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Vortex nucleation in nonlocal nonlinear media

Volodymyr Biloshytskyi,1 Artem Oliinyk,1 Petro Kruglenko,2 Anton Desyatnikov,3 and Alexander Yakimenko1

1Department of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
2V. Lashkaryov Institute of Semiconductor Physics, 41 Pr. Nauki, Kyiv 03028, Ukraine

3Department of Physics, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue,
Nur-Sultan 010000, Kazakhstan

(Received 2 November 2018; published 25 April 2019)

Spontaneous vortex nucleation is a universal feature of open and nonlinear physical systems. We investigate
theoretically vortex rings and vortex lines emerging during propagation of self-trapped wave beams in nonlocal
nonlinear media. We demonstrate how radially perturbed fundamental solitons exhibit extremely robust and long-
lived oscillations with the spontaneous generation of a regular set of vortex rings at the wave beam periphery.
We find numerically a class of cylindrically symmetric higher-order spatial solitons and investigate their stability
and nonlinear dynamics. The formation of external vortex rings, similar to fundamental soliton, is accompanied
by emergence of additional internal vortex-antivortex pairs nucleating from the edge-ring phase dislocation of
perturbed higher-order soliton.
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I. INTRODUCTION

Vortex rings are topological structures with a closed-loop
core which play a crucial role in the decay of superflow
and in quantum turbulence in condensed-matter physics. The
spontaneous generation of optical vortex rings was predicted
theoretically in self-focusing saturable optical media [1] as a
regular sequence of vortex loops perpendicular to the propaga-
tion direction of radially perturbed solitons. This spontaneous
vortex nucleation is a consequence of the nonlinear phase
accumulation between the soliton’s peak and its tail: phase
singularities nucleate if this phase difference reaches the
value of π during evolution along the optical axis z. Sim-
ilar conclusions regarding the nature of spontaneous vortex
nucleation were reached in recent experimental observations
of the spatiotemporal optical vortex rings [2]. In contrast to
spatiotemporal vortices or vortex rings in fluids, the nonlinear
phase of the continuous-wave self-trapped light beam breaks
the wave front into a sequence of optical vortex loops static
in time. In this paper we confirm the generic nature of this
phenomenon by demonstrating theoretically that vortex rings
can be generated at the periphery of a fundamental soliton
propagating in nonlocal nonlinear media.

In contrast to local nonlinear media, where higher-order
solitons suffer from symmetry-breaking instabilities [3], non-
locality can suppress such instabilities [4,5] and even support
exotic states, e.g., generalizing the well-known Laguerre- and
Hermite-Gaussian linear modes [6]. The Laguerre-Gaussian
radially symmetric solitons, with a central bright spot sur-
rounded by alternating dark and bright rings of varying size,
were first discovered in Ref. [7] for the local Kerr-type
nonlinear media. Despite carrying zero angular momentum,
they develop azimuthal instability [8,9], with the bright rings
decaying into several fundamental solitons, similar to the
instability of vortex solitons [3].

The dark intensity rings of the Laguerre-type solitons
represent cylindrically shaped edge phase dislocations. We

are interested to learn here how the perturbations and non-
linear dynamics can affect the topological structure of these
“dark cylinders” and their possible relation to the vortex
rings discussed above. We recall that stationary nonspinning
higher-order solitons were investigated in Ref. [10] by ap-
proximate variational method in a nonlocal medium with
Gaussian-type response function. The specific feature of the
media with a Gaussian-type nonlocal response function is that
higher-order solitons may exhibit dynamics with revivals and
periodic robust oscillations between two or more spatially
localized states with distinctly different symmetries [6,10].
This is different from nonlinear media with thermal nonlocal
response functions [4], but to the best of our knowledge,
no such solitons have been obtained so far in the later
model.

In this paper, we find higher-order solitons by numerical
solution of the stationary nonlinear Schrödinger equation
(NLSE) with thermal optical nonlinearity. We investigate the
stability of the higher-order solitons by numerical simulations
of the dynamic NLSE in the nonlocal regime, in particular,
showing the spontaneous formation of external vortex rings.
We demonstrate that as the cylindrically shaped edge dis-
location undergoes topological transformations, the radially
symmetric perturbation drives nucleation of an additional
internal sequence of vortex-antivortex ring pairs.

II. STEADY STATES IN NONLOCAL NONLINEAR MEDIA

A bright spatial soliton is a wave beam of finite cross
section which propagates in a nonlinear medium without
changing its structure. The dynamics and stability of spatial
solitons with respect to collapse [11] were extensively in-
vestigated in various nonlinear media, including dissipative
systems [12,13]; see Ref. [14] for a review and detailed
discussion on the thresholds for self-focusing and collapse
instability.
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In the spatially nonlocal media the nonlinear response de-
pends on the wave-packet intensity at some extensive spatial
domain. Nonlocality naturally arises in many nonlinear media.
In particular, a nonlocal response is induced by heating and
ionization, and it is known to be important in media with
thermal nonlinearities such as thermal glass [15] and plas-
mas [16]. Nonlocal response is a key feature of the orienta-
tional nonlinearities due to long-range molecular interactions
in nematic liquid crystals [17]. An interatomic interaction
potential in Bose-Einstein condensates (BECs) with dipole-
dipole interactions is also known to be substantially nonlo-
cal [18–20]. The feedback of the BEC on propagation of elec-
tromagnetic waves induces substantially nonlocal effective
interactions [21] (the local-field effect). In all such systems,
nonlocal nonlinearity can be responsible for many features,
such as the familiar effect of the collapse arrest [22,23] and
stabilization of various coherent structures.

The basic dimensionless equations describing the propa-
gation of the electric field envelope �(x, y, z) coupled to the
temperature perturbation θ (x, y, z) has the following form [4]:

i
∂�

∂z
+ �⊥� + θ� = 0,

(1)
α2 θ − �⊥θ = |�|2,

where �⊥ = d2/dx2 + d2/dy2. They describe the light prop-
agation in bulk medium with thermal nonlinearities, and it
appears also in the study of two-dimensional bright soli-
tons in nematic liquid crystals [17] and in partially ionized
plasmas [15].

In the limit α2 � 1, we can neglect the second term in the
equation for the field θ of Eqs. (1) and reduce this system
to the standard local nonlinear Schrödinger (NLS) equation
with cubic nonlinearity. The opposite case, i.e., α2 � 1, will
be referred to as a strongly nonlocal regime of the beam
propagation. The second equation of the system (1) can be
readily solved using Green functions presented in [4] for
α �= 0 and in [21] for the limiting case α = 0.

We are interested in stationary nonspinning solutions of (1)
in the form

�(x, y, z) = ψn(r) exp(i	z), (2)

where r =
√

x2 + y2 is the radial coordinate, and 	 is the
beam propagation constant; n is the number of zeros (nodes)
of the profile ψn(r). Such solutions describe either the funda-
mental optical soliton, when n = 0, or the higher-order soliton
with n nodes when n > 0. Substituting (2) into (1) yields the
following system:

−λψn + �rψn + θψn = 0,

θ − �rθ = |ψn|2. (3)

Here λ = 	/α2 is the rescaled propagation constant, �r =
d2/dr2 + (1/r)d/dr. We consider the case α �= 0, which
implies that both field ψ (r) and temperature θ (r) distributions
rapidly decay at r → ∞.

The system of Eqs. (3) was solved by the Petviashvili
method [24] in the case of a fundamental soliton and by the
shooting method to find higher-order solutions. Examples of
numerical solutions in the form of higher-order solitons with

FIG. 1. Typical examples of numerical stationary solutions in the
form of single-ring (n = 1) and double-ring (n = 2) optical solitons.

n = 1 and n = 2 are shown in Fig. 1. Figure 2(a) shows the
beam power P = ∫ |ψn|2d2r as a function of the rescaled
propagation constant λ. Note that in a strongly nonlocal
regime (α2 � 1, i.e., λ � 1) the profile of the temperature
distribution is wider than the effective radius of the central
bright core of the solitonic wave beam. Let us define the
effective radii rψ and rθ of the intensity distribution |ψ |2 and
the temperature distribution θ , respectively, as follows:

r2
ψ = 1

P

∫
r2|ψn(r)|2d2r, r2

θ =
∫

r2θ (r)d2r∫
θ (r)d2r

.

Figure 2(b) shows the radii rψ and rθ as functions of λ. Both
rψ and rθ decrease monotonically when λ grows.

Propagation of these solutions and the fundamental soli-
ton solution (n = 0) under the perturbation was simu-
lated by employing the split-step Fourier method along
the z axis with monitoring of conservation of integrals
of motion: (i) beam power P, (ii) momentum I⊥ =∫

jd2r, where j = − i
2 {�∗∇⊥� − �∇⊥�∗}, (iii) angular

momentum Mz = ∫
r × jd2r, and (iv) Hamiltonian H =∫ {|∇⊥�|2 − 1

2θ�}d2r. Note that for the axially symmetric
perturbations, all considered structures have both the trans-
verse momentum and the angular momentum equal to zero.

III. VORTEX RINGS ON FUNDAMENTAL SOLITON

Here we simulate evolution of the fundamental soliton
along the z axis with initial conditions of the form �(x, y, z =
0) = a−1ψ (r/a). The initial stretching with a �= 1 leads to
radial oscillations and additional nonlinear accumulation of
phase. Figure 3 demonstrates this process for a perturbed
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FIG. 2. Parameters of metastable single- and double-ring soli-
tons (n = 1, 2): (a) beam power vs rescaled propagation constant,
and (b) effective radii rψ (solid curves) and rθ (dashed curves).
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FIG. 3. Spontaneous generation of a regular set of vortex rings
appears as the result of a strong perturbation level of a = 1.3:
(a) position of the vortex cores; cross section in the plane y = 0
for (b) intensity distribution |�(x, z)|2, (c) phase arg�(x, z), and
(d) temperature perturbation �(x, z).

fundamental soliton with the field’s topological structure,
namely, the appearance of a regular set of vortex rings similar
to vortex rings revealed in [1] for media with local satu-
rating nonlinearity. Taking a very strong perturbation level
of a = 1.3 and λ = 10 (the case of strong nonlocality), we
observe extremely robust and long-lived oscillations with the
spontaneous generation of a regular set of vortex rings.

IV. VORTEX RINGS AND LINES
ON HIGHER-ORDER SOLITONS

While the fundamental solitons are known to be stable in
nonlocal nonlinear media [22], stability of the higher-order
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FIG. 4. Spontaneous generation of a series of pairs of vortex and
antivortex rings which appear as the result of a weak perturbation
level, a = 1.01: (a) position of the vortex cores; cross section in
the plane y = 0 for (b) intensity distribution |�(x, z)|2, (c) phase
arg�(x, z), and (d) temperature perturbation �(x, z).

structures (such as vortex solitons, bound states of solitons,
and other higher-order structures) crucially depends on the
specific form of the nonlocality. For the model with Gaussian-
type response function, an example of robust propagation of
a single-charge one-node (m = 1, n = 1) Laguerre-Gaussian
LG1

1 wave beam has been demonstrated in Ref. [5]. In this
section we consider the dynamics of the numerically found
higher-order solitons in nonlocal media with a thermal re-
sponse function for different types of perturbation.

For reasons of simplicity, we analyze evolution of the
higher-order soliton with the n = 1 node, which has an edge-
ring dislocation. First, to have an ability to compare results
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FIG. 5. Enlarged fragment of intensity plot [indicated as dashed
rectangle in Fig. 4(b)] with streamlines of the Poynting vector shown.
It corresponds to a single beam oscillation. Vortex and antivortex
cores, which come from cut vortex rings, are illustrated by white
zeros and crosses, respectively.

with fundamental soliton behavior, we take also λ = 10. The
solution is initially slightly perturbed radially with a = 1.01,
like in the case of the previous section. Topological instability
of the edge dislocation leads to its splitting into a series of
pairs of vortex and antivortex rings, one pair per oscillation
(see Fig. 4). Emergence of external vortex rings is connected
with radial constriction of the beam and results in energy
transfer from the bright ring to the bright core of the beam;
therefore an energy flow forms the saddle points in a low-
intensity region where the internal vortex rings are situated
(see Fig. 5).

This phenomenon can be explained by the topology of the
system. For the unperturbed soliton with nodes propagating
along the z axis, surfaces of zero real and imaginary parts
of the field envelope � are ideal circular cylinders which
coincide. Being perturbed radially, these cylinders begin to os-
cillate with the same frequency but generally with a different
phase, so they should intersect each other twice per period
of oscillations in this case. Therefore the external vortex
rings and internal pairs of vortex-antivortex rings have a quite
different topological origin, and the existence of internal rings
is a specific topological feature of the solitons with nodes.

Second, we perturb the single-node soliton by a quadrupole
mode with initial conditions in the form �(x, y, z = 0) =
ψ (r)[1 + ε cos(Lϕ)], where ε = 0.025 and L = 2. Results of
soliton evolution are shown in Figs. 6 and 7 in cases of local
and strongly nonlocal regimes.

The higher-order solitons appear to be only metastable in
the nonlocal media with thermal response function. These
structures, being even strongly perturbed, do not decay

FIG. 6. (a) Snapshots of the evolution in z direction single-ring
(n = 1) optical solitons for λ = 0.1. Shown are intensity distribution
|�(x, y)|2, phase arg�(x, y), and �(x, y). (b) Trajectories of vortex
(green) and antivortex (red) cores propagating in z direction.

immediately but propagate for a considerable distance. How-
ever, symmetry-breaking modulational instability developing
after several oscillations of the wave-beam envelope leads
to strong transformations of spatial profile of the intensity
distribution. Finally, azimuthal instability leads to decay of
the solitons with nodes in the weakly nonlocal regime, as is
seen from Fig. 6.

In our numerical simulations, in the strongly nonlocal
regime we observed dynamics with partial revival of the
nonspinning higher-order soliton similar to that observed in
Ref. [10] for the model based on a Gaussian-type kernel of the
nonlocal medium response function. However, in sharp con-
trast to the model with the Gaussian-type response function,
the higher-order soliton does not exhibit robust oscillations
between eigenstates of different symmetry in a medium with
thermal nonlocal nonlinearity. As is seen from Fig. 7, the
higher-order soliton first transforms into Hermit-Gauss mode
but than rapidly decays. Solitons with more rings(n � 2)
decay in a similar way, even faster than a single-node soliton.

A common feature of perturbed soliton dynamics in both
regimes is the spatially robust quadrupole set of vortex lines.
It emerges in a low-intensity region inside the solitonic beam
independently of the range of nonlocality. The existence of
the four vortex lines also has a topological nature. When the
beam is perturbed by quadrupole mode (L = 2), the surfaces
of real and imaginary parts of � deform into two elliptic
cylinders which intersect each other along four parallel lines
in the direction of the z axis.
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FIG. 7. (a) Snapshots of the evolution in z direction single-ring
(n = 1) optical solitons for λ = 10. Shown are intensity distribution
|�(x, y)|2, phase arg�(x, y), and �(x, y). (b) Trajectories of vortex
(green) and antivortex (red) cores propagating in z direction.

The main problem in experimental observation of external
vortex rings is that they are located at the periphery of the
wave beam in the low-intensity region. The internal vortex
rings and vortex lines live sufficiently long in the strong
nonlocal regime, and they can be readily detected in central
region of the wave beam.

V. SUMMARY AND CONCLUSIONS

We investigated different vortex complexes which sponta-
neously emerge on perturbed solitonic structures in nonlocal
nonlinear media with thermal response function. Using direct
numerical simulations, we found the nth bound solitonic
state which has a central bright spot surrounded by n rings
of varying size. These structures rapidly decay into several
fundamental solitons due to symmetry-breaking azimuthal
instability in a weakly nonlocal regime, but they appear to
be metastable and exhibit dynamics with partial revivals for
highly nonlocal regime.

We show that the vortex rings appear spontaneously at the
periphery of the radially perturbed fundamental soliton. A
remarkable topological feature of radially perturbed higher-
order solitons is the emergence of additional internal vortex-
antivortex ring pairs perpendicular to the optical axis. In con-
trast, the perturbation mode with quadrupole symmetry leads
to the emergence of spatially robust internal pairs of vortex
and antivortex lines codirected with the optical axis. These
vortex-antivortex pairs nucleate from the edge phase disloca-
tion, or the dark intensity ring, and thus preserve conservation
of topological charge and orbital angular momentum.

Emerging vortex rings and lines investigated in this work
can be seen as building blocks for spontaneous or even
engineered creation of more complex topological structures
peculiar to structured light, such as vortex links and knots [1].
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