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Dissipative phonon-Fock-state production in strong nonlinear optomechanics
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We put forward a deterministic dissipative protocol to prepare phonon Fock states in nonlinear quantum
optomechanical devices. The system is composed of a mechanical mode interacting with an optical field via
radiation pressure, whereas the light mode is laser driven in the resolved blue-sideband regime. To keep our
results tractable, we switch to an interaction picture in a displaced basis, where the effective Hamiltonian
exhibits the selective photon-phonon interaction explicitly. After proper parameter adjustment and similarly
to cavity-cooling schemes, the quantum evolution allows steering of the mechanical degree of freedom to
the desired Fock state by directing the optical excitations dynamically towards the target phonon state. The
numerical results, including decoherence on both the mechanical and the optical degrees of freedom, prove to be
quite robust in the good- and bad-cavity regimes, with fidelities exceeding 95%. Finally, characterization of the
achieved nonclassicality, as well as the limitations and feasibility of our protocol under experimental parameters,
is also discussed.
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I. INTRODUCTION

The thorough investigation of nonclassical states has
proven to be of utmost importance for fundamental and exper-
imental applications on related quantum topics [1,2], for in-
stance, to examine the interface between quantum-to-classical
transitions [3] and to provide a useful resource in the tireless
quest for a theory of quantum gravity [2]. Furthermore, in the
quantum information arena, the successful advent of quantum
computation and quantum communication fields entails long-
lived quantum states as well as quantum correlations [4,5],
crucial to surpass its classical counterparts [6,7]. Nonethe-
less, the inescapable sources of noise and decoherence in
the quantum evolution make the production of long-lived
quantum states considerably challenging [8]. Nowadays, sub-
stantial efforts have been devoted to the promotion of efficient
techniques for preparing and protecting nonclassical states
from quantum noise [9,10], for instance, decoherence-free
subspaces [11,12], dynamical decoupling [13], and reservoir
engineering [14–16].

In this context, the field of quantum optomechanics [17]
emerges as a formidable platform to accomplish, for exam-
ple, generation of quantum states for the light and/or the
matter degrees of freedom [17–20]. The ready access to
nonlinear (trilinear) single-photon interaction between micro-
and nanofabricated mechanical resonators and the optical
degrees of freedom makes the production of quantum states
experimentally available in the weak to strong optomechanical
regimes [17]. Moreover, current schemes to realize quantum-
state tomography of mechanical resonators [21] and the ability
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to cool the phononic excitations down to their ground state
[22–26] provide fertile ground to produce phonon states in a
controllable fashion. In particular, the predominant schemes
to prepare single-phonon excitations [27] and squeezed [28]
and Schrödinger cat states [18] are intrinsically probabilistic,
as they are mainly based on measuring the optical mode
(correlated with the vibrational mode), thus collapsing the
vibrational modes into nonclassical states [29]. Nevertheless,
deterministic schemes can also be achieved by steering the
system towards a stationary state, the so-called reservoir
engineering protocol [16]. As stated earlier, this protocol not
only serves as a mechanism to bypass quantum decoherence,
but also is potentially useful to prepare superpositions of
two wave packets [30,31]. This technique [16], experimen-
tally demonstrated in a trapped ion system [32], signals a
step of paramount importance towards the implementation of
quantum information resources. The proposal can accomplish
goals such as dissipative preparation of many-body quantum
states [33], universal dissipative quantum computation [34],
and analog quantum simulation in open systems [35], al-
lowing studies on quantum phase transitions. Naturally, one
key aspect of dissipative protocols is their independence on
initial states. In other words, it is possible to construct, from
an arbitrary initial state, a nonunitary dynamic which can
generate a steady state that asymptotically approaches to some
desired target state.

This work is devoted to the deterministic generation of
phononic Fock states in laser-driven nonlinear quantum op-
tomechanics. The system, operating in the single-photon op-
tomechanical strong regime [36], is depicted in a standard
Fabry-Perot configuration in Fig. 1. After justified approxi-
mations and switching to an interaction picture within a dis-
placed mechanical basis, we succeed in deriving an effective
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FIG. 1. Sketch of an open optomechanical system driven by
an external laser (�,ωL). The optical mode (â, ωc) is nonlinearly
coupled (g) to a mechanical oscillator (b̂, ωm); κ (γ ) stands for the
cavity (mechanical) decay (damping) rate.

Hamiltonian whose sole representation allows us to unthread
the physical mechanisms. We show that, once the parameters
are accurately tuned, it is possible to generate a steady state of
a single-|M〉-phonon Fock state, by transferring the photonic
excitations towards the targeted phonon state. In this man-
ner, our dissipative scheme is related to the optomechanical
cavity-cooling protocol—a setup which has recently brought
mechanical resonators to their ground states—driven by a
nonlinear quantum scissor [37,38]. We present our findings
both in the bad-cavity regime, for which we have obtained an
effective master equation in Lindblad form, and in the good-
cavity regime (no closed analytic form was found). Further-
more, when sources of decoherence are included, our scheme
proves to be quite robust, with production fidelities exceeding
95%. We stress that the nonlinear optomechanical coupling
strength is the main parameter for a plethora of proposals,
for instance, to generate nonclassical states of photons and
phonons [39–41], as well as to observe photon blockade effect
[42].

In Sec. II we derive an effective evolution for the strong
nonlinear optomechanical coupling regime in the bad-cavity
limit, for which no linearization of the optomechanical system
is performed. In Sec. III, we show that our protocol works in
the bad-cavity regime and numerically confirm that it remains
valid even when operating in the good-cavity regime. Finally,
Sec. IV is dedicated to our concluding remarks.

II. OPTOMECHANICAL DYNAMICS

For the sake of clarity, we briefly include the derivation
of the main Hamiltonian in this section. These steps can be
followed in more detail with the aid of Refs. [18] and [43], for
example.

We study a standard driving optomechanical system com-
posed of a mechanical mode of frequency ωm coupled to a
cavity mode of frequency ωc via radiation-pressure interac-
tion. Additionally, an external laser drives the optical mode
with angular frequency ωL and laser amplitude � = �∗, as
schematically depicted in Fig. 1. Hence, the optomechanical
Hamiltonian is (h̄ = 1)

Ĥ = ωcâ†â + ωmb̂†b̂ − gâ†â(b̂† + b̂) + [�e−iωLt â† + H.c.],
(1)

where b̂ (â) is the usual annihilation boson operator for the
mechanical (optical) mode and g represents the single-photon
coupling strength.

First, let us eliminate the time dependence from Eq. (1)
by moving to a rotating frame at the external laser frequency,
transforming as

Ĥ = −�â†â + ωmb̂†b̂ − gâ†â(b̂ + b̂†) + �(â + â†), (2)

where � = ωL − ωc is the pump detuning relative to
the cavity frequency. Second, we can obtain physical in-
sights by moving to the optomechanical displaced basis
that diagonalizes the radiation-pressure interaction. This
can be achieved with the help of the displacement op-
erator D̂(ξ̂ ) = eξ̂ b̂†−ξ̂ †b̂, in which ξ̂ = â†âg/ωm. To ob-
tain the modified Hamiltonian in the joint basis, we can
evoke the Baker-Campbell-Hausdorff formula [18], which al-
lows us to write D̂†(ξ̂ )b̂D̂(ξ̂ ) = b̂ + g/ωmâ†â, D̂†(ξ̂ )âD̂(ξ̂ ) =
âD̂(g/ωm) and D̂†(ξ̂ )â†âD̂(ξ̂ ) = â†â. Furthermore, by consid-
ering an interaction picture with unitary transformation Û =
exp[−i(−�â†â + ωmb̂†b̂)t] and using the similarity transfor-
mation, i.e., the fact that for any function f , unitary operator
û, with arbitrary set operators {X̂i}, it holds that û f ({X̂i})û† =
f ({ûX̂iû†}) (see Appendix in Ref. [18]), we can readily write

ĤD = − g2

ωm
(â†â)2 + [�e−i�t â†D̂†(ηeiωmt ) + H.c.], (3)

where η = g/ωm is the scaled optomechanical coupling inter-
action. As pointed out in Ref. [43], the second term in Eq. (3)
resembles that of a driven trapped ion. Thus, it is suggested
to follow an approach similar to the one used in trapped-
ion QED. Hence, we proceed to expand the mechanical dis-
placement operator D̂(ξ̂ ) into their power series; D̂(ηeiωmt ) =
e−η2/2 ∑∞

p,q=0 1/(p!q!)(ηb̂†)p(−ηb̂)qe−iωm (q−p)t . Switching to
an adequate interaction picture, so that we can eliminate
the quadratic Kerr-like term in Eq. (3), and using the
commutation relation f (n̂)â† = â† f (n̂ + 1), we can obtain
e−igηt n̂2

â†eigηt n̂2 = e−igηt (2n̂+1)â†. With this, the Hamiltonian in
Eq. (3) acquires the form

ĤD = �e−i�t e−igηt (2n̂+1)â†D̂†(ηeiωmt ) + H.c. (4)

Note that, to obtain Eq. (4), no approximation has been
made so far. In the following, we consider the resolved
sideband regime κ � ωm, an operational regime typically
used in current optomechanical protocols, where the cavity
bandwidth is small compared to the mechanical resonance
frequency. This regime guarantees that the optical cavity may
be employed as a frequency-selective element for performing
coherent control, but it also limits the quantity of circulating
optical power. Specifically, we consider the blue sideband
in the single-photon subspace, i.e., � + gη = sωm, with s =
{0, 1, 2 . . .}. Moreover, we also consider a sufficiently low
laser intensity � � ωm. Finally, by invoking the rotating-
wave approximation, we can neglect higher frequencies in the
quantum dynamics and obtain

ĤRWA = �e− η2

2 |0〉〈1| (b̂†b̂)!

(b̂†b̂ + s)!
L(s)

b̂†b̂
(η2)(ηb̂)s + H.c. (5)
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It is straightforward to write the Hamiltonian for the special
case of s = 1,

Ĥeff = |0〉〈1|χ̂ (1)(η)b̂ + |1〉〈0|b̂†χ̂ (1)(η), (6)

where the operator χ̂ (1)(η) is

χ̂ (1)(η) = η�e− η2

2

L(1)
b̂†b̂

(η2)

b̂†b̂ + 1
, (7)

and Lm
n (x) are associated Laguerre polynomials.

Expanding the operators b̂ and b̂† in the Fock-space
basis and adjusting the parameter η, such as L(1)

M (η2) =
0, we can safely state that for any state |photon, phonon〉
we have Ĥeff |N, M〉 = 0, and consequently, for an ini-
tial vibrational state prepared within the upper-bound
(ub) subspace ranging from |0〉 to |M〉, the Hamilto-
nian Ĥeff becomes Ĥ (ub)

eff = B̂|0〉〈1| + B̂†|1〉〈0|, where B̂ =∑M−1
m=0 χ̂ (1)(η)

√
m + 1|m〉〈m + 1|. At this stage, we can note

the importance of the derivation of the effective Hamiltonian
in Eq. (6), as the suppression of the Laguerre polynomial
gives us the precise optomechanical coupling η for a given
M. Furthermore, the explicit combination between a confined
|0〉 and |1〉 photonic manifold (photon blockade effect) and the
production of a phononic dark state within a sliced subspace
0 � M emerge as the primary physical processes.

The final step in this section consists of describing the
driven quantum evolution in the presence of decoherence
channels. To achieve this goal, we use the standard master
equation within the Born-Markov approximation, which, in
Lindblad form for the composite optomechanical density op-
erator, takes the form

d ρ̂

dt
= −i[Ĥ , ρ̂] + κ

2
D[â]ρ̂

+ γ

2
(1 + nm)D[b̂]ρ̂ + γ

2
nmD[b̂†]ρ̂, (8)

with the Lindbladian superoperator term denoted D[Ô] =
2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂. In the above, note that we have
neglected the reservoir photon number on average nc, as the
difference in frequency between the light and the mechanical
spectra makes nc � nm [17] for a finite common environment
temperature. Thus, we take into account the dissipative mech-
anisms of a thermal reservoir with average occupation number
nm in the mechanical degree of the freedom and photon
(phonon) decay rate κ (γ ). To obtain the phononic steady
state, we proceed to derive a master equation of the reduced
displaced mechanical density operator. To accomplish this,
we recast the transformations carried out previously, namely,
switching to the interaction picture, performing a proper op-
tomechanical displacement, i.e., Û †D̂†(ξ̂ ) . . . D̂(ξ̂ )Û , and, fi-
nally, tracing out the optical degrees of freedom. In particular,
in the bad-cavity regime, i.e., 〈χ̂ (1)(η)〉 � κ [the expectation
value stands for a specific M, such as L(1)

M (η2) = 0], the master
equation in the displaced-interaction picture reads [44]

d ρ̂m

dt
= κeff

2
D[B̂†]ρ̂m + γ

2
(1 + nm)D[b̂]ρ̂m + γ

2
nmD[b̂†]ρ̂m,

(9)
with the effective damping rate κeff = 4〈χ̂ (1)(η)〉/κ. In con-
trast to the full master equation shown in Eq. (8), from
analyzing the above effective master equation, we readily

find the steady-state solution under the condition κeff � γ ,
as any initial state ρ̂m = ∑M

l,m=0 plm |l〉〈m| is asymptotically
driven to ρ̂(∞)m ≈ |M〉〈M|. In addition to this, if we consider
the effects of a thermal reservoir (originally neglected in our
former derivation) with occupation number nc, the final steady
state will be slightly modified as a displaced Fock state given
by ρ̂(∞)m = D̂(ηnc)|M〉〈M|D̂†(ηnc).

We confirm our protocol in both the bad- and the good-
cavity regime by solving numerically [45] the full master
Eq. (8), and we investigate the effects of mechanical damping
rates and temperature. It is relevant to point out, however,
that in the strong optomechanical coupling regime, a more
suitable representation for the dissipative dynamics follows a
dressed-state master [46]. Nonetheless, due to the regime of
parameters considered throughout this work, both (standard
and dressed-state) master equations lead to the same steady
state found in Eq. (8). To show that indeed the system ap-
proaches the desired Fock state we present a set of comple-
mentary measures that confirms the reasoning following from
the effective master equation, namely, we compute the fidelity
F (t ) = √〈M|ρ̂m(∞)|M〉 and the associated purity P (t ) =
Tr[ρ̂2

m(∞)] [4], and, finally, to characterize the nonclassical
nature of the state we use the quantity I [47], defined as

I = −π

2

∫
dpdqW (q, p)

(
∂2

∂q2
+ ∂2

∂ p2
+ 1

)
. (10)

Here, W (q, p) is the Wigner function and I goes from
0 (for classical states, like Gaussian and thermal states) to
Tr[b̂†b̂ρ(∞)m] = 〈n〉 (average number of excitations in the
system) for pure quantum states such as superposition of
coherent states, NOON states, and Fock states. It is important to
stress that I is invariant under unitary transformations. Thus,
it can readily be computed in the displaced interaction picture
chosen by us [47].

III. NUMERICAL RESULTS

Let us begin our analysis by targeting some specific Fock
states, for which we have chosen |M = 5〉 and |M = 10〉
only for illustrative purposes. Certainly, other Fock states can
also be prepared, as long as the zeros of the generalized
Laguerre polynomial can be resolved and achieved in our
optomechanical setup. To show the connection between the
target state |M〉 and the necessary η to achieve |M〉, we have
depicted in Fig. 2 the η value for which the Laguerre poly-
nomial vanishes (its first zero), i.e., L(1)

M (η) = 0. Note that
the production of “small” Fock number states for the me-
chanical degree of freedom might represent a challenging
parameter region. For example, for M � 2 the single-photon
coupling is comparable to the mechanical frequency g � ωm.
However, several setups have been recently proposed for
reaching strong photon-phonon nonlinearities and, therefore,
paving the way to realize “small” and considerable “large”
phononic Fock number states experimentally. For instance,
η ∼ 0.2 (moderately strong, which in turn would enable the
production of states with M ∼ 15) for the optomechanical
interaction has already been exceeded in a nanostring optome-
chanical cavity [48] and also in a novel sliced photonic crystal
nanobeam scheme with η > 1 [49]. Other systems involve
membrane-in-the-middle architectures [50] and high-finesse
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optomechanical microcavities [21], to name a few. Modest
improvements in some on-chip systems can be made [51,52],
e.g., by decreasing both ωm, as g ∝ ω−3/2

m , and κ by just 1–2
orders of magnitude. Promising recent proposals to exceed
the required η have been made [53,54] and, also, in levitated
helium drop systems [55]. In the inset in Fig. 2, we show the
significance of the resolution in η = g/ωm; as M increases,
the difference between the η values required to prepare a
specific steady-state M decreases substantially. Hence, a slight
deviation from ηM might cause the generation of undesired
phonon states. In what follows, we investigate up to what
values in the dissipative channels {γ , κ, κeff} our Fock-state
production scheme can be accommodated. For the sake of
simplicity, we neglect nc in our simulations, whereas the
mean phonon occupancy number on average will be fixed
as nm = 0.3—a value for thermal phonons as low as nm ≈
0.3 can be achieved experimentally in mechanical resonators
operating in the microwave regime at millikelvin temperatures
[23]. First, we present our results for the bad-cavity regime
[〈χ̂ (1)(η)〉 � κ] in Fig. 3. There, we have depicted the fidelity
and purity for the dissipative production of |5〉 (bottom panel)
and |10〉 (top panel) Fock states as a function of the ratio
γ /κeff , where κeff = 4〈χ̂ (1)(η)〉/κ. As shown in the figure,
the generated Fock steady state can be accommodated up to
values of ∼10−4, where Psteady ≈ 0.9 and Fsteady ≈ 0.96. In
the respective insets in Fig. 3, we show the nonclassicality
quantity I. For values of γ /κeff < 10−4 it can be seen that I ≈
M, hence reinforcing the fact that the preparation of nonclas-
sical states for the mechanical degree of freedom is feasible.

Finally, we would like to show the validity of our dissipa-
tive scheme under the good-cavity operational regime in the
single-photon strong-coupling regime [〈χ̂ (1)(η)〉 ∼ κ]. To ex-
hibit these results, we proceed to solve the full master equation
shown in Eq. (8). In Fig. 4, we observe that the production
of the state |M = 10〉, in contrast to the bad-cavity regime,
can be reached at a value of the dissipative ratio γ /κ that
is one order of magnitude higher. In other words, for similar
desired fidelities (>0.9) and purities (>0.95), the generation
of nonclassical phonon states in the good-cavity regime is
more robust against decoherence, in contrast to the bad-
cavity limit. Nonetheless, in both cases, γ /κeff ∼ 10−4 and
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M
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1.5

2.0

η
=

g
/ω

m

0 10 20 30 40

M

10−3

10−2

10−1

100

Δ
η

FIG. 2. Required optomechanical coupling η to make the La-
guerre polynomial vanish [i.e., L(1)

M (η2) = 0] as a function of the
Fock number state |M〉. Inset: Difference between neighboring cou-
pling values in order to prepare adjacent Fock states, i.e., �η =
|ηM+1 − ηM |, showing how resolvable η must be to prepare each
state.

(a)

(b)

FIG. 3. Fidelity and purity for two different phonon target states
as a function of the ratio γ /κeff . (a) |M = 10〉; (b) the target state
|M = 5〉. Inset: The nonclassicality quantity I in the same γ /κeff

interval; η has been calculated to supress the Laguerre polynomial,
and we fixed nm = 0.3.

γ /κ ∼ 10−3 can nowadays be attained experimentally [17].
In Fig. 5, to exhibit the quantumness of the generated Fock
state, we present the Wigner quasiprobability distribution for
|M = 10〉 in the good-cavity regime, together with the phonon
number occupancy.

IV. FINAL REMARKS

We present an on-demand dissipative scheme to pre-
pare phononic Fock number states in the nonlinear

FIG. 4. Fidelity and purity for Fock-phonon-state production
|M = 10〉 in the good-cavity limit 〈χ̂ (1)(η)〉 = κ . Inset: Nonclassi-
cality I in the same interval of γ /κ .
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FIG. 5. Left: Wigner quasiprobability function for the dissipative engineered state |M = 10〉 in the good-cavity regime 〈χ̂ (1)(η)〉 = κ to
γ /κ = 10−3. Right: Phonon number occupancy, where the most probable state is centered at M = 10, depicting its high fidelity with the target
phonon state |10〉.

optomechanical single-photon strong interaction. Specifically,
we have studied a system composed of a standard laser-driven
cavity, where no linearization of the Hamiltonian has been
performed. Moreover, when we reach the effective Hamilto-
nian, two main physical processes arise. On the one hand,
although an external laser dynamically drives the cavity, only
zero and one intracavity photon transitions take place, in
the same manner as in the photon blockade effect. On the
other hand, precise selection of the optomechanical coupling
strength makes the associated Laguerre polynomial vanish
for a specific M phonon number state, i.e., a dark state for
the mechanical degree of freedom. The latter process can
hence be viewed as slicing the Hilbert space of the phonon
degree of freedom via dissipative engineering. We readily note
that our proposal requires strong optomechanical interactions
g > ωm for M � 5, whereas for larger phonon productions
strong-moderate optomechanical couplings g/ωm ∼ 0.4 are
required. We have justified requiring the strong-moderate
operational regime with novel optomechanical setups, where
single-photon coupling has been achieved or exceeded. For
instance, single-photon strong optomechanical coupling has
been attained experimentally in a BEC-cavity system [56].
We show that our results are promising in both the good-

and the bad-cavity regimes, with fidelities exceeding F > 0.9
and purities above P > 0.95. The ’quantumness’ of the Fock
phonon steady state has been provided with a numerical non-
demanding nonclassicality measurement (I) and, also, with
the Wigner quasiprobability distribution. Finally, in addition
to the preparation of Fock states, other applications may arise
from the present protocol, such as the production of entangled
steady states in optomechanics arrays.
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