
PHYSICAL REVIEW A 99, 043834 (2019)

Directional steering as a sufficient and necessary condition for Gaussian entanglement swapping:
Application to distant optomechanical oscillators

Huatang Tan,1,* Wenwu Deng,2,† and Lihui Sun3,‡

1Department of Physics, Huazhong Normal University, Wuhan 430079, China
2Institute of Photonics and Photo-Technology, Hubei University of Science and Technology, Xianning 437100, China

3Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering,
Yangtze University, Jingzhou 434023, China

(Received 4 January 2019; published 25 April 2019)

Einstein-Podolsky-Rosen (EPR) steering is a quantum nonlocal effect that characterizes the ability to remotely
control quantum states of one system via local measurements on another distant system entangled with the
controlled one. Entanglement swapping is an effective way to realize distant entanglement, which is useful
for building quantum networks. Previous studies show that the presence of entanglement of subsystems in
mixed states is merely necessary for achieving entanglement swapping. In this paper, we find that for Gaussian
entanglement swapping with two pairs of entangled modes â j and b̂ j ( j = 1, 2), the existence of directional
EPR steering from the modes b̂ j under homodyne detection to the other modes â j is a sufficient and necessary
condition for achieving swapped entanglement between modes â1 and â2, and moreover this achievement is
independent of the reverse steering from modes â j to b̂ j . We further reveal that this is because the steering in
that direction enables the amplitude and phase squeezing of the two composite modes of modes â1 and â2 via
homodyne detection, which is necessary and sufficient for swapped entanglement. As a concrete example, we
next investigate light-mechanical steering in a dispersively or dissipatively coupled optomechanical system, and
we consider the generation of entanglement between two distant optomechanical oscillators via entanglement
swapping by utilizing steering. It is interesting to find that even without the constraint that the cavity linewidth
should be smaller than the mechanical frequency, robust mechanical entanglement can be obtained in the
steady-state regime.
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I. INTRODUCTION

The famous Einstein-Podolsky-Rosen (EPR) paradox de-
scribes the situation in which two distant observers—Alice
and Bob—share entangled particles, and one observer, say
Alice, is able to control the states of Bob’s particle by
performing local measurements on her particle [1]. Such an
ability to nonlocally control states of remote particles was
termed “steering” by Schrödinger [2]. It is an intrinsic quan-
tum nonlocal effect. It has recently been shown by Wiseman,
Jones, and Doherty that EPR steering can be regarded as ver-
ifiable entanglement distribution by an untrusted party [3,4],
while Bell nonlocality and quantum inseparability can be de-
fined as entanglement distribution among distrust parties and
between trust parties, respectively. Therefore, EPR steering
is intermediate between plain entanglement (nonseparability)
[5] and Bell nonlocality (the violation of Bell inequality)
[6,7]. Concretely, the states exhibiting Bell nonlocality are
a subset of steerable states, which are in turn a subset of
entangled (inseparable) states. Furthermore, in contrast with
plain entanglement and Bell nonlocality, steering is intrinsi-
cally asymmetric with respect to the two observers and is thus
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directional. This means that the steering from Alice to Bob
or the reverse steering from Bob to Alice may be different,
although the two particles of the observers are entangled with
each other, and there is even one-way steering, which allows,
for example, Alice to steer the states of Bob’s particle but not
vice versa [8–13].

In addition to being of fundamental interest, EPR steering
has recently attracted increasing interest due to its poten-
tial applications, e.g., one-sided device-independent quantum
cryptography [14,15], subchannel discrimination [16], and
secure quantum teleportation [17]. Quantum steering has
been experimentally realized in a variety of physical systems
[10–13,18–27]. In addition, by utilizing steerable correlations,
desirable quantum states can be achieved via local measure-
ments [28–30].

On the other hand, entanglement swapping is now consid-
ered an effective approach to entangling two distant objects
that do not directly interact with each other [31–33]. By using
entanglement swapping, the entanglement among different
nodes can be realized, which is of importance for building up
a large-scale quantum-information network and transferring
quantum states. Nowadays, entanglement swapping has been
experimentally demonstrated in both discrete and continu-
ous variable systems [34,35]. For Gaussian states, it has
been shown that for pure entangled input states, swapped
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entanglement can be achieved [36]. In reality, however, due
to losses in channels, such as in the context of quantum com-
munication, one typically deals with mixed states, whereas
for mixed input states, the input entanglement is merely
necessary for achieving entanglement swapping. We therefore
naturally ask, what is the sufficient and necessary condition
for entanglement swapping of continuous variable Gaussian
states with mixed input states?

Cavity optomechanics involves coupling between a nano-
or micromechanical oscillator and the radiation field inside
a cavity [37]. Recent experiments have achieved quantum
squeezed states of light and mechanical modes [38,39], light-
mechanical Gaussian entangled states [40], nonclassical cor-
relations between single photons and phonons from a me-
chanical oscillator [41], and Gaussian entanglement between
two mechanical oscillators inside a cavity [42]. More in-
terestingly, the first observation of remote entanglement of
discrete variables of two micromechanical oscillators with
the DLCZ protocol [43] was reported very recently [44].
These achievements make cavity optomechanics not only an
intriguing platform for the study of fundamental physics,
such as EPR steering, but also a potential candidate for the
development of novel quantum devices. For instance, remote
mechanical entanglement can offer a new compelling route
toward scalable quantum networks [44].

In this paper, we first study the connection between EPR
steering and entanglement swapping of Gaussian states. We
find that for Gaussian entanglement swapping, the steering
from the modes mixed at the beam splitter to the other
modes of two identical input states is sufficient and necessary
for achieving swapped entanglement. The achievement of
entanglement is independent of the reverse steering. We show
that this is because the steering in that direction enables the
squeezing of the composite modes of the two distant modes
to be entangled via homodyne detection. Then, as a real-
istic example, we investigate light-mechanical steering in a
dispersively or dissipatively coupled optomechanical system,
and we consider the generation of entanglement between
two distant mechanical oscillators via entanglement swapping
with steering. It is found that for both types of coupling, by
filtering the output field from the cavities, robust mechanical
entanglement can be obtained in the regime of steady states
without the constraint that the cavity linewidth should be
smaller than the mechanical frequency.

The remainder of this paper is organized as follows. In
Sec. II, Gaussian entanglement, steering, and entanglement
swapping are reviewed. In Sec. III, we investigate in detail the
connection between the steering of subsystems and Gaussian
entanglement swapping. In Sec. IV, we consider the establish-
ment of entanglement between two distant optomechanical
oscillators by utilizing the steering of the subsystems. In
Sec. V, we give the main summary.

II. GAUSSIAN ENTANGLEMENT, STEERING,
AND SWAPPING

We consider entanglement swapping of two pairs of
bosonic modes [described by the annihilation operators â j and
b̂ j ( j = 1, 2)] in the same Gaussian states, which are char-
acterized by the correlation matrix (CM) (σab)ll ′ = 〈λlλl ′ +

λl ′λl〉/2, expressed in the form

σab =
(

Aj Cj

CT
j B j

)
( j = 1, 2). (1)

Here λ = (X̂a j , P̂a j , X̂b j , P̂b j ), the quadrature operators X̂O =
(Ô + Ô†)/

√
2 and P̂O = −i(Ô − Ô†)/

√
2 (Ô = {â j, b̂ j}), and

the entries Aj, Bj , and Cj are 2 × 2 matrices. In the following
discussion, we will omit the subscript “ j” for simplicity. The
entanglement between the modes â and b̂ can be quantified by
the logarithmic negativity [45],

EN = max[0,− ln(2λ)], (2)

where λ = 2−1/2
√

� −
√

�2 − 4 det σab and � = det A +
det B − 2 detC. The steering from mode b̂ to mode â (i.e.,
b-to-a steering) can be quantified by the measure [46]

Sb→a = max

{
0,

1

2
ln

det B

4 det σab

}
, (3)

and similarly for the reverse steering from mode â to mode b̂
(a-to-b steering).

By local Gaussian operations, the CM σab can be trans-
formed into the following standard form [47]:

σab =

⎛
⎜⎝

fa 0 cx 0
0 fa 0 cy

cx 0 fb 0
0 cy 0 fb

⎞
⎟⎠, (4)

for which the condition for b-to-a steering becomes(
fa − c2

x

fb

)(
fa − c2

y

fb

)
− 1

4
< 0, (5)

while the reverse steering requires the condition(
fb − c2

x

fa

)(
fb − c2

y

fa

)
− 1

4
< 0. (6)

One-way steering is achieved when either Eq. (5) or Eq. (6)
holds.

We consider entanglement swapping via mixing modes b̂1

and b̂2 at a balanced beam splitter (BS). With the CM in
Eq. (4), the corresponding Wigner functions can be found to
be

Wj (�Rj ) = N−1
j exp

(
−1

2
�RT

j M �Rj

)
, (7)

where the vectors of phase-space variables �RT
j =

(xaj , paj , xbj , pbj ), the matrices M = σ−1, and the
normalization factors N j = ∫

d4 �Rj exp(− 1
2
�RT

j σ
−1
j

�Rj ). Thus,

the whole Wigner function Win(�Rab) of the two input states at
the beam splitter is given by

Win(�Rab) = W1(�R1)W2(�R2)

= N−1 exp

(
−1

2
�RT

abMab �Rab

)
, (8)

where �RT
ab = (xa1 , pa1 , xa2 , pa2 , xb1 , pb1 , xb2 , pb2 ), N =

N1N2, and the matrix Mab can be easily obtained; its explicit
expression is not presented here.
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The two output modes ĉ1 and ĉ2 from the beam splitter can
be expressed as

ĉ± = 1√
2

(b̂1 ± b̂2). (9)

In terms of phase-space variables (xaj , paj ) and (xc± , pc± ) cor-
responding to modes â j and ĉ±, the Wigner function Wout (�Rac)
of the state of these four modes can be obtained as

Wout (�Rac) = N−1 exp

(
−1

2
�RT

acMac �Rac

)
, (10)

where the vector �RT
ac = (xa1 , pa1 , xa2 , pa2 , xc+ , pc− , xc− , pc+ ),

the matrix Mac = DT MabD, where D = I2 ⊕ d0, I2 is a 2 × 2
identity matrix, and d0 = 1√

2

(I2 I2
σz −σz

)
for the Pauli matrix σz.

Consider that the quadratures P̂c+ and X̂c− of the output
modes from the beam splitter are simultaneously measured
under homodyne detection. Depending on the detection re-
sults p̃c+ and x̃c− , the unnormalized Wigner function of modes
â1 and â2 is then obtained as

Wcon(�Ra) =
∫

dxc1 d pc2Wout (�Rac)
∣∣∣
xc−=x̃c− ,pc+ =p̃c+

, (11)

where �RT
a = (xa1 , pa1 , xa2 , pa2 ), and integration leads to

Wcon(�Ra) = Ñ−1 exp

(
−1

2
�RT

a Ma �Ra − �RT
a
�da

)
, (12)

where the vector �dT
a = (d1x̃c− , d2 p̃c+ , d3x̃c− , d4 p̃c+ ) and the

expressions of the 4 × 4 matrix Ma and d1,2,3,4 can be
readily obtained and are not given here. One can see that
the first-order moments of the conditional state of Eq. (12)
are dependent on the measurement results and they can be
displaced via classical communication. Considering the dis-
placement �Ra → �Ra + K �G on the modes â1 and â2, where
K = diag [x̃c− , p̃c+ , x̃c− , p̃c+ ] and the phase-dependent gains
�GT = (gx

a1
, gy

a1 , gx
a2

, gy
a2 ) [48], one can find that the first-order

moments of the state (12) vanish when choosing the phase-
dependent gains

�G = −K−1M−1
a

�da. (13)

Therefore, for this choice the final ensemble-average state of
the modes â1 and â2 over all measurement results is equal to
this one-shot conditional state of Eq. (12), and thus its CM
V ens

a is given by

σ ens
a = M−1

a =

⎛
⎜⎜⎜⎝

σ ens
a,11 0 σ ens

a,13 0

0 σ ens
a,22 0 σ ens

a,24

σ ens
a,13 0 σ ens

a,33 0

0 σ ens
a,24 0 σ ens

a,44

⎞
⎟⎟⎟⎠, (14)

where

σ en
a,11 = σ en

a,33 = fa − c2
x

2 fb
, (15a)

σ en
a,22 = σ en

a,44 = fa − c2
y

2 fb
, (15b)

σ en
a,13 = − c2

x

2 fb
, σ en

a,24 = c2
y

2 fb
. (15c)

III. ONE-WAY STEERING: A SUFFICIENT AND
NECESSARY CONDITION FOR GAUSSIAN

ENTANGLEMENT SWAPPING

According to Eq. (2), it can be readily found that for
the two-mode Gaussian swapped state (14), the entanglement
parameter

λ =
√(

fa fb − c2
x

)(
fa fb − c2

y

)
fb

, (16)

and thus from Eq. (2) the entanglement condition of λ < 1
2

reduces to (
fa − c2

x

fb

)(
fa − c2

y

fb

)
− 1

4
< 0, (17)

which is the exact condition Eq. (5) of the steering from mode
b̂ j to mode â j of the subsystems. Therefore, it is revealed
that the b j-to-a j steering of the input states is sufficient and
necessary for realizing the entanglement between the indirect
coupling modes â1 and â2. Moreover, the entanglement con-
dition is independent of the reverse steering from modes â j to
b̂ j , although the reverse steering is also present when fb � fa,
because with it the inequality (17) can lead to the inequality

(
fb − c2

x

fa

)(
fb − c2

y

fa

)
<

f 2
b

4 f 2
a

<
1

4
. (18)

It should be noted that for the standard form of the CM in
Eq. (4), the entanglement condition of λ < 1

2 reduces to

4
(

fa fb − c2
x

)(
fa fb − c2

y

) − (
f 2
a + f 2

b + 2|cxcy|
) + 1

4
< 0.

(19)

It can be immediately found that the above inequality (19)
holds when the inequality (17) is satisfied, but not vice versa,
since we have the relation fa,b > 1

2 . This means that for Gaus-
sian entanglement swapping, the existence of entanglement
of two subsystems in mixed states is merely necessary for
the presence of swapped entanglement. Note that in deriving
the inequality (19), the necessary condition that cxcy < 0
for the entanglement is utilized.

To understand the above result, let us introduce the new
operators

d̂+ = 1√
2

(â1 + â2), (20a)

d̂− = 1√
2

(â1 − â2). (20b)

Due to the symmetry between the two input states, the state
Wout (�Rac) of modes â j and the two output modes ĉ± can be
written as the product of the Wigner function of modes ĉ+
and d̂+ and the Wigner function of modes ĉ− and d̂−, i.e.,

Wout (�Rac) = Wout (�R+)Wout (�R−), (21)
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where

Wout (�R+) =
√
N−1 exp

(
−1

2
�RT

+σ−1 �R+

)
, (22a)

Wout (�R−) =
√
N−1 exp

(
−1

2
�RT

−σ−1 �R−

)
, (22b)

with �R+ = (xd+ , pd+ , xc+ , pc+ ) and �R− = (xd− , pd− , xc− , pc− ).
Thus, in terms of modes ĉ± and d̂±, the output state is
decoupled and moreover the CMs of the states Wout (�R+) and
Wout (�R−) have the same form as those of the input modes â j

and b̂ j , showing that the steering property of modes ĉ+ and d̂+
(ĉ− and d̂−) is the same as that of the couple of modes â j and
b̂ j . When homodyne detecting on the quadrature P̂c+ and X̂c− ,
the CMs of the conditional states of modes d̂+ and d̂− take the
form

σd+|P̂c+
=

(
fa 0

0 fa − c2
y

fb

)
, (23a)

σd−|X̂c−
=

(
fa − c2

x
fb

0
0 fa

)
. (23b)

Then, the variances V (P̂d± ) of the quadratures X̂d+ and X̂d− of
the two conditional states can be found to be

V (P̂d+ ) = fa − c2
y

fb
, (24a)

V (X̂d− ) = fa − c2
x

fb
. (24b)

Similarly, when detecting the quadrature X̂c+ and P̂c− , we have
the variances

V (X̂d+ ) = V (X̂d− ), V (P̂d− ) = V (P̂d+ ). (25)

When the b j-to-a j steering of the input states is present, it
means that the c+-to-d+ and c−-to-d− steering also exists. The
presence of steering implies that the product of the variances
(inferred variances via measurements)

V (X̂d+ )V (P̂d+ ) = V (X̂d− )V (P̂d− ) <
1

4
, (26)

i.e., the predictions of the quadratures of the modes d̂± via
the measurement strategies have an error product that is lower
than the Heisenberg uncertainty. This is the essence of the
EPR paradox [49]. The inequality (26) is identical to the
steering condition of Eq. (5), indicating that the variances
V (X̂d− ) < 1

2 or V (P̂d+ ) < 1
2 , i.e., quadrature quantum squeez-

ing of the modes of d̂±. According to Eq. (20), modes â1

and â2 can be considered as the output of the balanced beam
splitter with the input modes being d̂+ and d̂−. The quadrature
squeezing of the input modes is sufficient and necessary for
the Gaussian entanglement between symmetric output modes.
It can be easily shown that the two input states in Eq. (23) with
the constraint of Eq. (26) can lead to output entanglement. We
therefore reveal that the steering from mode b̂ j to mode â j is
sufficient and necessary for the entanglement between modes
â1 and â2 by swapping.

IV. APPLICATION TO DISTANT MECHANICAL
ENTANGLEMENT WITH OPTOMECHANICAL STEERING

As a realistic example, we consider in this section the
generation of Gaussian entanglement between two distant
optomechanical resonators via entanglement swapping. Ex-
isting schemes have already been proposed for realizing the
entanglement between two mechanical oscillators that are
coupled directly to each other or mediated by other auxiliary
systems [50–54]. Experimentally, the Gaussian entanglement
between two mechanical resonators coupled to a cavity field
has been realized [42]. Moreover, the entanglement of dis-
crete variables between two distant mechanical oscillators has
also been achieved [44]. Here, to achieve distant Gaussian
mechanical entanglement via swapping, as verified in the
previous section, steering between the mechanical oscillators
and the optical fields is required. As depicted in Fig. 1, we
consider two identical subsystems of a cavity optomechanical
system. For generical consideration, we further assume that
for each optomechanical subsystem, the resonant frequency
ω̃c or the dissipation rate κ̃c of each cavity is dependent on the
displacement xm of the mechanical oscillators of frequency
ωm and mass m. The former gives rise to purely dispersive
optomechanical coupling, while the latter leads to purely
dissipative coupling between the cavity field and the me-
chanical oscillator. Dispersive optomechanical coupling has
been realized in a variety of optomechanical systems rang-
ing from microwave to optical regimes [37]. Very recently,
a proposal for achieving purely dissipative optomechanical
coupling has been put forward [55,56] and experimentally
realized with a cavity-enhanced Michelson-type interferome-
ter [57]. In addition, the simultaneous achievement of disper-
sive and dissipative optomechanical coupling has also been
realized, with a single-crystal diamond nanobeam waveguide
[58].

For the jth subsystem, we consider that the cavity fre-
quency ω̃c(x̂m, j ) is expanded to first order in the mechani-

cal displacement x̂m, j ≡
√

h̄
2mωm

(âm, j + â†
m, j ), i.e., ω̃c(x̂m, j ) ≈

ωc − gω(âm, j + â†
m, j ), where the dispersive coupling gω =

−
√

h̄
2mωm

∂ω̃c
∂xm

and the annihilation operator âm, j denotes the

jth mechanical mode. Then, the dispersive optomechanical

FIG. 1. The schematic plot of entanglement swapping with two
dispersively or dissipatively coupled optomechanical subsystems.
The filtered output modes bout

f1
and bout

f2
from the cavities are under

Bell-type detection to establish the entanglement between the two
mechanical oscillators am1 and am2 .
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coupling can be described by the Hamiltonian

Ĥω, j = h̄ωmâ†
m, j âm, j + h̄ω̃c(x̂m, j )b̂

†
c, j b̂c, j

= h̄ωmâ†
m, j âm, j + h̄ωcb̂†

c, j b̂c, j

− h̄gω(âm, j + â†
m, j )b̂

†
c, j b̂c, j, (27)

where the annihilation operator b̂c, j represents the jth cavity
field.

The dissipative optomechanical coupling describes the
coupling of the cavity field to the external bath, which is
dependent on the motion of the mechanical oscillator. Hence,
the cavity-bath coupling of the jth subsystem, which leads
to the damping of the cavity, can be effectively described by
[55,56,59]

Ĥκ, j = ih̄
√

κ̃c(x̂m, j )(b̂
†
in, j b̂c, j − b̂†

c, j b̂ in, j ), (28)

where the bath’s collective operator b̂ in, j (t ) =
1√
2π

∫
dω b̂ω, je−iωt , with the nonzero correlations

〈b̂ in, j (t )b̂†
in, j′ (t

′)〉 = δ(t − t ′)δ j j′ for the bath modes

b̂ω, j in vacuum and satisfying the commutation relation
[b̂ω, j, b̂†

ω′, j′ ] = δ(ω − ω′)δ j j′ . Likewise, by expanding

κ̃c(x̂m, j ) ≈ κc + gκ (âm, j + â†
m, j ), with the dissipative coupling

gκ =
√

h̄
2mωm

∂κ̃c
∂xm

, the Hamiltonian of Eq. (28) is reduced

approximately to

Ĥκ, j = ih̄
√

κc

[
1 + gκ (âm, j + â†

m, j )

2κc

]
(b̂†

in, j b̂c, j − b̂†
c, j b̂ in, j ),

(29)

which explicitly shows that the dissipative coupling between
the cavity field and the mechanical oscillator is mediated by
input noise.

In addition to the above input loss of cavities, we also
take into account intrinsic losses of the cavities, which can
be effectively described by the coupling

Ĥ int
κ, j = ih̄

√
κ int

c (b̂†
int, j b̂c, j − b̂†

c, j b̂ int, j ), (30)

with the loss rate κ int
c of the jth cavity, where b̂int, j accounts

for the environment that induces intrinsic loss and also sat-
isfying the nonzero correlations 〈b̂ int, j (t )b̂†

int, j′ (t
′)〉 = δ(t −

t ′)δ j j′ . Finally, we consider that each optomechanical cavity
is driven by a laser with a frequency of ωd, j and amplitudes
b̄ in, j , described by

Ĥd, j = ih̄
√

κ̃c(x̂m, j )(b̄
∗
in, j b̂c, je

iωd, j t − b̄ in, j b̂
†
c, je

−iωd, j t ). (31)

By taking into account the mechanical damping with the
rate γm, the Langevin equations of the subsystem’s operators
âm, j and b̂c, j in the rotating frame at the driving frequency
ωd, j (i.e., moving into the interaction picture with respect to
h̄ωd, jb

†
c, j b̂c, j to cancel the time dependence of Ĥd, j) can be

derived as

d

dt
âm = −

[
γm

2
+ iωm

]
âm + igωb̂†

cb̂c

+ gκ

2
√

κc
( ˆ̃b†

inb̂c − b̂†
c
ˆ̃bin ) − √

γmâin(t ), (32a)

d

dt
b̂c = −

{
κc

2

[
1 + gκ

κc
(âm + â†

m)

]
+ κint

2
+ iδc

− igω(âm + â†
m)

}
b̂c − √

κintb̂int (t )

−√
κc

[
1 + gκ

2κc
(âm + â†

m)

]
ˆ̃bin(t ), (32b)

where the subscript “ j” is omitted for simplicity, the detun-

ing δ = ωc − ωd , and ˆ̃bin = b̂in + b̄in. Here, âin(t ) denotes a
thermal mechanical noise operator and it satisfies the nonzero
correlations 〈â†

in(t )âin(t ′)〉 = nthδ(t − t ′) and 〈âin(t )â†
in(t ′)〉 =

(nth + 1)δ(t − t ′) [37,60], with the mean thermal phonon
number nth = (eh̄ωm/kBT − 1)−1 of the mechanical environ-
ment at temperature T , and kB is the Boltzmann constant.

For the strong driving fields, the above nonlinear equation
can be linearized around the steady-state amplitudes of the
operators âm and b̂c as âm = āss

m + δâm and b̂c = b̄ss
c + δb̂c,

where the steady-state amplitudes b̄ss
c ≈ −

√
κc

κc
2 +i� b̄in with the

detuning � = δc + √
2gωRe[āss

m] and āss
m ≈ gω (b̄ss

c )2

ωm+i γm
2

, and the

operators δÔ describe the corresponding quantum fluctuations
of the system, and in the following “δ” is omitted for sim-
plicity. The linearized Langevin equations of the fluctuating
operators can be derived as

d

dt
âm = −

(
γm

2
+ iωm

)
âm −

(
Gκ

4
− iG

)
b̂c

+
(

Gκ

4
+ iG

)
b̂†

c − Gk

2
√

κc
b̂in(t )

+ Gk

2
√

κc
b̂†

in(t ) − √
γmâin(t ), (33a)

d

dt
b̂c = −

(
κc + κint

2
+ i�

)
b̂c −

(
Gκ

4
− iG

)
(âm + â†

m)

−√
κcb̂in(t ) − √

κintb̂int (t ), (33b)

where Gω ≡ gωb̄ss
c and Gκ ≡ gκ b̄ss

c are, respectively, collective
dispersive and dissipative optomechanical coupling strengths,
and G = Gω + Gκ�

2κc
.

With Eq. (33), we can study quantum steerable correlations
between the mechanical oscillator and the cavity field. But in
reality, it is the output field leaking from the cavity rather than
the intracavity field under homodyne detection that achieves
entanglement swapping. The output field b̂out

c (t ) is related to
the intracavity field b̂c(t ) via the relation [60,61]

b̂out
c (t ) = √

κ̃cb̂c(t ) + b̂in(t ), (34a)

� √
κcb̂c(t ) + Gκ

2
√

κc
(âm + â†

m) + b̂in(t ), (34b)

where the equation in the second line is the result of ex-
panding κ̃c to first order in the mechanical displacement as
well as linearization. The output field satisfies the commuta-
tion relation [b̂out

c (t ), b̂out†
c (t ′)] = δ(t − t ′), and thus to discuss

the steering between the output field and the mechanical
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oscillator, we should define a temporal mode b̂out
f of the con-

tinuous output field b̂out
c [62], which should possess a definite

central frequency and bandwidth and satisfy [b̂out
f , b̂†out

f ] = 1,
given by

b̂out
f (t ) =

∫ t

−∞
f (t − s)b̂out

c (s)ds, (35)

where the function f (t ) satisfies
∫ ∞

0 | f (t )|2dt = 1 due to the
commutation relation of b̂out

f and it can be chosen as

f (t ) =
√

2

τ
θ (t )e−( 1

τ
+i� f )−1t , (36)

with the Heaviside step function θ . The function f (t ) defines a
filtered mode with a bandwidth of τ−1 and a central frequency
of � f from the continuous output field b̂out

c (t ).
For the given filtered mode b̂out

f , the stationary
bipartite correlation matrix of the mechanical and this
temporal mode can be obtained by first introducing
χout (ω) = (âm(ω), â†

m(−ω), b̂out
f (ω), b̂out†

f (−ω))T , where

âm(ω) and b̂out
f (ω) are, respectively, the Fourier

transformation of âm(t ) and b̂out
f (t ). Rearrange Eq. (33)

in the form d
dt ψ (t ) = Aψ (t ) − B1ψin(t ) − B2ψint (t ),

where ψ = (âm, â†
m, b̂c, b̂†

c )T , ψin = (âin, â†
in, b̂in, b̂†

in )T ,
and ψint = (0, 0, b̂int, b̂†

int )
T . The matrices A, B1, and B2

can be easily obtained and are not presented here. By using
Eqs. (34) and (35), we can obtain

χout (ω) = F1(ω)χin(ω) + F2(ω)χint (ω), (37)

where χin(ω) and χint (ω) are, respectively, the corresponding
Fourier transform of ψin(t ) and ψint (t ), F1ω = TωAωB1 +
Dω, F2ω = TωAωB2,

Tω =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

Gk f (ω)√
2κc

Gk f (ω)√
2κc

√
κc f (ω) 0

Gk f ∗(−ω)√
2κc

Gk f ∗(−ω)√
2κc

0
√

κc f ∗(−ω)

⎞
⎟⎟⎟⎟⎠,

(38)

Dω =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 f (ω) 0
0 0 0 f ∗(−ω)

⎞
⎟⎠, (39)

and Aω = (A + iωI )−1. In the above, f (ω) is the Fourier
transform of the function f (t ). With Eq. (37), the bipartite CM
σab [defined in Eq. (1)] with respect to the mechanical mode
âm and the filtered output field b̂out

f in the steady-state regime
can be found to be

σab =
∫ ∞

−∞
dω

2∑
j=1

HF j (ω)C jFT
j (−ω)HT , (40)

where H = diag(H1,H2), H j = 1√
2

( 1 1
−i i

)
, C1 = 1

2 (2nth +
1)

(0 1
1 0

) ⊕ (0 1
1 0

)
, and C2 = 1

2

(0 0
0 0

) ⊕ (0 1
1 0

)
.

It should be noted that the Langevin equation (33) is stable
only if all the eigenvalues of the matrix A have negative real
parts. With the Routh-Hurwitz criterion [63], the stability con-
dition can be found to be that the following three inequalities
are simultaneously held, i.e.,

S1 = κc

(
κ2

c

4
+ κcγm + �2

)
+ γm

(
γ 2

m

4
+ κcγm + ω2

m

)
− 2ωmGκG > 0, (41a)

S2 =
(

γ 2
m

4
+ ω2

m

)(
κ2

c

4
+ �2

)
+ κcωmGκG + 2ωm�

(
G2

κ

8
− 2G2

)
> 0, (41b)

S3 =
[
κc

(
κcγm

4
+ ω2

m

)
+ γm

(
κcγm

4
+ �2

)
+ 2ωmGκG

][
κc

(
κ2

c

4
+ κcγm + �2

)
+ γm

(
γ 2

m

4
+ κcγm + ω2

m

)

−2ωmGκG

]
− (κc + γm)2

[(
γ 2

m

4
+ ω2

m

)(
κ2

c

4
+ �2

)
+ κcωmGκG + 2ωm�

(
G2

κ

8
− 2G2

)]
> 0. (41c)

Thus, with the steady-state CM σab, the entanglement and
steering between the mechanical oscillator and the filtered
output field can be discussed. The entanglement swapping is
accomplished by mixing the two filtered output fields b̂out

f ,1 and

b̂out
f ,2 on a balanced beam splitter and performing homodyne

detection on the two beam-splitter outputs, as shown in Fig. 1.
The entanglement between the two mechanical oscillators can
be analyzed by obtaining the corresponding CM in Eq. (14).

In Figs. 2–5, the dependences of the steady-state optome-
chanical entanglement Eab, light-mechanical steering Sb|a
and Sa|b of the subsystems, and entanglement Em12 between
the two mechanical oscillators on the detuning �, the cou-
pling Gω/κ , and the cavity dissipation rate κc are presented,

respectively, for dispersive and dissipative coupling. It is
shown from them that for the optomechanical system, the
steering between the output filtered field and the mechani-
cal oscillator in two directions can be achieved. Moreover,
there exist asymmetric and even one-way steering. We can
see that the presence of optomechanical entanglement Eab

does not mean the entanglement between the two mechanical
oscillators via entanglement swapping, since the subsystem’s
entanglement is merely necessary for swapped entanglement.
However, it can be seen that the values of the optomechanical
steering Sa|b from the output field and the mechanical oscil-
lator are equal to that of the mechanical entanglement Em12 ,
showing that the existence of light-to-mechanical steering is
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FIG. 2. The light-mechanical entanglement Eab, steering Sb|a and Sa|b of the subsystems, and distant mechanical entanglement Em12 via
entanglement swapping for dispersive optomechanical coupling, with the parameters ωm = 1, Gκ = 0, κc = 5, � f = 1, τ−1 = 1, γm =
10−5, κint = 0, and nth = 0. The green shaded areas correspond to the regions of instability.

the sufficient and necessary condition for achieving mechani-
cal entanglement via swapping.

Specifically, as shown in Figs. 2 and 3, we see that for dis-
persive optomechanical coupling, the optomechanical entan-
glement Eab, the light-mechanical steering Sb|a and Sa|b, and
the mechanical entanglement Em12 are mainly presented in the
red-detuned regime (� > 0), while for dissipative coupling,
stronger light-mechanical entanglement and steering appears
not only in the red-detuned regime but also in the region of
blue detuning (� < 0). This is because for the dispersive
coupling case, the optomechanical coupling strength Gω is
considerably limited by the stability condition in the blue-
detuned regime, as depicted by the shaded areas in the figures,
which therefore renders the entanglement and steering weak
and fragile, whereas for the dissipative coupling case, the
larger value of the coupling strength Gκ can be allowed in
both regimes of red and blue detuning. Thus, for the latter
case, significant entanglement Eab and Em12 and steering in
two directions can be generated in the blue-detuned regime
via dissipative coupling. Nevertheless, even in the red-detuned
regime, it is shown that the achievable entanglement and steer-
ing via dissipative coupling are stronger than those by disper-
sive coupling. In addition, from Figs. 2 and 3 one can also
see that the optimal entanglement and steering are achieved
around the detuning � ≈ 1.5ωm for dispersive coupling, but

for dissipative coupling it occurs near the larger detuning
� ≈ 8ωm, both with the coupling Gω,κ � ωm. It should be
noted that in reality the coupling Gω,κ and the detuning �

are not independent of each other, but for the fixed value
of the detuning, the coupling strengths can be controlled by
modulating the driving strength.

In Figs. 4 and 5, the dependence of the optomechanical
entanglement Eab, steering Sb|a and Sa|b, and the mechani-
cal entanglement Em12 on the cavity dissipation rate κc are
presented. It is very interesting to see that for both kinds of
optomechanical coupling, the larger dissipation rate is more
beneficial for the generation of entanglement and steering,
which are optimized for the bad cavity limit κc � ωm, as
shown in the figures. This means that to achieve signifi-
cant entanglement and steering, the constraint that the cavity
dissipation rate κc should be smaller than the mechanical
frequency ωm can be discarded. This makes our scheme quite
different from that in Ref. [48] in which the mechanical
oscillator is coupled to two cavity modes that are, respec-
tively, driven by a blue-detuned and a red-detuned laser, and
moreover the swapped entanglement is achieved only in the
sideband-resolved regime. As a matter of fact, except for some
special optomechanical systems, such a condition is hard to
fulfill in many experimental optomechanical systems, since
it typically requires optical cavities with very high finesse,

FIG. 3. The light-mechanical entanglement Eab, steering Sb|a and Sa|b of the subsystems, and distant mechanical entanglement Em12 via
entanglement swapping for dissipative optomechanical coupling, with the parameters ωm = 1, Gω = 0, κc = 5, � f = 1, τ−1 = 1, γm =
10−5, κint = 0, and nth = 0. The green shaded areas correspond to the regions of instability.
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FIG. 4. The light-mechanical entanglement Eab, steering Sb|a and Sa|b of the subsystems, and distant mechanical entanglement Em12 via
entanglement swapping for dispersive optomechanical coupling, with the parameters ωm = 1, Gκ = 0, � = 2, � f = 1, τ−1 = 1, γm =
10−5, κint = 0, and nth = 0. The green shaded areas correspond to the regions of instability.

and considerably limits the size and mass of the mechanical
oscillator. Thus, with our scheme, the distant entanglement
between two low-frequency mechanical oscillators can be
generated.

Finally, we study the effect of cavity intrinsic loss and
thermal mechanical fluctuations on entanglement and steering
for the present system, which are, respectively, depicted in
Figs. 6 and 7. We can see from Fig. 6 that the intrinsic
loss decreases the entanglement and steering. Moreover, as
the intrinsic loss increases, the steering from the output field
to the mechanical oscillator decreases much faster than the
reverse steering. This is because as the vacuum intrinsic
loss increases, the intracavity field tends to a vacuum and
thus can be more easily steered by the mechanical oscillator,
which has larger quantum fluctuations than the former and
hence we have stronger steering from the mechanics to the
output field. From Fig. 7 it is shown that the distant me-
chanical entanglement can still exist for nth ≈ 2 × 104 and
nth ≈ 3.0 × 104, respectively, by dispersive and dissipative
coupling with κint = 0.1κc. This means that the robust en-
tanglement between the two mechanical oscillators can be
achieved. Consider realistic parameters close to the recent
experiment in Ref. [57], with the mechanical frequency ωm ≈
2π × 140 kHz, the mechanical quality factor Q = ωm/γm =
105, the cavity linewidth κc = 8ωω ≈ 2π × 1.12 MHz, the
single-photon coupling rates gω ≈ 2π × 1.5 Hz, and gκ ≈

2π × 0.3 Hz. For the powers Pω ≈ 4.5 mW and Pκ ≈ 2.2
W of the driving lasers with the wavelength λ = 1064 nm,
the coupling strengths Gω ≈ 1.25ωm and Gκ ≈ 2.5ωm, as
accepted in Fig. 6, can be achieved under the detuning � =
2ωm and 8ωm, respectively. With these parameters, it can be
found that the mechanical entanglement can still be achieved
at the environment temperature T ≈ 0.12 K and T ≈ 0.2 K,
respectively, for dispersive and dissipative coupling.

V. CONCLUSION

To summarize, in the paper we first study the connec-
tion between EPR steering and entanglement swapping of
Gaussian states. It is found that for Gaussian entanglement
swapping, the steering from the modes subject to detection to
the other modes of two input states is sufficient and necessary
for achieving swapped entanglement, which is moreover inde-
pendence of reverse steering. We further reveal that this is due
to the steering in such a direction, with homodyne detection
enabling the quadrature quantum squeezing of the composite
modes of the two distant modes to be entangled. Then, as
a realistic example, we investigate light-mechanical steer-
ing in dispersively and dissipatively coupled optomechanical
systems, and we consider the generation of entanglement
between two distant mechanical oscillators via entanglement
swapping with the steering. It is found that for both cases

FIG. 5. The light-mechanical entanglement Eab, steering Sb|a and Sa|b of the subsystems, and distant mechanical entanglement Em12 via
entanglement swapping for dissipative optomechanical coupling, with the parameters ωm = 1, Gκ = 0, � = 8, � f = 1, τ−1 = 1, γm =
10−5, κint = 0, and nth = 0. The green shaded areas correspond to the regions of instability.
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FIG. 6. The effect of the intrinsic loss of the cavity on the
light-mechanical entanglement Eab, steering Sb|a and Sa|b of the
subsystems, and distant mechanical entanglement Em12 for dispersive
coupling in (a) and dissipative optomechanical coupling in (b), with
� = 2 and Gω = 1.25 in (a), and � = 8 and Gκ = 2.5 in (b).
The other parameters are ωm = 1, κ = 8, � f = 1, τ−1 = 1, γm =
10−5, and nth = 0.

of coupling, robust mechanical entanglement can be obtained
in the regime of steady states without the constraint that the
cavity linewidth should be smaller than the mechanical fre-
quency. Thus, with the present scheme, distant entanglement
between two low-frequency mechanical oscillators can be
generated.

FIG. 7. The effect of thermal mechanical noise nth on the light-
mechanical entanglement Eab, steering Sb|a and Sa|b of the sub-
systems, and distant mechanical entanglement Em12 for dispersive
coupling in (a) and dissipative optomechanical coupling in (b). The
parameters are the same as in Fig. 6, expect for the intrinsic loss
κint = 0.1κc.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (No. 11674120), the Funda-
mental Research Funds for the Central Universities (No.
CCNU18TS033), and the Research Foundation of Engineer-
ing Master Degree of Hubei University of Science and Tech-
nology (No. 2018-19GZ02).

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 553 (1935).
[3] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.

98, 140402 (2007).
[4] S. J. Jones, H. M. Wiseman, and A. C. Doherty, Phys. Rev. A

76, 052116 (2007).
[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[6] J. S. Bell, Physics 1, 195 (1964).
[7] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Rev. Mod. Phys. 86, 419 (2014).
[8] J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, Phys.

Rev. Lett. 112, 200402 (2014).
[9] P. Skrzypczyk, M. Navascues, and D. Cavalcanti, Phys. Rev.

Lett. 112, 180404 (2014).
[10] V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T.

Franz, R. F. Werner, and R. Schnabel, Nat. Photon. 6, 598
(2012).

[11] S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J.
Pryde, Phys. Rev. Lett. 116, 160403 (2016).

[12] K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu, J. L.
Chen, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 116, 160404
(2016).

[13] Y. Xiao, X. J. Ye, K. Sun, J. S. Xu, C. F. Li, and G. C. Guo,
Phys. Rev. Lett. 118, 140404 (2017).

[14] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and
H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012).

[15] N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S.
Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul,
H. M. Wiseman, and P. K. Lam, Optica 3, 634 (2016).

[16] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).

[17] Q. He, L. Rosales-Zarate, G. Adesso, and M. D. Reid, Phys.
Rev. Lett. 115, 180502 (2015).

[18] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev.
Lett. 68, 3663 (1992).

[19] W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Phys.
Rev. Lett. 90, 043601 (2003).

[20] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,
Nat. Phys. 6, 845 (2010).

[21] K. Sun, J. S. Xu, X. J. Ye, Y. C. Wu, J. L. Chen, C. F. Li, and
G. C. Guo, Phys. Rev. Lett. 113, 140402 (2014).

[22] D. Cavalcanti, P. Skrzypczyk, G. H. Aguilar, R. V. Nery, P. H.
Souto Ribeiro, and S. P. Walborn, Nat. Commun. 6, 7941
(2015).

[23] S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek,
H.-A. Bachor, M. D. Reid, and P. K. Lam, Nat. Phys. 11, 167
(2015).

[24] S. Kocsis, M. J. W. Hall, A. J. Bennet, D. J. Saunders, and G. J.
Pryde, Nat. Commun. 6, 5886 (2015).

[25] T. Guerreiro, F. Monteiro, A. Martin, J. B. Brask, T. Vertesi,
B. Korzh, M. Caloz, F. Bussieres, V. B. Verma, A. E. Lita,
R. P. Mirin, S. W. Nam, F. Marsilli, M. D. Shaw, N. Gisin, N.
Brunner, H. Zbinden, and R. T. Thew, Phys. Rev. Lett. 117,
070404 (2016).

[26] X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong,
X. Su, C. Xie, and K. Peng, Phys. Rev. Lett. 118, 230501
(2017).

[27] S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H.
Souto Ribeiro, Phys. Rev. Lett. 106, 130402 (2011).

[28] Y. Shen, S. M. Assad, N. B. Grosse, X. Y. Li, M. D. Reid, and
P. K. Lam, Phys. Rev. Lett. 114, 100403 (2015).

[29] Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R.
Schnabel, and Y. Chen, Nat. Phys. 13, 776 (2017).

043834-9

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.118.140404
https://doi.org/10.1103/PhysRevLett.118.140404
https://doi.org/10.1103/PhysRevLett.118.140404
https://doi.org/10.1103/PhysRevLett.118.140404
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1364/OPTICA.3.000634
https://doi.org/10.1364/OPTICA.3.000634
https://doi.org/10.1364/OPTICA.3.000634
https://doi.org/10.1364/OPTICA.3.000634
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.68.3663
https://doi.org/10.1103/PhysRevLett.68.3663
https://doi.org/10.1103/PhysRevLett.68.3663
https://doi.org/10.1103/PhysRevLett.68.3663
https://doi.org/10.1103/PhysRevLett.90.043601
https://doi.org/10.1103/PhysRevLett.90.043601
https://doi.org/10.1103/PhysRevLett.90.043601
https://doi.org/10.1103/PhysRevLett.90.043601
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1038/ncomms8941
https://doi.org/10.1038/ncomms8941
https://doi.org/10.1038/ncomms8941
https://doi.org/10.1038/ncomms8941
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1103/PhysRevLett.117.070404
https://doi.org/10.1103/PhysRevLett.117.070404
https://doi.org/10.1103/PhysRevLett.117.070404
https://doi.org/10.1103/PhysRevLett.117.070404
https://doi.org/10.1103/PhysRevLett.118.230501
https://doi.org/10.1103/PhysRevLett.118.230501
https://doi.org/10.1103/PhysRevLett.118.230501
https://doi.org/10.1103/PhysRevLett.118.230501
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.114.100403
https://doi.org/10.1103/PhysRevLett.114.100403
https://doi.org/10.1103/PhysRevLett.114.100403
https://doi.org/10.1103/PhysRevLett.114.100403
https://doi.org/10.1038/nphys4118
https://doi.org/10.1038/nphys4118
https://doi.org/10.1038/nphys4118
https://doi.org/10.1038/nphys4118


HUATANG TAN, WENWU DENG, AND LIHUI SUN PHYSICAL REVIEW A 99, 043834 (2019)

[30] A. Mallick and S. Ghosh, Phys. Rev. A 96, 052323
(2017).

[31] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys.
Rev. Lett. 71, 4287 (1993).

[32] R. E. S. Polkinghorne and T. C. Ralph, Phys. Rev. Lett. 83, 2095
(1999).

[33] P. van Loock and S. L. Braunstein, Phys. Rev. A 61, 010302(R)
(1999).

[34] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger,
Phys. Rev. Lett. 80, 3891 (1998).

[35] X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, Phys. Rev.
Lett. 93, 250503 (2004).

[36] H.-R. Li, F.-L. Li, Y. Yang, and Q. Zhang, Phys. Rev. A 71,
022314 (2005).

[37] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014); P. Meystre, Ann. Phys. 525, 215 (2013).

[38] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan,
M. Aspelmeyer, and O. Painter, Nature (London) 500, 185
(2013).

[39] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and
M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015).

[40] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Science 342, 710 (2013).

[41] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang,
A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher,
Nature (London) 530, 313 (2016); S. Hong, R. Riedinger,
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