on the photon blockade. In Fig. 3(a) we plot the

TABLE I. The correspondence among the single- and two-photon transitions |0〉a|0〉b → |1〉a|ñ(1)〉b and |0〉a|0〉b → |2〉a|ñ(2)〉b, the values
of the optimal driving detuning �c/ωM related to these resonant transitions, and the marks of these peaks and dips in the second-order
correlation function g(2)(0) [cf. Fig. 2(b)].

Single-photon resonant transitions �c/ωM 0.594 −0.231 −1.056 −1.881 −2.706 −3.531
|0〉a|0〉b → |1〉a|ñ(1)〉b Transition final states |1〉a|0̃(1)〉b |1〉a|1̃(1)〉b |1〉a|2̃(1)〉b |1〉a|3̃(1)〉b |1〉a|4̃(1)〉b |1〉a|5̃(1)〉b

Marks d0 d1 d2 d3 d4 d5

Two-photon resonant transitions �c/ωM 1.508 1.183 0.858 0.533 −0.117 −1.092

|0〉a|0〉b → |2〉a|ñ(2)〉b Transition final states |2〉a|0̃(2)〉b |2〉a|1̃(2)〉b |2〉a|2̃(2)〉b |2〉a|3̃(2)〉b |2〉a|5̃(2)〉b |2〉a|8̃(2)〉b

Marks p0 p1 p2 p3 p5 p8
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equal-time second-order correlation function g(2)(0) at the
steady state as a function of the cross-Kerr parameter gcK/ωM ,
under given values of g0/ωM and single-photon resonant driv-
ing �c = δ[1]. Here we can see that the correlation function
exhibits an oscillating pattern with several resonance peaks
located at specific values of gcK/ωM . Moreover, we can see
that the value of g(2)(0) of the generalized optomechanical
system in the presence of the cross-Kerr effect is greater (less)
than those of the typical optomechanicl system without the
cross-Kerr effect when g0/ωM = 0.5 (0.7). It indicates that
the cross-Kerr interaction could either enhance or suppress
the photon blockade effect. A more comprehensive analysis of
these phenomena is shown in Fig. 3(b), in which we plot the
correlation function as a function of g0/ωM and gcK/ωM under
the single-photon resonant transition |0〉a|0〉b → |1〉a|0̃(1)〉b.
We can see that the value of g(2)(0) is approximately equal
to 1 when g0/ωM < 0.1, which indicates that the photon
blockade effect cannot be observed. For a given value of
g0/ωM , the correlation function g(2)(0) experiences some
oscillations with the increasing of the ratio gcK/ωM . In this
optomechanical system, there are many phonon sidebands,
and these phonon sideband channels could induce single-
and two-photon resonant transitions simultaneously. There-
fore, the locations of these resonant peaks correspond to
the two-photon resonant transitions involving these phonon
sidebands (|1〉a|0̃(1)〉b → |2〉a|ñ(2)〉b), and the resonant peaks
are related to the corresponding phonon sideband indexes n.
When the parameter g0/ωM changes, these joined resonant
peaks form resonant curves in the two-dimensional plot, as
marked by the gray short dashed (oblique) curves in Fig. 3(b).
The locations of these resonant peaks are determined by
the single- and two-photon resonant transitions, which de-
pend on the optomechanical coupling strength g0/ωM and
the cross-Kerr parameter gcK/ωM . By analyzing the single-
and two-photon resonant transitions, the parameter equation
determining the locations of these resonant curves can be
obtained as

g0

ωM
=

[
n

2

(
1 − 2gcK

ωM

)2(
1 − gcK

ωM

)]1/2

, n = 1, 2, . . . .

(34)

In particular, when the cross-Kerr interaction is absence, i.e.,
gcK/ωM = 0, Eq. (34) is reduced to g0/ωM = √

n/2, which
comes back to the result obtained for the typical optome-
chanical model [38]. Note that the locations of these peaks in
Fig. 3(a) correspond to these black spots crossed by the lines
at g0/ωM = 0.5, 0.7 and these resonant curves in Fig. 3(b).

To further illustrate the effect of the cross-Kerr interaction
on the photon blockade at different values of g0/ωM , we plot
the steady-state correlation function g(2)(0) as a function of the
driving detuning �c/ωM at g0/ωM = 0.5 and 0.7, as shown
in Figs. 4(a) and 4(b), respectively. Here the red dot-dashed
and blue solid curves correspond to the two cases of gcK/g0 =
0 and gcK/g0 = 0.25, respectively. It can be confirmed that
the optimal driving frequencies at these dips correspond to
the single-photon resonant transitions |0〉a|0〉b → |1〉a|ñ(1)〉b.
By comparing the dips in the two cases, we find that the
optimal driving detuning of the photon blockade is changed
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c/ M

10-1

100

101

102

g(2
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)
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gcK /g0 = 0

 = 0.25
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 = 0.25
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gcK /g0

gcK /g0

g0/ M  = 0.7

g0/ M  = 0.5

FIG. 4. Plot of g(2)(0) as a function of the driving detuning
�c/ωM when (a) g0/ωM = 0.5 and (b) g0/ωM = 0.7. The red dot-
dashed and blue solid curves correspond to the cases of gcK/g0 =
0 and gcK/g0 = 0.25, respectively. Other parameters are given by
κ/ωM = 0.1, γM/ωM = 0.001, �/κ = 0.01, and n̄M = 0.

due to the presence of the cross-Kerr interaction. The shift
of the optimal driving frequency can be deduced from the
eigenenergy spectrum (8) of the system. The influence of the
cross-Kerr interaction in the cases of g0/ωM = 0.5 and 0.7 is
consistent with the results in Fig. 3.

As shown in the typical optomechanical model, the
resolved-sideband condition (κ < ωM) should be satisfied to
observe the photon blockade effect. Hence the decay rate of
the cavity mode will significantly affect the photon blockade.
In Fig. 5 we show the dependence of g(2)(0) on the optome-
chanical coupling strength g0/ωM under the single-photon
resonant driving condition �c = δ[1]. In Fig. 5(a) the steady-
state correlation function g(2)(0) is plotted as a function of
g0/ωM at different values of κ/ωM when �c = δ[1]. We can
see that the correlation function exhibits an oscillating pattern
with increasing g0/ωM owing to the modulation of the phonon
sidebands. The locations of these resonant peaks correspond
to the two-photon resonant transitions, which is consistent
with the theoretical results given by Eq. (34). In addition,
the photon blockade effect for the case of κ/ωM = 0.1 is
better than that for κ/ωM = 0.2. To see a wider parameter
space corresponding to the photon blockade, in Fig. 5(b),
the steady-state correlation function g(2)(0) is plotted as a
function of g0/ωM and κ/ωM at �c = δ[1]. Here we see that
the photon blockade effect (g(2)(0) � 1) can be observed in
the deep-resolved-sideband regime κ/ωM < 0.1.
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FIG. 5. (a) Plot of g(2)(0) as a function of g0/ωM at different
values of κ/ωM when �c = δ[1]. (b) Plot of g(2)(0) as a function
of g0/ωM and κ/ωM at �c = δ[1]. The red dashed and blue dot-
dashed curves correspond to the cases of κ/ωM = 0.2 and κ/ωM =
0.1, respectively. Other parameters are γM/ωM = 0.001, gcK/g0 =
0.25, �/κ = 0.01, and n̄M = 0.

IV. GENERATION OF THE SCHRÖDINGER CAT STATES

Another interesting topic in few-photon optomechanics is
the generation of the Schrödinger cat states in the mechanical
resonator based on the conditional dynamics of the optome-
chanical coupling [48]. In this section, we will study the
enhancement of the mechanical displacement induced by a
single photon and the generation of macroscopic mechanical
cat states. We will also study the Wigner function [74] and the
probability distribution of the rotated quadrature operator [75]
in the generated cat states based on the analytical and numer-
ical results.

A. Analytical solution

For the Hamiltonian Ĥgom, its unitary evolution operator
can be written as (see the Appendix)

Û (t ) = e−iωct â†âeiμ̂(t )â†ââ†âe−iν̂(t )â†ââ†ââ†â

× eâ†â[λ̂(t )b̂†−λ̂∗(t )b̂]ei(gcKâ†â−ωM )t b̂†b̂, (35)

where we introduce the variables

μ̂(t ) = g2
0{ωMt − sin[(ωM − gcKâ†â)t]}

(ωM − gcKâ†â)2
, (36a)

ν̂(t ) = gcKg2
0t

(ωM − gcKâ†â)2
, (36b)

λ̂(t ) = g0

ωM − gcKâ†â
[1 − ei(gcKâ†â−ωM )t ]. (36c)

To generate the mechanical cat states, we consider an ini-
tial state |ψ (0)〉 = (|0〉a + |1〉a)|0〉b/

√
2 of the system, where

|m〉a(m = 0, 1) denotes the Fock state of the cavity field and
|0〉b is the ground state of the mechanical resonator, which can
be prepared via the ground state cooling [12,13]. In this state
generation scheme, the physical mechanism of the cat state
generation is the conditional displacement, which is governed
by the optomechanical interaction. When there is no photon,
the mechanical resonator is a harmonic oscillator. When there
is a single photon in the cavity, the mechanical resonator
will be displaced by the radiation-pressure force. Then a
superposition of photonic state will induce the superposition
of the mechanical displacement. By utilizing the unitary evo-
lution operator Û (t ), the state of the system at time t can be
obtained as

|ψ (t )〉 = Û (t )|ψ (0)〉
= 1√

2
[|0〉a|0〉b + eiϑ (t )|1〉a|β(t )〉b], (37)

where the phase factor ϑ (t ) and the mechanical displacement
β(t ) are defined by

ϑ (t ) = −ωct + g2
0

(ωM − gcK)2
{(ωM − gcK)t

− sin[(ωM − gcK)t]}, (38a)

β(t ) = g0

ωM − gcK
[1 − ei(gcK−ωM )t ]. (38b)

By expanding the cavity-mode state with basis states
|±〉a = (|0〉a ± |1〉a)/

√
2, Eq. (37) becomes

|ψ (t )〉 = 1

2

[
1

N+(t )
|+〉a|�(+)(t )〉b + 1

N−(t )
|−〉a|�(−)(t )〉b

]
,

(39)

where we introduce the mechanical cat states

|�(±)(t )〉b = N±(t )[|0〉b ± eiϑ (t )|β(t )〉b], (40)

which are quantum superposition of the ground state |0〉b and
the coherent state |β(t )〉b. The normalization constants N±(t )
are given by

N±(t ) = (
2
{
1 ± cos[ϑ (t )]e− |β(t )|2

2
})−1/2

. (41)

When we choose proper detection time t = (2n + 1)π/(gcK −
ωM ), a maximal value of |β(t )| is obtained. To minimal the in-
fluence of environment noise, we choose ts = π/(gcK − ωM )
as the detection time in the following discussion. Equation
(38b) shows that the maximal displacement amplitude is
|β(ts)| = 2g0/(gcK − ωM ).

When the cavity field is detected in states |±〉a, the me-
chanical resonator will collapse into the mechanical cat states
|�(±)(t )〉b accordingly. The corresponding detection probabil-
ities are

P±(t ) = 1

2

{
1 ± cos[ϑ (t )]e− |β(t )|2

2
} = 1

4|N±(t )|2 . (42)

It can be seen from Eq. (42) that, for a sufficiently large dis-
placement |β(t )| such that exp[−|β(t )|2/2] ≈ 0, the detection
probabilities become P±(t ) ≈ 1/2.
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FIG. 6. (a) Plot of |β(ts)| as a function of gcK/ωM . (b) The
probabilities P±(t ) as a function of time t . The inset in (b) is a
zoomed-in plot of P±(t ) as a function of time t . Other parameters
used in panel (b) are ωc/ωM = 100, g0/ωM = 1.2, and gcK/g0 =
0.25.

In order to investigate how the maximal displacement
amplitude |β(ts)| depends on the cross-Kerr interaction gcK,
in Fig. 6(a) we plot |β(ts)| as a function of gcK/ωM . We can
see that |β(ts)| increases monotonically with the increase of
the cross-Kerr interaction strength. Under the assistance of
the cross-Kerr interaction, the cat states which are formed by
quantum superposition of the vacuum state and coherent states
can be obtained. To approximately distinguish the coherent
state from the vacuum state, a coherent displacement |β| > 3
is usually expected. Figure 6(a) shows that the superposition
of distinct coherent states can be created under the cross-Kerr
interaction. In Fig. 6(b) we display the time dependence of the
probabilities P±(t ). Here we can see that the two probabilities
P+(t ) and P−(t ) have similar envelops. In the intermediate
duration around the detection time ts = π/(gcK − ωM ), the
oscillation amplitude is negligible [see the inset in Fig. 6(b)].
At the detection time ts ≈ 4.19, the probabilities P+(ts) ≈
P−(ts) ≈ 1/2, which is consistent with the analysis based on
the condition exp[−|β(t )|2/2] ≈ 0.

B. The Wigner function and the probability distribution
of the rotated quadrature operator

The quantum interference and coherence effects in the
generated mechanical cat states can be revealed by calculating
either the Wigner function or the probability distribution of
the rotated quadrature operator. For the mechanical mode in

the density matrix ρ̂b, the Wigner function is defined by [74]

W (η) = 2

π
Tr[ρ̂bD̂(η)eiπ b̂†b̂D̂†(η)], (43)

where D̂(η) = exp(ηb̂† − η∗b̂) is a displacement operator.
Corresponding to the states |�(±)(t )〉b in Eq. (40), the Wigner
functions can be obtained by substituting the density matrices
ρ̂

(±)
b = |�(±)(t )〉bb〈�(±)(t )| into Eq. (43) as

W (±)(η) = 2N 2
±

π
(e−2|η|2 + e−2|β(t )−η|2

± 2Re[e−iϑ (t )e− 1
2 |β(t )|2+2β∗(t )η−2|η|2 ]). (44)

For the rotated quadrature operator

X̂ (θ ) = 1√
2

(b̂e−iθ + b̂†eiθ ), (45)

its eigenstate is denoted by |X (θ )〉b: X̂ (θ )|X (θ )〉b =
X (θ )|X (θ )〉b [75]. For the states |�(±)(t )〉b, we can obtain
the probability distributions of the rotated quadrature operator
X̂ (θ ) as

P(±)[X (θ )] = |b〈X (θ )|�(±)(t )〉b|2
= N 2

±|b〈X (θ )|0〉b ± eiϑ (t )
b〈X (θ )|β(t )〉b|2.

(46)

Here the inner product of the vacuum state |0〉b and the co-
herent state |β(t )〉b with the eigenatate |X (θ )〉b of the rotated
quadrature operator can be calculated with the relations

b〈X (θ )|0〉b = H0[X (θ )]√
π1/2

e−X 2(θ )/2, (47a)

b〈X (θ )|β(t )〉b = e−|β(t )|2/2
∞∑

n=0

[β(t )]nHn[X (θ )]

n!
√

π1/22n

× e−X 2(θ )/2e−iθn, (47b)

where Hn(x) are the Hermite polynomials.
To explore the quantum coherence and interference effects

in the generated mechanical cat states. In Figs. 7(a) and 7(b),
we plot the Wigner functions W (±)(η) for the mechanical cat
states |�(±)(ts)〉b with ts = π/(ωM − gcK) being the detection
time. Here we can see that the positions of the two main peaks
in the Wigner functions are located at the origin and the point
corresponding to β(ts) in the phase space, which represent
the two coherent states |0〉b and |β(ts)〉b. Moreover, we see
a clear interference pattern (in the region between the two
peaks) in the Wigner functions. More importantly, the two
main peaks in the Wigner functions of the states |�(±)(ts)〉b

can be distinguished in the phase space, which means that the
two superposition components |0〉b and |β(ts)〉b are distinct
from each other in the sense of |b〈0|β(ts)〉b| ≈ 0. We point
out that the distinguishability between the two superposition
states is enhanced under the assistance of the cross-Kerr
interaction. This point can be seen from the expression of
the coherence amplitude |β(ts)| = 2g0/|ωM − gcK|, which in-
creases with the increase of gcK in the range gcK < ωM . In
addition, in Figs. 7(c) and 7(d) we show the Wigner functions
of the two states in the absence of the cross-Kerr interac-
tion. By comparing the Wigner functions in the two cases
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FIG. 7. The Wigner functions W (±)(η) for the mechanical oscil-
lator states |�(±)(ts )〉b: (a), (b) gcK/g0 = 0.25 and (c), (d) gcK/g0 =
0. (e), (f) The probability distributions P(±)[X (θ0)] for the states
|�(±)(ts )〉b as a function of X (θ0 ) at different value of gcK/g0. The
red solid curves correspond to the typical optomechanical system
without the cross-Kerr effect (gcK/g0 = 0) and The blue dashed
curves correspond to the generalized optomechanical system in the
presence of the cross-Kerr effect (gcK/g0 = 0.25). Other parameters
are ωc/ωM = 1000 and g0/ωM = 1.2.

gcK/g0 = 0.25 and 0, we can see that the distance between
the two peaks is enhanced and that the interference fringes
become clearer in the presence of the cross-Kerr interaction.
This implies that the cross-Kerr interaction is helpful to the
generation of a macroscopic mechanical cat state. This en-
hancement can also be seen from the probability distributions
P(±)[X (θ0)] for the states |�(±)(ts)〉b, as shown in Figs. 7(e)
and 7(f). Here the angle of rotation θ0 = arg[β(ts)] − π/2 is
chosen such that the quadrature direction is perpendicular to
the link line between the two main peaks. This is because the
interference is maximum in this direction due to the prob-
ability distributions overlap exactly when the two coherent
states are projected onto this quadrature. It can be seen that
a stronger oscillation exists in the probability distributions
corresponding to the generated cat states in the presence of
the cross-Kerr interaction.

C. Effect of the dissipations on the cat state generation

In this section, we study how the dissipation of the system
affects the generation of the cat states. Concretely, we calcu-
late the Wigner function and the probability distribution of
X̂ (θ ) for the cat states in the presence of dissipation. In this
case, the evolution of the system is governed by the quantum

master equation (32) under the replacement of Ĥ (I )
sys → Ĥgom.

To solve this master equation (32), we expand the state of the
system in the Fock space and write the density matrix as

ρ̂(t ) =
∞∑

m, j,n,k=0

ρ̂m, j,n,k (t )|m〉a| j〉b a〈n|b〈k|. (48)

For the initial state |ψ (0)〉 = (|0〉a + |1〉a)|0〉b/
√

2,
the nonzero density matrix elements are ρ̂0,0,0,0(0) =
ρ̂0,0,1,0(0) = ρ̂1,0,0,0(0) = ρ̂1,0,1,0(0) = 1/2. By numerically
solving the master equation (32) under the initial condition,
the time evolution of the density matrix ρ̂(t ) can be obtained.
In the numerical simulations, we need to truncate the Hilbert
space of the mechanical resonantor such that the equations of
motion of the density matrix element satisfying Eq. (32) are
closed. The truncation dimension nd should be chosen such
that 2P±(t ) is normalized. In our simulations, we choose the
truncation dimension as nd = 20 in the closed-system case.
In the open-system case, the truncation dimension should be
increased due to the mechanical resonant will be excited by
the heat bath.

Accordingly, the density matrices of the mechanical res-
onator corresponding to the detected cavity states |±〉a can be
obtained as

ρ̂
(±)
b (t ) = a〈±|ρ̂(t )|±〉a

Tr[a〈±|ρ̂(t )|±〉a]

= 1

2P±(t )

∞∑
j,k=0

�
(±)
j,k (t )| j〉b b〈k|, (49)

where we introduce the variables

�
(±)
j,k (t ) = ρ̂0, j,0,k (t ) + ρ̂1, j,1,k (t ) ± [ρ̂0, j,1,k (t ) + ρ̂1, j,0,k (t )]

(50)

and the measurement probabilities

P±(t ) = 1

2

∞∑
j=0

�±
j, j (t ). (51)

The fidelities between the generate states ρ̂
(±)
b (t ) and the

target states |�(±)(t )〉b can also be calculated as

F±(t ) = b〈�(±)(t )|ρ̂ (±)
b (t )|�(±)(t )〉b

= N 2
±

2P±(t )

∞∑
j,k=0

�
(±)
j,k (t )

{
δ0, j ± e−iϑ (t )e− |β(t )|2

2
[β∗(t )] j

√
j!

}

×
{
δk,0 ± eiϑ (t )e− |β(t )|2

2
[β(t )]k

√
k!

}
. (52)

Below we will analyze the dependence of these fidelities and
probabilities on the dissipation parameters: the cavity field
decay rate κ , the mechanical decay rate γM , and the average
thermal occupation number n̄M .

In Fig. 8 we display the time dependence of the prob-
abilities P±(t ) at different values of the cavity-field decay
rate κ/ωM , the mechanical dissipation rate γM/ωM , and the
average thermal phonon number n̄M . Figure 8 shows that the
probabilities P±(t ) oscillate rapidly, which is mainly caused
by the free evolution of the cavity field, as shown by the phase
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FIG. 8. The probabilities P±(t ) as a function of time t in vari-
ous cases. (a), (b) γM/ωM = 0.01, n̄M = 0, and κ/ωM = 0.01, 0.05,
and 0.1; (c), (d) κ/ωM = 0.1, n̄M = 0, and γM/ωM = 0.01, 0.05,
and 0.1; (e), (f) κ/ωM = 0.1, γM/ωM = 0.01, and n̄M = 1, 3,
and 5. Other parameters are ωc/ωM = 100, g0/ωM = 1.2, and
gcK/g0 = 0.25. The insets are the probabilities P±(ts ) at time ts =
π/(ωM − gck ) vs the dissipation parameters κ/ωM , γM/ωM , and n̄M .

factor ϑ (t ) in Eq. (38). With the evolution of the system, the
amplitude of the oscillation envelop decreases gradually. In
the intermediate duration of ωMt ≈ 3 − 7 (around the cavity
detection time ts), the oscillation amplitude almost disappears
and the probabilities P+(t ) ≈ P−(t ) ≈ 1/2. The amplitude of
the oscillation envelop will revive around t = 2π/(ωM − gcK)
[with the same period as β(t )]. Comparing to the closed-
system case, we see that the amplitude of the oscillation
envelop for the probabilities at the revival duration decreases
in the presence of dissipations. The insets in Fig. 8 show
the probabilities P±(ts) at ts = π/(ωM − gck ) as a function of
κ/ωM, γM/ωM , and n̄M . The results indicate that the prob-
abilities P±(ts) are almost independent of these dissipation
parameters.

In Fig. 9 we plot the fidelities F±(t ) as a function of time t
at various values of κ/ωM, γM/ωM , and n̄M . Here we can see
that the fidelities exhibit some oscillations at the initial period.
With the evolution of the system, the oscillation disappears
gradually, and then the oscillation will revive around the time
2π/(ωM − gcK). In the intermediate duration of ωMt ≈ 3–7,
the fidelities F+(t ) and F−(t ) have approximately equal val-
ues. The fidelities F±(t ) have smaller values for larger values
of the decay rates κ/ωM, γM/ωM , and the thermal occupation
number n̄M . This phenomenon can also be seen from the insets
of Fig. 9. Moreover, the plots show that the time dependence
of F+(t ) is similar to that of F−(t ), and that the dependence of
F±(ts) on the parameters κ (γM) and n̄M is almost the same.

The influence of the dissipations on the Wigner functions
of the generated state can also be evaluated based on the
reduced density matrices ρ̂

(±)
b (t ) of the mechanical oscillator.

FIG. 9. The fidelities F±(t ) vs time t in various cases.
(a), (b) γM/ωM = 0.01, n̄M = 0, and κ/ωM = 0.01, 0.05, and 0.1;
(c), (d) κ/ωM = 0.1, n̄M = 0, and γM/ωM = 0.01, 0.05, and 0.1;
(e), (f) κ/ωM = 0.1, γM/ωM = 0.01, and n̄M = 1, 3, and 5. Other
parameters are ωc/ωM = 100, g0/ωM = 1.2, and gcK/g0 = 0.25.
The insets are the fidelities F±(ts ) at time ts = π/(ωM − gcK) vs
κ/ωM , γM/ωM , and n̄M .

In the open-system case, the Wigner functions of the density
matrices ρ̂

(±)
b (t ) can be obtained as

W (±)(η) = 1

πP±(t )

∞∑
l, j,k=0

(−1)l�
(±)
j,k (t )

× b〈l|D̂†(η)| j〉b b〈k|D̂(η)|l〉b, (53)

where the matrix elements of the displacement operator in the
Fock space can be calculated with Eq. (20).

To illustrate how the decay rates and the thermal exci-
tation number of the system affect the Wigner function of
the generated mechanical cat states. In Fig. 10 the Wigner
function W (+)(η) for the density matrix ρ̂

(+)
b (ts) is plotted

where the decay rates of the system and the thermal exci-
tation number take various values. Here we show only the
Wigner function W (+)(η) for concision because W (−)(η) has a
similar parameter dependence. We see that, with the increase
of the decays rates and the thermal excitation number, the
interference patten (in the region between the two peaks) in
the Wigner functions attenuates gradually. This means that the
decay rates κ (γM) and the thermal excitation number n̄M of
the system fade the macroscopic quantum coherence in the
cat states. In addition, with the increase of κ (γM) and n̄M ,
the peak describing the coherent state |β(t )〉b in the Wigner
function reduces gradually.

We also study the effect of the dissipation on the proba-
bility distributions of the rotated quadrature operator X̂ (θ ).
In this case, the probability distributions of X̂ (θ ) can be
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FIG. 10. The Wigner function W (+)(η) for the density ma-
trix ρ̂

(+)
b (ts ) in various cases. (a)–(c) γM/ωM = 0.01, n̄M = 0,

and κ/ωM = 0.01, 0.1, and 0.5; (d)–(f) κ/ωM = 0.1, n̄M = 0,
and γM/ωM = 0.01, 0.05, and 0.1; (g)–(i) κ/ωM = 0.1, γM/ωM =
0.01, and n̄M = 1, 3, and 5. Other parameters are ωc/ωM =
1000, g0/ωM = 1.2, and gcK/g0 = 0.25.

obtained as

P(±)[X (θ )] = e−X 2(θ )

2P±(t )

∞∑
j,k=0

�
(±)
j,k (t )√

π2 j+k j!k!

× Hj[X (θ )]Hk[X (θ )]eiθ (k− j). (54)

In Fig. 11 we plot the probability distributions P(±)[X (θ0)]
for the density matrices ρ̂

(±)
b (ts) as a function of X (θ0) where

the decay rates of the system and the thermal excitation
number take various values. It can be seen that, with the
increase of the decay rates and the thermal excitation num-
ber, the oscillation amplitude of the probability distributions
decreases gradually, which means that the decay rates and the
thermal excitation number of the system hurt the macroscopic
quantum coherence.

V. DISCUSSION AND CONCLUSION

We now present some discussions on the experimental
parameters for implementation of this model. In principle,
the studies in this work are general, and it can be imple-
mented with various optomechanical systems which can be
described by this generalized optomechanical model. Below
we focus our experimental analyses on a superconducting cir-
cuit because this generalized optomechanical model has been
proposed to enhance the single-photon optomechanical cou-
pling in this setup [62]. In particular, this coupling enhance-
ment scheme has recently been realized in a superconducting
circuit [63]. Nevertheless, we should point out that some
used parameters are accessible with current experiments, but
there still exists some challenge for current experimental

FIG. 11. The probability distributions P(±)[X (θ0 )] for the den-
sity matrices ρ̂

(±)
b (ts ) as a function of X (θ0 ) in various cases:

(a), (b) γM/ωM = 0.01, n̄M = 0, and κ/ωM = 0.01, 0.1, and 0.5;
(c), (d) κ/ωM = 0.1, n̄M = 0, and γM/ωM = 0.01, 0.05, and 0.1;
(e), (f) κ/ωM = 0.1, γM/ωM = 0.01, and n̄M = 1, 3, and 5. Other
parameters are ωc/ωM = 1000, g0/ωM = 1.2, and gcK/g0 = 0.25.

technology. For observation of the photon blockade effect,
the system is expected to work in the single-photon strong-
coupling regime g0 > κ . For generation of the cat states, the
state generation time ts = π/(ωM − gcK) is required to be
shorter than the lifetime 1/κ of the cavity photon, which
leads to the resolved-sideband condition ωM � κ . In our
simulations, we used the following parameters: g0/ωM ≈
0.5–1.2, gcK/g0 ≈ 0.25, κ/ωM ≈ 0.01–0.5, and γM/ωM ≈
0.001–0.1. These parameters have been evaluated to be ac-
cessible with the near-future technology [62,63]. For exam-
ple, when the mechanical resonance frequency is taken as
ωM ∼ 2π × 10 MHz, the optomechanical coupling strength
is g0 ∼ 2π × 5–12 MHz. Note that a coupling strength of
the order of g0 ∼ 2π × 100 MHz has been evaluated to be
in principle possible with an optimized device [63]. The
cross-Kerr interaction strength gcK/g0 ≈ 0.25 has also been
estimated in this system [62]. In addition, the cavity decay
rate (on the order of ∼1 MHz) and the mechanical decay
rate (∼100 kHz) are accessible with the current experimental
conditions [3].

In conclusion, we have studied the few-photon optome-
chanical effects in a generalized optomechanical system in
which there exist both the optomechanical coupling and
the cross-Kerr interaction between the optical and phononic
modes. In particular, we focused on the photon blockade effect
and the generation of the mechanical cat states in both the
close- and open-system cases. We found that the cross-Kerr
interaction can strengthen or attenuate the photon blockade of
the cavity by calculating the equal-time second-order corre-
lation function. We also found that the cross-Kerr interaction
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can enhance the quantum interference and coherence effect
in the generated mechanical cat states by calculating the
Wigner function and the probability distribution of the rotated
quadrature operator.

ACKNOWLEDGMENTS

F.Z. is supported in part by Hunan Provincial Post-
graduate Research and Innovation project under Grant No.
CX2018B290. J.-F.H. is supported in part by National Natural
Science Foundation of China under Grant No. 11505055.
J.-Q.L. is supported in part by National Natural Science
Foundation of China under Grants No. 11822501 and
No. 11774087, and Natural Science Foundation of Hunan
Province, China under Grant No. 2017JJ1021.

APPENDIX: DERIVATION OF THE UNITARY EVOLUTION
OPERATOR Û (t )

In this Appendix, we present a detailed derivation of the
unitary evolution operator Û (t ) given in Eq. (35). For the
Hamiltonian Ĥgom, its unitary evolution operator Û (t ) can be
expressed as

Û (t ) = e−iωct â†â−iωMtb̂†b̂+ig0t â†â(b̂†+b̂)+igcKt â†âb̂†b̂. (A1)

To decompose this unitary operator, we introduce a unitary
transformation defined by D̂(ξ̂ ) = exp [ξ̂ (b̂† − b̂)], where ξ̂

is defined in Eq. (2). Using the Baker-Cambell-Hausdorf
expansion [76], the transformed operator can be obtained as

D̂†(ξ̂ )Û (t )D̂(ξ̂ ) = e−iωct â†âei(gcKâ†â−ωM )t b̂†b̂e
i[

2g2
0

ωM −gcK â† â
− ωM g2

0
(ωM −gcK â† â)2

]t â†ââ†â
e

igcKg2
0t

(ωM −gcK â† â)2
â†ââ†ââ†â

. (A2)

Then we can obtain the following expression for the unitary evolution operator:

Û (t ) = D̂(ξ̂ )e−iωct â†âei(gcKâ†â−ωM )t b̂†b̂e
i[

2g2
0

ωM −gcK â† â
− ωM g2

0
(ωM −gcK â† â)2

]t â†ââ†â
e

igcKg2
0t

(ωM −gcK â† â)2
â†ââ†ââ†â

D̂†(ξ̂ )

= e−iωct â†âe
i[

2g2
0

ωM −gcK â† â
− ωM g2

0
(ωM −gcK â† â)2

]t â†ââ†â
e

igcKg2
0t

(ωM −gcK â† â)2
â†ââ†ââ†â

× e
g0

ωM −gcK â† â
â†â(b̂†−b̂)

ei(gcKâ†â−ωM )t b̂†b̂e
− g0

ωM −gcK â† â
â†â(b̂†−b̂)

. (A3)

Based on the relation

ei(gcKâ†â−ωM )t b̂†b̂e
− g0

ωM −gcK â† â
â†â(b̂†−b̂)

e−i(gcKâ†â−ωM )t b̂†b̂ = e
− g0

ωM −gcK â† â
â†â[b̂†ei(gcK â† â−ωM )t −b̂e−i(gcK â† â−ωM )t ]

, (A4)

we obtain

ei(gcKâ†â−ωM )t b̂†b̂e
− g0

ωM −gcK â† â
â†â(b̂†−b̂) = e

− g0
ωM −gcK â† â

â†â[b̂†ei(gcK â† â−ωM )t −b̂e−i(gcK â† â−ωM )t ]
ei(gcKâ†â−ωM )t b̂†b̂. (A5)

By inserting Eq. (A5) into Eq. (A3) and using the relation

e
g0

ωM −gcK â† â
â†â(b̂†−b̂)

e
− g0

ωM −gcK â† â
â†â[b̂†ei(gcK â† â−ωM )t −b̂e−i(gcK â† â−ωM )t ]

= e
−i

g2
0

(ωM −gcK â† â)2
sin[(ωM−gcKâ†â)t]â†ââ†â

e
g0

ωM −gcK â† â
â†â[(1−ei(gcK â† â−ωM )t )b̂†−(1−e−i(gcK â† â−ωM )t )b̂]

. (A6)

we obtain the unitary operator as

Û (t ) = e−iωct â†âe
i

g2
0

(ωM −gcK â† â)2
[ωMt−sin(ωMt−gcKâ†ât )]â†ââ†â

e
−igcKg2

0t

(ωM −gcK â† â)2
â†ââ†ââ†â

× e
g0

ωM −gcK â† â
â†â[(1−ei(gcK â† â−ωM )t )b̂†−(1−e−i(gcK â† â−ωM )t )b̂]

ei(gcKâ†â−ωM )t b̂†b̂, (A7)

which can be further expressed as

Û (t ) = e−iωct â†âeiμ̂(t )â†ââ†âe−iν̂(t )â†ââ†ââ†âeâ†â[λ̂(t )b̂†−λ̂∗(t )b̂]ei(gcKâ†â−ωM )b̂†b̂t , (A8)

where the variables μ̂(t ), ν̂(t ), and λ̂(t ) have been given by Eqs. (36).
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[40] A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, Strongly
Interacting Photons in a Nonlinear Cavity, Phys. Rev. Lett. 79,
1467 (1997).

[41] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an optical cavity
with one trapped atom, Nature (London) 436, 87 (2005).

[42] T. C. H. Liew and V. Savona, Single Photons from Coupled
Quantum Modes, Phys. Rev. Lett. 104, 183601 (2010).

043837-14

https://doi.org/10.1038/nature09898
https://doi.org/10.1038/nature09898
https://doi.org/10.1038/nature09898
https://doi.org/10.1038/nature09898
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevA.98.023860
https://doi.org/10.1103/PhysRevA.98.023860
https://doi.org/10.1103/PhysRevA.98.023860
https://doi.org/10.1103/PhysRevA.98.023860
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevLett.121.243601
https://doi.org/10.1103/PhysRevLett.121.243601
https://doi.org/10.1103/PhysRevLett.121.243601
https://doi.org/10.1103/PhysRevLett.121.243601
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevX.5.041037
https://doi.org/10.1103/PhysRevX.5.041037
https://doi.org/10.1103/PhysRevX.5.041037
https://doi.org/10.1103/PhysRevX.5.041037
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.88.023812
https://doi.org/10.1103/PhysRevA.88.023812
https://doi.org/10.1103/PhysRevA.88.023812
https://doi.org/10.1103/PhysRevA.88.023812
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1103/PhysRevLett.104.183601
https://doi.org/10.1103/PhysRevLett.104.183601
https://doi.org/10.1103/PhysRevLett.104.183601
https://doi.org/10.1103/PhysRevLett.104.183601


ENHANCEMENT OF FEW-PHOTON OPTOMECHANICAL … PHYSICAL REVIEW A 99, 043837 (2019)
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