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Self-polarization effect in the middle point of an optical fiber
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In this paper, we report both numerically and experimentally an unexpected phenomenon of self-polarization
occurring in the middle point of an isotropic optical fiber when two uncorrelated partially polarized waves are
simultaneously injected at the ends of the fiber. More precisely, we demonstrate that two counterpropagating
waves of equal intensity exhibit a spontaneous organization of their polarization states around two pools of
attraction just in the middle point of propagation, and then both recover a partially polarized state at their
respective fiber outputs. The self-polarization effect then remains hidden within the optical fiber in the sense
that no apparent sign of this process is detected at the fiber outputs. A geometric definition of the degree of
polarization is used to measure the efficiency of the polarization phenomenon.
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I. INTRODUCTION

Understanding the mechanisms responsible for self-
organization processes in conservative and reversible Hamil-
tonian wave systems is an arduous problem that generates sig-
nificant interest. Contrary to dissipative systems that exhibit
attractors, a conservative Hamiltonian system cannot evolve
towards a fully ordered state, because such an evolution would
imply a loss of statistical information that would violate its
formal reversibility as well as the rules of entropy growth.
Nevertheless, beyond this fundamental rule of thumb, a nonin-
tegrable Hamiltonian wave system can exhibit an irreversible
process of self-organization that results from its natural ther-
malization towards the (“most disordered”) thermodynamic
equilibrium state [1]. This may appear to be counterintuitive
since the same mechanism, the increase of disorder or en-
tropy, would be also responsible for a seemingly opposite
phenomenon, namely, the formation of large-scale coherent
structures. However, it is important to note that this kind
of self-organization process has in essence a thermodynamic
origin, in the sense that an increase of disorder (entropy)
also requires the formation of a large-scale coherent structure.
Indeed, it is thermodynamically advantageous for the waves to
generate a large-scale coherent or ordered structure, because
this allows an increase of the amount of disorder in all the
remaining surrounding landscape [1–3].

In this paper, we address a different form of self-
organization process that occurs in an “open” system of in-
teracting Hamiltonian waves. The system is open in the sense
that the nonlinear medium is characterized by a finite spa-
tial extension. As opposed to the self-organization processes
discussed above for “closed” systems, here the waves can
enter or exit the nonlinear medium, although the interaction
still remains locally Hamiltonian inside the medium. In this
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paper, the finite-length nonlinear medium consists of a piece
of optical fiber of 200-m length, and we study the polariza-
tion dynamics of two counterpropagating partially polarized
signals that are injected at both ends of the fiber.

The polarization dynamics of counterpropagating optical
beams has been widely studied in the past in different con-
figurations [4–8], since the pioneering studies in nonlinear
atomic vapors [4]. In this framework, different processes of
polarization attractions have been identified depending on the
type of the considered optical fiber (isotropic fiber [9–14] or
highly [15,16], weakly [17], or randomly birefringent fiber
[14,18–25]). In these previous studies, polarization attraction
is known to require the injection of a fully polarized (pump)
wave, which serves as a state of polarization (SOP) reference,
and thus plays the natural role of attractor for an arbitrary
polarized backward signal beam. Subsequently, polarization
attraction has been demonstrated in a single feedback mirror
configuration [26–28], so that the injected wave interacts
with its own back-reflected wave, thus forming a feedback
loop. Note that, aside from polarization attraction, this single
mirror feedback scheme can be considered as a fundamental
system for the study of spontaneous pattern formation when
transverse effects are considered (see, e.g., [29,30]).

In this paper, we report a consequence of such a phe-
nomenon of polarization self-organization. In contrast with
the previous studies which require either the injection of a
fully polarized reference pump wave or the presence of a
feedback mirror to introduce a correlation between the back-
ward waves [26,28], here, two independent random waves
characterized by uncorrelated polarization fluctuations are
injected at the ends of the fiber. In this way, we identify
a process of polarization self-organization that unexpectedly
occurs just in the middle point of an optical fiber: As the two
random waves counterpropagate through the fiber, they are
first attracted towards a specific SOP in the middle of the fiber,
and then both recover their polarization randomness at their
corresponding fiber outputs. It turns out that, in a loose sense,
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this self-polarization process is “hidden” within the optical
fiber since no apparent sign of this phenomenon is detected
in the outputs, a peculiar feature that may explain why this
intriguing effect remained unrecognized so far. We introduce
a geometric definition of the degree of polarization to measure
the efficiency of the polarization process. As discussed below,
a standard definition based on a temporal average of the time-
dependent polarization cannot unveil the polarization effect
and leads to a vanishing measure all along the fiber.

The paper is organized as follows. The model system is
introduced in Sec. II. A complete numerical analysis of the
self-polarization effect is provided in Sec. III. This effect is
shown experimentally in Sec. IV. Conclusions and perspective
views are given in Sec. V.

II. THE MODEL SYSTEM

The evolution of the SOP of the forward and backward
propagating beams in an isotropic fiber is governed by the
coupled differential equations [7,9]

∂�S
∂τ

+ ∂�S
∂ξ

= [�S × Is�S + 2�S × Ii �J],

∂ �J
∂τ

− ∂ �J
∂ξ

= [�J × Is �J + 2�J × Ii�S],

(1)

where �S and �J represent, respectively, the Stokes vectors of the
forward and backward beams, with the diagonal matrix Is =
diag(−1,−1, 0) and Ii = diag(−2,−2, 0), and the sign ×
denotes the vector product. Equations (1) are normalized with
respect to the nonlinear time τ0 = 1/(γ vS0) and nonlinear
length �0 = vτ0, where γ is the nonlinear Kerr coefficient,
v is the group velocity of the waves, and S0 is the power of the
forward beam. In this paper, we use the convention in which
the north and south poles of the Poincaré sphere correspond,
respectively, to the left and right circular SOP. No fiber loss
has been taken into account in the model.

We consider two partially polarized fields characterized
by the boundary conditions �S(ξ = 0, τ ) and �J (ξ = L, τ ) that
are injected at the ends of the fiber of normalized length L.
We investigate the SOPs �S(ξ = L/2, τ ) and �J (ξ = L/2, τ )
of the two beams in the middle of this fiber. The partially
polarized beams are defined by a signal wave the SOP of
which evolves and fluctuates over the surface of the Poincaré
sphere with a coherence time τc. We generate numerically the
fields by considering uncorrelated complex time-dependent
random functions AS,J

x,y (τ ), where AS
x,y(τ ) [AJ

x,y(τ )] denote the
linear polarization components of the forward (backward)
field. To simplify the discussion, we assume that the forward
and backward fields have the same correlation time τc. The
random waves are generated numerically from a Gaussian-
shaped power spectrum with 1/e2 half width σν and with
uncorrelated random spectral phases [τc =

√
log(2)/(πσν )].

Since the goal is to study the incoherent polarization dynam-
ics, the random fields AS,J

x,y expressed in the Stokes basis are
normalized with respect to their power intensity (S0 and J0),
i.e., the Stokes vectors (�S, �J ) exhibit a random motion over
the surface of the corresponding Poincaré spheres of constant
radii S0 and J0 (S0 = J0 = 1 in normalized units).
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Sz Sz Sz
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Output
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FIG. 1. Numerical simulations of the spatiotemporal system on
the Poincaré sphere. The red (gray), green (light gray), and blue (dark
gray) dots denote, respectively, the input, middle, and output SOPs
of the signal (�S, upper panels) and of the pump (�J , lower panels).

III. NUMERICAL ANALYSIS OF THE
SELF-POLARIZATION EFFECT

The phenomenon of self-polarization manifests itself by
the spontaneous polarization of the optical beams in the mid-
dle of the fiber, at ξ = L/2. We stress the fact that the injected
partially polarized beams are uncorrelated with each other.
In other words, the two waves self-organize their own polar-
ization state in the middle point of an optical fiber without
any reference or feedback system. This configuration clearly
represents a nontrivial extension of the omnipolarizer device
reported in [26]. The self-polarization effect is illustrated by
the numerical simulations of the spatiotemporal dynamics
(1) reported in Fig. 1. We inject at the ends of a fiber of
length 200 m (= 4�0) a wave with a coherence time of τc �
60 μs, which places our paper in a quasistationary regime.
As illustrated in Fig. 1, the incoherent polarization dynamics
are deeply modified by the nonlinear interaction: While the
injected SOPs fluctuate all over the Poincaré spheres, the
SOPs in the middle of the fiber are attracted toward the poles
of the spheres, which correspond to the circular polarization
states of the fields.

We explore now the efficiency of this polarization effect
with respect to the coherence time τc. To assess the strength
of the polarization phenomenon, we consider the degree of
polarization (DOP). Note, however, that the standard def-

inition DOP =
√

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2/〈S0〉, where 〈·〉 is a
temporal average, is not relevant here, since it is inherently
unable to unveil the polarization effect, i.e., it would lead to
a vanishing DOP all along the fiber. It is more convenient to
resort to a geometric definition GDOP = 1 − A

4π
, where A is

the area covered over the surface of the Poincaré sphere [31].
This geometric approach also proves relevant for quantum
optics developments [32]. In the case of a completely polar-
ized (unpolarized) field, the area is A = 0 (A = 4π ) so that
GDOP = 1 (respectively, GDOP = 0). We present in Fig. 2
the evolution of the GDOP of the forward beam along the fiber
and its variation with respect to the coherence time at ξ = 0
and L/2. The same results are obtained for the backward
wave. A strong increase of the GDOP is observed in the
middle of the fiber in Fig. 2(a). Note the smooth evolution
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FIG. 2. (a) Evolution of the DOP as a function of the position ξ

for τc = 24 μs (blue dotted line), τc = 60 μs (red dashed line), and
τc = 120 μs (green solid line). (b) DOP of the forward beam at ξ = 0
(black line), ξ = L/2 (blue line), and ξ = L (red circle). The same
fiber parameters as in Fig. 1 are used.

of the GDOP along the fiber. In particular, the maximum
GDOP is reached not only at ξ = L/2 but also for significant
displacements around this position. As shown in Figs. 2(a)
and 2(b), the GDOP increases as the coherence time τc be-
comes larger. We observe that the GDOP tends to saturate for
coherence times larger than 60 μs, i.e., in the quasistationary
regime. This represents a limit for an efficient process of
self-polarization. Indeed, since the polarization effect results
from the backward propagation dynamics in the fiber length L,
the required minimum coherence time is naturally connected
to the propagation time throughout the fiber (2 μs in this
example), a feature that was already noticed for a standard
configuration in which the pump beam is fully polarized [20].

We have also studied the distribution of the fluctuations
of the SOPs by computing the probability density function
(PDF) for each component at a given position ξ . We see in
Fig. 3 that at the fiber ends ξ = 0 and L the PDFs of the
three components are homogeneous. In marked contrast, the
probability distributions exhibit a significant tightening near
the middle of the fiber ξ = L/2: While the PDFs of Sx and Sy

decrease toward zero, the PDF of the circular SOP Sz increases
significantly and saturates to near the two extreme values ±1
(±S0 in dimensional units). This analysis provides another
signature of the efficiency of the polarization effect toward
the circular polarization components.
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FIG. 3. (a)–(c) Evolution of the PDF of the three components
(Sx, Sy, Sz) of the SOP of the forward beam as a function of the
position ξ . The PDFs have been computed from the results displayed
in Fig. 1. The coherence time is set to 60 μs. Panel (d) is a zoom of
panel (c).

0 L/4 L/2 3L/4 L
-1

0

1

ξ

S
z

FIG. 4. Stationary solutions Sz(ξ ) along the fiber [the coordinate
Jz(ξ ) has exactly the same evolution in the stationary regime]. The
trajectories attracted towards the north and the south poles are,
respectively, plotted in red (gray) and in blue (dark gray). The corre-
sponding trajectories on the doubly pinched torus are schematically
represented. The positions of the two hyperbolic fixed points are
indicated by a black dot.

This self-organization process can be explained through
the properties of stationary solutions of the Partial Differ-
ential Equation (PDE) system which exhibit a hyperbolic
fixed point [11–13,17]. This point corresponds to the right
and left circular polarization states of the forward and back-
ward beams, and plays the role of natural attractor for the
system since any stationary trajectory will pass close to
one of these two fixed points in the middle point of the
fiber. The fact that for sufficiently large coherence times the
spatiotemporal system follows approximately the stationary
behavior explains therefore this unexpected polarization phe-
nomenon, its robustness being connected to the geometric
properties of the hyperbolic fixed point [11–13,17]. This
aspect is described in Fig. 4, which displays the evolution
along the fiber of the stationary SOP in the z direction.
The stationary system described by Eq. (1) is a Liouville
integrable system since it has as many constants of motion
as it has degrees of freedom. Using the Liouville-Arnold
theorem, it can be shown that the states of this Hamiltonian
lie on a two-dimensional torus. Some of the tori are not
regular, but singular. This is the case of the torus with the
two hyperbolic fixed points of the system, which is a doubly
pinched torus (see Fig. 4 for a schematic representation). The
pinched points of the torus correspond to the hyperbolic points
[11–13].

IV. EXPERIMENTAL DEMONSTRATION

In order to study experimentally this effect of polarization
organization, we have implemented the experimental setup
depicted in Fig. 5. We consider uncorrelated fully polarized
waves with a scrambling speed of a few Hz, which fully places
the experiment in the quasistationary regime shown in Fig. 1
[14]. An optical fiber of a 200-m-long segment is used as a
nonlinear Kerr medium. The fiber under test is a Truewave
HD fiber characterized by a chromatic dispersion parameter
D = −14.5 ps/(km nm), a nonlinear Kerr coefficient γ =
2.5 W−1 km−1, and linear losses of 0.2 dB/km. It is impor-
tant to point out that, due to an optimized spinning process
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FIG. 5. Experimental setup. ASE, amplified spontaneous emis-
sion; Pol, polarizer; OBPF, optical bandpass filter; IM, intensity mod-
ulator; AWG, arbitrary waveform generator; EDFA, erbium doped
fiber amplifier; PS, polarization scrambler.

preformed during the drawing stage, this kind of fiber presents
a weak level of residual birefringence [3,33]. Moreover, in
order to prevent any additional source of birefringence, the
fiber under study was first off-spooled and carefully wound
around a 2-m-diameter ring. In this way, the final 200-m-
long fiber segment can be considered as close as possible
to the ideal isotropic case described above. Then, to enable
a direct monitoring of both counterpropagating SOPs, a 99:1
tap coupler was spliced at the exact middle point of the fiber.
In addition, two circulators, implemented at each side of the
fiber, allow us to both inject the initial random waves and
extract the final signals after the nonlinear propagation. Both
S and J signals are generated from an erbium-based sponta-
neous noise source (ASE) sliced into its spectrum domain by
means of a 100-GHz optical bandpass filter and polarized with
an inline polarizer. Such a spectral linewidth enables us to
avoid any detrimental effect induced by stimulated Brillouin
backscattering within the fiber at power levels involved in the
experiment. A series of two intensity modulators followed by
erbium amplifiers was then implemented to generate 4.5-W
peak-power flat-top 5-μs pulses at a repetition rate of 5 kHz.
We have also verified numerically that a duration of 5 μs is
sufficient for an incipient effect of polarization attraction with
polarized waves, although several tens of μs are required to
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FIG. 6. Experimental Poincaré spheres recorded for S and J at
the input (red or gray dots), at the output (blue or dark gray dots),
and in the middle of the fiber (green or light gray dots). The power
of each wave is set to 4.5 W and the number of points is 256.
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FIG. 7. Experimental probability density function of the Stokes
parameters for the S wave recorded at the input (blue or dark gray
line) and in the middle of the fiber (green or light gray line). The
power of each wave is set to 4.5 W and the number of points is 256.

get a significant polarization with a saturation of the DOP
growth for partially polarized beams. Furthermore, after the
first stage of amplification (EDFA1), the signal was split into
two identical replicas with a 50:50 coupler in order to generate
the two counterpropagating waves S and J . Finally, the initial
SOPs of both S and J were controlled independently and
randomly by means of two polarization scramblers before the
second stage of amplification (EDFA2 and EDFA3).

Figure 6 displays the experimental recordings of the result-
ing Poincaré spheres of both S and J when the two waves are
injected simultaneously at opposite ends of the fiber with a
peak power of 4.5 W. To this aim, 256 randomly distributed
initial conditions were used for both waves as shown by the
red dots covering the corresponding input spheres. In contrast,
when monitored in the middle of the fiber, we can clearly
observe that the SOPs of both S and J segregate around two
pools of attraction, (here oriented along the z axis, following
the theoretical model), thus demonstrating an efficient self-
organization process between the two randomly polarized
waves. Finally, as shown by the output sphere, beyond this
mutual attraction process, both waves recover random polar-
ization distributions at the fiber exit. The experimental results
are in qualitative agreement with numerical simulations using
the same counterpropagating waves.

To further assess the efficiency of this self-organization
process, we have finally compared in Fig. 7 the probability
density function of the three Stokes parameters Sx, Sy, and Sz

of the S wave, respectively, at the input and in the middle point
of the fiber. These results confirm the expected behavior and
show, in agreement with the numerical predictions of Fig. 3,
that this process tends to focus the Sx and Sy Stokes parameters
around the zero value, while segregating Sz around the two
extrema ±1.

V. CONCLUSION AND PERSPECTIVES

In conclusion, we have investigated numerically and ex-
perimentally a phenomenon of polarization self-organization
in which two uncorrelated partially polarized waves are in-
jected at both ends of the fiber. For equal powers, the self-
organization process occurs in the middle of the fiber. The two
SOPs are attracted toward the left or right circular polarization
states. The efficiency of the polarization process in terms
of the coherence time of the partially polarized waves has
been also characterized. One of the main interests of this
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phenomenon is its robustness in the sense that polarization
attraction is observed over a large interval surrounding the
middle point of the fiber. This remarkable effect of self-
polarization has been identified in an isotropic fiber, which
opens the way to a systematic investigation in other types
of fibers such as randomly birefringent fibers used in optical
telecommunications [14].

ACKNOWLEDGMENTS

We thank the Conseil Régional de Bourgogne Franche-
Comté as well as the European Regional Development Fund
for their financial support. We are also very grateful to B.
Sinardet and S. Pernot for the development of the electronic
control part of our polarization scramblers.

[1] B. Rumpf and A. C. Newell, Phys. Rev. Lett. 87, 054102 (2001).
[2] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G.

Millot, and N. Christodoulides, Phys. Rep. 542, 1 (2014).
[3] M. Gilles, P.-Y. Bony, J. Garnier, A. Picozzi, M. Guasoni, and

J. Fatome, Nat. Photonics 11, 102 (2017).
[4] D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd,

Phys. Rev. Lett. 64, 1721 (1990).
[5] S. Trillo and S. Wabnitz, Phys. Rev. A 36, 3881 (1987).
[6] M. V. Tratnik and J. E. Sipe, Phys. Rev. A 35, 2976 (1987).
[7] S. Pitois, G. Millot, and S. Wabnitz, Phys. Rev. Lett. 81, 1409

(1998).
[8] D. David, D. D. Holm, and M. V. Tratnik, Phys. Rep. 187, 281

(1990).
[9] S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M.

Haelterman, Europhys. Lett. 70, 88 (2005).
[10] S. Pitois, J. Fatome, and G. Millot, Opt. Express 16, 6646

(2008).
[11] D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, Phys. Rev.

Lett. 103, 034102 (2009).
[12] E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D.

Sugny, Opt. Lett. 35, 2025 (2010).
[13] E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, J. Opt.

Soc. Amer. B 29, 559 (2012).
[14] V. V. Kozlov, J. Nuno, and S. Wabnitz, J. Opt. Soc. Am. B 28,

100 (2011).
[15] E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D.

Sugny, Opt. Lett. 36, 4038 (2011).
[16] V. Kozlov and S. Wabnitz, Opt. Lett. 35, 3949 (2010).
[17] K. Hamraoui, M. Guasoni, A. Picozzi, E. Assémat, H. R.

Jauslin, and D. Sugny, Phys. Rev. A 93, 053830 (2016).
[18] J. Fatome, S. Pitois, P. Morin, and G. Millot, Opt. Express 18,

15311 (2010).

[19] P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G.
Millot, Opt. Express 19, 17158 (2011).

[20] V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S.
Wabnitz, J. Opt. Soc. Am. B 28, 1782 (2011).

[21] V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam,
A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and
A. Teixeira, IEEE Photonics Technol. Lett. 27, 541 (2015).

[22] A. DeLong, W. Astar, T. Mahmood, and G. M. Carter, Opt.
Express 25, 25625 (2017).

[23] M. Barozzi and A. Vannucci, J. Opt. Soc. Am. B 30, 3102
(2013).

[24] M. Barozzi and A. Vannucci, J. Opt. Soc. Am. B 31, 2712
(2014).

[25] M. Barozzi and A. Vannucci, Photonics Res. 3, 229 (2015).
[26] J. Fatome, S. Pitois, P. Morin, D. Sugny, E. Assémat, A. Picozzi,

H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, Sci. Rep.
2, 938 (2012).

[27] P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi,
H. R. Jauslin, S. Pitois, and J. Fatome, Nat. Commun. 5, 4678
(2014).

[28] P.-Y. Bony, M. Guasoni, E. Assémat, S. Pitois, D. Sugny, A.
Picozzi, H. R. Jauslin, and J. Fatome, J. Opt. Soc. Am. B 30,
2318 (2013).

[29] G. D’Alessandro and W. J. Firth, Phys. Rev. Lett. 66, 2597
(1991).

[30] G. R. M. Robb, E. Tesio, G.-L. Oppo, W. J. Firth, T. Ackemann,
and R. Bonifacio, Phys. Rev. Lett. 114, 173903 (2015).

[31] A. Picozzi, Opt. Lett. 29, 1653 (2004).
[32] A. Luis, Phys. Rev. A 71, 053801 (2005).
[33] T. Geisler, Low PMD transmission Fibers, in European Con-

ference on Optical Communications (ECOC), invited paper
Mo.3.3.1, doi: 10.1109/ECOC.2006.4800871 (2006).

043826-5

https://doi.org/10.1103/PhysRevLett.87.054102
https://doi.org/10.1103/PhysRevLett.87.054102
https://doi.org/10.1103/PhysRevLett.87.054102
https://doi.org/10.1103/PhysRevLett.87.054102
https://doi.org/10.1016/j.physrep.2014.03.002
https://doi.org/10.1016/j.physrep.2014.03.002
https://doi.org/10.1016/j.physrep.2014.03.002
https://doi.org/10.1016/j.physrep.2014.03.002
https://doi.org/10.1038/nphoton.2016.262
https://doi.org/10.1038/nphoton.2016.262
https://doi.org/10.1038/nphoton.2016.262
https://doi.org/10.1038/nphoton.2016.262
https://doi.org/10.1103/PhysRevLett.64.1721
https://doi.org/10.1103/PhysRevLett.64.1721
https://doi.org/10.1103/PhysRevLett.64.1721
https://doi.org/10.1103/PhysRevLett.64.1721
https://doi.org/10.1103/PhysRevA.36.3881
https://doi.org/10.1103/PhysRevA.36.3881
https://doi.org/10.1103/PhysRevA.36.3881
https://doi.org/10.1103/PhysRevA.36.3881
https://doi.org/10.1103/PhysRevA.35.2976
https://doi.org/10.1103/PhysRevA.35.2976
https://doi.org/10.1103/PhysRevA.35.2976
https://doi.org/10.1103/PhysRevA.35.2976
https://doi.org/10.1103/PhysRevLett.81.1409
https://doi.org/10.1103/PhysRevLett.81.1409
https://doi.org/10.1103/PhysRevLett.81.1409
https://doi.org/10.1103/PhysRevLett.81.1409
https://doi.org/10.1016/0370-1573(90)90063-8
https://doi.org/10.1016/0370-1573(90)90063-8
https://doi.org/10.1016/0370-1573(90)90063-8
https://doi.org/10.1016/0370-1573(90)90063-8
https://doi.org/10.1209/epl/i2004-10469-9
https://doi.org/10.1209/epl/i2004-10469-9
https://doi.org/10.1209/epl/i2004-10469-9
https://doi.org/10.1209/epl/i2004-10469-9
https://doi.org/10.1364/OE.16.006646
https://doi.org/10.1364/OE.16.006646
https://doi.org/10.1364/OE.16.006646
https://doi.org/10.1364/OE.16.006646
https://doi.org/10.1103/PhysRevLett.103.034102
https://doi.org/10.1103/PhysRevLett.103.034102
https://doi.org/10.1103/PhysRevLett.103.034102
https://doi.org/10.1103/PhysRevLett.103.034102
https://doi.org/10.1364/OL.35.002025
https://doi.org/10.1364/OL.35.002025
https://doi.org/10.1364/OL.35.002025
https://doi.org/10.1364/OL.35.002025
https://doi.org/10.1364/JOSAB.29.000559
https://doi.org/10.1364/JOSAB.29.000559
https://doi.org/10.1364/JOSAB.29.000559
https://doi.org/10.1364/JOSAB.29.000559
https://doi.org/10.1364/JOSAB.28.000100
https://doi.org/10.1364/JOSAB.28.000100
https://doi.org/10.1364/JOSAB.28.000100
https://doi.org/10.1364/JOSAB.28.000100
https://doi.org/10.1364/OL.36.004038
https://doi.org/10.1364/OL.36.004038
https://doi.org/10.1364/OL.36.004038
https://doi.org/10.1364/OL.36.004038
https://doi.org/10.1364/OL.35.003949
https://doi.org/10.1364/OL.35.003949
https://doi.org/10.1364/OL.35.003949
https://doi.org/10.1364/OL.35.003949
https://doi.org/10.1103/PhysRevA.93.053830
https://doi.org/10.1103/PhysRevA.93.053830
https://doi.org/10.1103/PhysRevA.93.053830
https://doi.org/10.1103/PhysRevA.93.053830
https://doi.org/10.1364/OE.18.015311
https://doi.org/10.1364/OE.18.015311
https://doi.org/10.1364/OE.18.015311
https://doi.org/10.1364/OE.18.015311
https://doi.org/10.1364/OE.19.017158
https://doi.org/10.1364/OE.19.017158
https://doi.org/10.1364/OE.19.017158
https://doi.org/10.1364/OE.19.017158
https://doi.org/10.1364/JOSAB.28.001782
https://doi.org/10.1364/JOSAB.28.001782
https://doi.org/10.1364/JOSAB.28.001782
https://doi.org/10.1364/JOSAB.28.001782
https://doi.org/10.1109/LPT.2014.2384592
https://doi.org/10.1109/LPT.2014.2384592
https://doi.org/10.1109/LPT.2014.2384592
https://doi.org/10.1109/LPT.2014.2384592
https://doi.org/10.1364/OE.25.025625
https://doi.org/10.1364/OE.25.025625
https://doi.org/10.1364/OE.25.025625
https://doi.org/10.1364/OE.25.025625
https://doi.org/10.1364/JOSAB.30.003102
https://doi.org/10.1364/JOSAB.30.003102
https://doi.org/10.1364/JOSAB.30.003102
https://doi.org/10.1364/JOSAB.30.003102
https://doi.org/10.1364/JOSAB.31.002712
https://doi.org/10.1364/JOSAB.31.002712
https://doi.org/10.1364/JOSAB.31.002712
https://doi.org/10.1364/JOSAB.31.002712
https://doi.org/10.1364/PRJ.3.000229
https://doi.org/10.1364/PRJ.3.000229
https://doi.org/10.1364/PRJ.3.000229
https://doi.org/10.1364/PRJ.3.000229
https://doi.org/10.1038/srep00938
https://doi.org/10.1038/srep00938
https://doi.org/10.1038/srep00938
https://doi.org/10.1038/srep00938
https://doi.org/10.1038/ncomms5678
https://doi.org/10.1038/ncomms5678
https://doi.org/10.1038/ncomms5678
https://doi.org/10.1038/ncomms5678
https://doi.org/10.1364/JOSAB.30.002318
https://doi.org/10.1364/JOSAB.30.002318
https://doi.org/10.1364/JOSAB.30.002318
https://doi.org/10.1364/JOSAB.30.002318
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevLett.66.2597
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1364/OL.29.001653
https://doi.org/10.1364/OL.29.001653
https://doi.org/10.1364/OL.29.001653
https://doi.org/10.1364/OL.29.001653
https://doi.org/10.1103/PhysRevA.71.053801
https://doi.org/10.1103/PhysRevA.71.053801
https://doi.org/10.1103/PhysRevA.71.053801
https://doi.org/10.1103/PhysRevA.71.053801
https://doi.org/10.1109/ECOC.2006.4800871

