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Evaluating the performance of photon-number-resolving detectors
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We analyze the performance of photon-number-resolving (PNR) detectors and introduce a figure of merit
for the accuracy of such detectors. This figure of merit is the (worst-case) probability that the photon-number-
resolving detector correctly predicts the input photon number. Simulations of various PNR detectors based on
multiplexed single-photon “click detectors” is performed. We conclude that the required quantum efficiency is
very high in order to achieve even moderate (up to a handful) photon resolution, we derive the required quantum
efficiency as a function of the the maximal photon number one wants to resolve, and we show that the number
of click detectors required grows quadratically with the maximal number of photons resolvable.
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I. INTRODUCTION

Photon-number-resolving (PNR) detectors have been
shown to be useful in various optical applications, such
as linear optical quantum computing [1], quantum key ex-
change [2], entanglement distribution [3], photon-counting
laser radars [4], x-ray astronomy [5], evaluation of single-
photon sources [6], and elementary particle detection [7]. Due
to the wide applicability of these detectors many different
schemes have been proposed, both inherent PNR detectors
[8–16] and various schemes for multiplexing single-photon
detectors to construct what is called a multiplexed PNR de-
tector [17–28]. However, so far only limited work has been
dedicated to systematically and realistically evaluate the ac-
tual performance of multiplexed PNR detectors [18,19,26,28].

Figures of merit used to evaluate the performance in previ-
ous work has generally been input signal dependent, which
makes it difficult to determine how the detectors will per-
form in applications with varying input signals. Furthermore,
the figures of merit used for single-photon detectors, such
as quantum efficiency, cannot be directly applied to PNR
detectors since they can have elaborate internal detection
mechanisms and therefore behave differently for different
input signals.

In this paper we investigate the efficiency of PNR detectors
in applications where it is important that every input event
is labeled with the correct number of photons, where the
input state is unknown, but where it is likely that the input
photon number exceeds unity. We are therefore interested in
characterizing how well the output is reproducing the input.
To do this we introduce a figure of merit, the PNR quality,
which we show is a natural generalization of the quantum
efficiency. The figure is input signal independent for a se-
lected set of input signals and any uncertainty within this set.
However, generalizing the set to any input, the figure becomes
completely input independent. We also show how the PNR
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quality can be used to set an upper, resolvable input photon-
number for PNR detectors such that the number prediction for
any input not exceeding this number can be trusted to within
a specified “confidence” level.

We simulate three different multiplexed PNR detector
schemes, a spatial array, a temporal array constructed using
fiber couplers, and a loop-multiplexed detector, and evaluate
their PNR performance. Our analysis is much in the spirit of
Refs. [28,29] and qualitatively our results agree but the as-
sumptions and details differ. We show quantitatively how the
quantum efficiency of the single-photon detector(s) limits the
number of photons resolvable with each PNR-detector type,
and we show that the needed number of detector elements
grows quadratically with the number of photons one desires
to resolve. We also analyze quantitatively how the dark-count
probability affects the multiplexed PNR-detector quality.

II. PNR QUALITY

An ideal PNR detector gives an output signal indicating
the input number of photons independent of the input signal
used. However, in practice all detectors have nonideal char-
acteristics, so there exists some upper input number n which
is the largest number of photons that the detector is capable
of resolving with reasonable certainty. To incorporate such
nonideal properties in a model, we introduce the n detector
which is a PNR detector capable of detecting up to n photons,
with probabilities Pk,m that the output is SO = k, given that
the input was SI = m photons. The probability to receive an
output larger than n is zero and thereby the n detector is
effectively classifying the input signal into the n + 1 output
classes 0, 1, . . . , n − 1 and �n photons. It is possible to
transform any PNR detector into an n detector by mapping
the output SO �→ min{SO, n}.

Quite naturally we say that the output from a PNR detector
was desired if the input was classified into the correct class,
which for an n detector corresponds to

SO,desired =
{

m if SI = m � n,

n otherwise.
(1)
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Given the desired output, we want to define a figure of merit.
Two possibilities are to use Bayesian inference or, more sim-
ply, use the probability that the n detector’s output is desired.
Both these figures of merit capture the detector’s performance,
yet they measure different properties. In the former case we
get a figure of merit that depends on how well the input signal
is known. In general such a figure will be of the form

B[p] = f

({
Pm,m p(m)∑
l∈N Pm,l p(l )

}
m∈N

)
, (2)

where f is a function that maps the sequence of Bayesian
probabilities on R and p is the input photon-number distri-
bution. Because we like to define a measure that is input
signal independent, we need to reduce the measure B from
a functional of p to a detector-dependent constant.

Finding a reduction that generates a measure that is both
representative for all input signals and that captures the behav-
ior of the detector is nontrivial. One possibility would, e.g., be
to minimize with respect to p, i.e., B = inf p B[p]. However,
this is problematic since the Bayesian quotient is independent
of Pm,m when p(l ) = δl,m, that is, we have a Fock-state input.
Another possible reduction is to use the expected value, i.e.,
B = Ep[B[p]]. However this is also problematic since the
measure is only representative if the input signal distribution
is known or if its relative variance is small.

Due to the problems with generating an input-independent
Bayesian figure of merit we instead suggest using a figure that
is derived from the probability that the detector classifies the
input correctly. Minimizing this functional on the set of all
allowed input photon-number distributions F we get the PNR
quality. This is thus a “worst case” figure of merit which is
input signal independent for all allowed inputs. Formally we
define the PNR quality as

Qn(F ) ≡ inf
p∈F

(∑
m�n

Pm,m p(m) +
∑
m>n

Pn,m p(m)

)
, (3)

where the set F is a subset of all probability distributions on
N. Consequently, it holds that if the input signal distribution is
in F then the probability for the output to be the desired one is
at least Qn(F ). The set F should therefore be selected so it in-
cludes all input signals that the detector is expected to handle,
for example, any Poissonian photon-number distribution.

One should note that our chosen figure of merit depends
only on the detector’s ability to correctly map the obtained
signal into the “correct” corresponding input photon number.
One can imagine detectors where Pm,m is very low so that
for one or several k < m one has Pk,m > Pm,m. Our measure
would give a low figure of merit for such detectors. However,
given that one knows that the input is limited to a maximum
of m photons and that for all m′ < m the probabilities Pm,m′ �
Pm,m, the (rare) output signal k = m would signal (with high
confidence) that an m-photon event was detected. Such a
detector would have certain applications, although it would
not be rated high by our figure of merit.

The choice of input photon-number distribution set that the
detector is expected to handle and the maximal number of
photons that can be resolved by the detector both affect the
PNR quality of the detector. For the former it holds trivially
that a reduction of the distribution set from F to F ′ ⊂ F can

help to improve the PNR quality of the detector. Hence, quite
naturally, there is a trade-off between allowing a large input
set and having a high guaranteed probability to get the correct
output. For the latter it holds generally that (see the Appendix)

Qn(F ) � Qn−1(F ) ∀F , n > 0, (4)

so by reducing the maximal number of photons that can be
resolved we may improve the PNR quality of the detector.

Finding the desired output probability infimum on a func-
tion set can be difficult if the number of free parameters is
large or if there is uncertainty about which signal is used as the
input. For example, assume that there are two possible input
signals, p1 and p2, but that there is an uncertainty as to which
of the two will be sent. The set of possible input distributions
then is not F = {p1, p2}, but rather

F ′ = {ap1 + bp2 | a + b = 1 ∧ a, b � 0}. (5)

However, the uncertainty does not increase the complexity of
the optimization problem since it holds that

Qn(F ′) = Qn(F ), (6)

so it is therefore possible to simplify the minimization prob-
lem to only consider F . Generally it holds that (see the
Appendix)

Qn(A) = Qn(B) (7)

if it is possible to write all elements in A as a linear combina-
tion of elements in B where the coefficients are non-negative.

Let us consider a special case of the PNR quality when F
is the set of all probability distributions on N. We denote this
special case with Qn and we can show that (see the Appendix)

Qn = min
{

min
m�n

Pm,m, inf
m>n

Pn,m
}
. (8)

Hence, the most difficult input signals to resolve are the
distributions with 100% probability for some photon number,
i.e., any Fock state. Furthermore, for a single-photon detector
with quantum efficiency η and dark-count rate rd = 0, the
quality of the detector is Q1 = η, which makes the signal
p(k) = δk,1 the most difficult signal to resolve. The quality for
the full probability set could be thought of as a generalization
of the quantum efficiency for single-photon detectors.

A reasonable requirement of a PNR detector is that it
should outperform guessing the outcome. If a detector has
Qn � 0.5 then it has better-than-guessing quality for any
signal with unknown probabilities consisting of two or more
outcomes. Therefore in the following we often use this value
to define for what photon number n specific PNR detectors
can reasonably be said to resolve 0, 1, . . . , n − 1 or n or more
input photons.

III. DETECTOR SIMULATION

In this section we present the PNR quality obtained from
simulations of three different “multiplexed” detectors: a spa-
tial array exemplified in Refs. [21–24,27], a temporal array
exemplified in Refs. [18,19,26,29], and a loop-multiplexed
detector such as in Refs. [17,30]. We limit ourselves to two
different function sets, the set of all probability distributions
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FIG. 1. Schematic image of a spatial array consisting of four
detector elements with quantum efficiency η. An input signal equally
distributed over the four detector elements, e.g., with a 1-to-4 fiber
coupler.

on N and the set of all Poisson distributions

F =
{

f : k ∈ N �→ μke−μ

k!
| μ ∈ [0, n]

}
, (9)

where we have limited the mean μ to be at most n for an
n detector. We run this simulation for different values of n
to determine what quantum efficiency is required to reliably
(Qn � 0.5) detect n photons.

In the simulations we model the three multiplexed detec-
tors as devices that distribute photons on click elements. Thus
the individual detector is assumed to only distinguish between
zero and one or more photons, while the multiplexed detector
is able to use the combined result from the individual detector
elements to detect more than one photon. To get the probabili-
ties Pk,m for different outcomes of the multiplexed detector we
sum over all possible distributions on the detector elements
and all possible detection outcomes when the photons hit
the single-photon detector elements. The exact distribution of
photons over the segments is implementation dependent and
is presented in the subsections below; however, the detector
element model is shared among the considered PNR detectors.
We assume that if a click-detector has quantum efficiency η,
dark-count probability pd , and m photons hit the detector then
the probability for the detector to click is

Pr(click|m) = 1 − (1 − pd )(1 − η)m. (10)

That is, we have assumed that the dark-count probability is
independent of the photon-detection probability.

A. Spatial array

The spatial array consists of M click detector elements and
the photons are distributed equiprobably over the elements as
seen in Fig. 1. A prototype implementation is a uniformly
illuminated array of single-photon avalanche photodiodes
[22,24] or an array of superconducting nanowire detectors
[23,27]. The outcomes when m photons are used as the input
can be represented as the matrix �x ∈ NM , where element k
is the number of photons that hit detector k and ||�x||1 = m.
The corresponding probability for each outcome is given by

the multinomial distribution

Pr({x1, x2, . . .}) = M!

Mm
∏M

i=1 xi!
. (11)

The probabilities Pk,m for the spatial array are in general
difficult to compute analytically; however, it is possible to
show that

Pm,m = M!

Mm(M − m)!
ηm. (12)

This gives us an upper bound for the PNR quality Qn and it
holds that Qn � ηn. Consequently, for a given PNR quality the
maximal number of photons that can be resolved is bounded
by n � ln Qn/ ln η, independent of the number of detector
elements in the array. Furthermore, if we assume that M � n
we can show, using Eq. (12) and Stirling’s formula, that

M � 1

2

n2

n ln η − ln Qn
+ O

(
n

M
+ M ln M

)
, (13)

if n < ln Qn/ ln η. In Fig. 3 it is shown that the number of
detector elements M needed is well approximated by Eq. (13)
for sufficiently large M. This implies that for a fixed PNR
quality the number of detector elements grows quadratically
with the number of photons that the PNR detector can resolve
according to our quality criterion. It was noted already in
Ref. [31] that the number of detector elements must be much
larger the number of photons one wants to resolve. In Fig. 2
of Ref. [31] one sees that for nine photons the minimum M
is somewhat less than 100, which is in agreement with our
Fig. 3. To resolve five photons �20 elements are needed,
and to resolve ten photons one needs �72 detector elements.
Hence, to resolve many photons, many detector elements, all
of them having a high quantum efficiency, are required. As we
shall see, it is very challenging to build PNR detectors using
the spatial array scheme.

In Fig. 2 the simulated PNR quality is presented for spatial
arrays consisting of 8 and 32 detector elements where dark
counts have been neglected. As expected there is a significant
improvement for both arrays when the distribution set is
restricted to Poisson distributions, although the requirement
on the quantum efficiency is still very high in order to resolve
many photons. Comparing an 8-segment detector in Fig. 2(a)
with a 32-segment detector in Fig. 2(c) we notice that the input
photon number for which Q � 0.8 doubles for η = 1, which
is what was predicted by Eq. (13).

Using the Qn � 0.5 requirement to evaluate the spatial
arrays yields the result that an ideal 8-detector element array
([as seen in Fig. 2(a)] is only capable of resolving three
photons if all possible input signals are allowed. If restricted
to Poisson distributions [as seen in Fig. 2(b)] such a detector
is able to detect up to five photons, although in both cases
the requirement on the quantum efficiency is close to unity
(η � 0.92 and η � 0.96, respectively).

In Fig. 4 it is shown how the PNR quality is affected by
the dark-count probability for a fixed quantum efficiency. As
expected, the general trend is that the PNR quality quickly de-
creases as the dark-count probability increases, yet Q6 violates
this trend in the region pd ∈ [0, 0.06] where it is increasing.
Hence, the probability to resolve the signal that minimized
the desired output must have been increased by the added
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FIG. 2. Simulation result of the PNR quality for spatial arrays with negligible dark count rates. In panels (a) and (c), the PNR quality using
the set of all probability distributions is presented for an array consisting of 8 and 32 elements, respectively. In panels (b) and (d), the PNR
quality using the set of Poisson distributions with mean μ � n is presented for an array consisting of 8 and 32 elements, respectively. Both
array sizes show improvement in the quality when restricted to the set of Poisson distributions. However, reaching a quality larger than 0.5 for
many photons still requires a very high quantum efficiency.

dark counts. Loosely speaking, the dark counts compensate
for the nondetected incident photons for high photon numbers.
However, at the same time the probability to resolve other
signals decreases (Q1 to Q4 all decrease with pd ), so quite
intuitively it is therefore not beneficial for the overall PNR
detector performance to add dark counts for the purpose of
increasing the quality for large n.

B. Temporal array

The temporal array consists of two single-photon detectors
and a series of fiber couplers that split the signal equally
between different fiber paths. Such setups, each with three
couplers, have been reported in Refs. [18,19,26]. The lengths
of the paths should be chosen both so that the detectors have
time to recover between photons taking different paths and
also so that photons taking different paths never combine and

interfere in a subsequent coupler. One scheme that can fulfill
these two criteria is presented in Fig. 5, where l and L are
introduced. The length l is chosen to be some arbitrary length,
while L is chosen to be the shortest distance between light
pulses needed for the click detectors to recover. The lengths of
the top fiber and the bottom fiber after coupler k are selected
to be 2k−1L + l and l , respectively [18]. In Ref. [29] it was
shown that for the number of detector elements we are are
considering (<100), fiber dispersion effects can be neglected.

The setup in Fig. 5 produces eight equidistantly spaced
pulses with equal amplitude at each detector from a single
input pulse. Thus the scheme mimics, by temporal splitting, a
16-detector element spatial array. This scheme thus results in
a detector with an accuracy that is mathematically equivalent
to the accuracy of a uniformly illuminated spatial array and
the PNR quality is therefore described by Fig. 2. However, by
introducing the couplers in front of the detector we increase
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FIG. 3. The number of detector elements M needed get a PNR
quality of Qn � 0.5 in a spatial array with quantum efficiency η = 1
and negligible dark counts as a function of the number of resolved
photons. The simulated result is in agreement with the approximation
in Eq. (13) for sufficiently large M.

the effective recovery time of the temporally multiplexed
detector by a factor M/2, where M is the number of effective
detector segments. Moreover, the quantum efficiency of the
multiplexed detector is lowered by the linear losses in the fiber
couplers. If the fiber couplers have an efficiency ηc and the
number of effective detector segments is M then

ηeff = ηlog2 M
c η. (14)

Hence, in this configuration there exists a trade-off between
having a large number of detector elements and having a high
quantum efficiency. At some point, by increasing the number
of couplers one will therefore decrease the PNR quality due
to a drop in quantum efficiency.

FIG. 4. PNR quality for a 16-element array with a quantum
efficiency of η = 0.95 as a function of the dark-count probability of
each detector element. The general trend shows that the PNR quality
decreases with increased dark counts; however, in some instances it
is possible to have an increasing PNR quality.

FIG. 5. Schematic image of a temporally multiplexed detector.
The fibers between the 50:50 couplers are chosen so the detectors
have time to recover between pulses and so a split signal can not
recombine. Between coupler k and k + 1 the lower fiber has a short
(but arbitrary) length l and the upper fiber has length 2k−1L + l ,
where L corresponds to the smallest length rendering two subsequent
pulses that the detector can resolve.

C. Loop-multiplexed detector

The loop-multiplexed detector consists of a multimode
fiber loop with inherent mode scrambling, a multimode to
single-mode coupler circuit and a single-photon detector as
seen in Fig. 6. Properly designed, when an input enters the
circuit each photon has a probability T to exit the loop and
hit the detector. The remaining photons loop back into the
circuit and the process repeats from the beginning up to l
times. Hence, during each revolution in the loop a photon has
probability T to exit. It is not possible to build such a splitting
circuit with a single-mode fiber coupler since it would result
in an exit probability T at the first coupler passage and a
probability (1 − T )2 at the second passage. Consequently,
using a single-mode fiber coupler results in every photon
having at least a 75% probability to exit the loop during the
first two passes of the coupler [17,30]. This makes it difficult
to resolve multiple (>2) photons with any confidence using a
click detector in such a setup.

The probabilities for different outcomes in the loop-
multiplexed detector can be described with a recursion

FIG. 6. Schematic image of a loop-multiplexed detector. Incom-
ing light enters the multimode fiber end to the left and enters a
splitting circuit in the middle. The probability for photons to exit
to the detector is T independent of which of the two input fibers
was used by the photon. The remaining probability is that the photon
enters the loop, where it has an ηl probability to survive per loop.
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(a) (b)

FIG. 7. PNR quality of a loop-multiplexed detector without dark counts. The probability that a photon survives the loop is ηl = 0.97 and
at most l = 32 loops are allowed. (a) The PNR quality for all distributions is presented. Only two photons can be detected with a quality higher
than 0.5. (b) The PNR quality for all Poisson distributions with mean μ � n. Compared to panel (a) the quality has improved significantly, yet
it is still only possible to detect up to four photons even with a perfect detector.

relation:

P(l )
k,m =

∑
a,b

fbin(t, a, m) fbin(ηl , b, m − a)
(

Pr(click | a)P(l−1)
k−1,b

+ Pr(not click | a)P(l−1)
k,b

)
, (15)

where ηl is the probability that a photon survives the loop and
can re-enter the circuit, P(l )

k,m is the probability to get an output
k given that the input is m and at most l loops are allowed
after which the detector is turned off (or its output is ignored)
and fbin(p, a, b) is the binomial probability to get a successful
outcomes given b tries and a probability p.

Figure 7 shows the simulated result from the loop-
multiplexed detector where we have assumed a maximal
number of allowed loops, l = 32. As seen in Fig. 7(a), for
arbitrary inputs only two photons can be resolved with a PNR
quality larger than 0.5 and in Fig. 7(b) only four photons
can be resolved with a PNR quality of 0.5 or more if the
input photon distribution is limited to Poisson distributions.
Consequently, this detector is outperformed by a temporal
array with 32 detector elements if the losses in the couplers
are assumed to be equal to ηl .

IV. SUMMARY

In this paper we introduced a figure of merit that is useful
to assess the resolution accuracy of photon-number-resolving
(PNR) detectors. The figure can be made input-signal in-
dependent and is equal to the smallest probability that the
detector gives the correct output.

Simulations of three different PNR detectors, implemented
as multiplexed click detectors show that the requirements on
the quantum efficiency are very high in order to resolve a
handful of, or more, photons. With an eight-segment detector,
one cannot resolve more than three photons with better-than-
guessing quality even with ideal click detectors. Furthermore,
the needed number of detector segments in an array grows

quadratically with the number of photons resolved, so large ar-
rays consisting of high quantum efficiency detector elements
are imperative to resolve more than a few photons.

In the literature one encounters claims of PNR detectors
that appear to contradict the limits we derive. Here it is
important to differentiate between the resolution of the input
photon number and the resolution between the output signals
corresponding to different numbers of absorbed photons. In
Ref. [23] array-PNR detectors are presented containing four
to six segments. Even at unit quantum efficiency the input
photon-number resolution ability of such detectors is limited
to n = 3, but at the reported quantum efficiency of 2%, not
even single-photon input resolution is reached. In contrast,
in the (few) events where one, two, or three photons were
absorbed by the array, the three different output signals were
well resolved. Thus, the authors’ [23] claim about output
signal resolution is correct. However, the output signals do not
allow one to conclude much about the input photon number.
In Ref. [27], arrays with 4, 5, 12, and 24 elements were
reported. Again, a 4-element array can only resolve, with
accuracy, two photons, even at unit quantum efficiency. At
the reported quantum efficiency of 0.17% (for the 12-element
detector) none of the arrays have even single-photon resolu-
tion, although, again, the output signals corresponding to the
absorption of 0, 1, . . . , 24 photons are shown to be resolvable.
Finally in Ref. [21], a 132-element detector is reported with a
16% efficiency. The authors make no claims about the input
photon number resolution but note that the signals corre-
sponding to different number of absorbed photons are well
resolved. According to our resolution criterion the detector is
not even able to resolve single input photons from none.

With the technology available today only a few de-
tector types, such as transition-edge detectors [13,15] and
superconducting nanowire detectors [32,33], have quantum
efficiencies high enough to give better-than-guessing quality
for more than a few photons. Even so, most realizations of
PNR detectors with spatial arrays of click detectors have
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difficulty increasing the number of detector elements to what
is required for better-than-guessing PNR capability. There-
fore, temporal arrays seem to be the most reasonable option to
implement multiplexed PNR detectors if the losses in the fiber
couplers can be made small and if some temporal resolution
can be sacrificed.
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APPENDIX: PROOFS

Theorem 1. Let F be a subset of all probability distributions
on N and let Qn(F ) be the PNR quality on the set for an n
detector. It then holds that

Qn(F ) � Qn−1(F ) ∀F , n > 0. (A1)

Proof. Assume that Pk,m and P′
k,m are the conditional proba-

bilities for the n detector and the (n − 1) detector, respectively.
An n detector is made into an (n − 1) detector by mapping the
output SO �→ min{SO, n − 1} and hence P′

n−1,m = Pn−1,m +
Pn,m. Furthermore, the desired output of the n detector is∑

m�n

Pm,m p(m) +
∑
m>n

Pn,m p(m)

= Pn,n p(n) +
∑

m�n−1

Pm,m p(m) +
∑
m>n

Pn,m p(m)

� (Pn−1,n + Pn,n)p(n) +
∑

m�n−1

Pm,m p(m)

+
∑
m>n

(Pn−1,m + Pn,m)p(m)

=
∑

m�n−1

P′
m,m p(m) +

∑
m>n−1

P′
n,m p(m), (A2)

where the expression in the last equality is the desired out-
put of an (n − 1) detector. It follows directly that Qn(F ) �
Qn−1(F ) if n > 0. �

Definition 1. Let F be a a subset of all probability distribu-
tions on N. The extended distribution set contains F and all
countable linear combinations of the elements in F , so

F̄ = F ∪
{∑

k

ak pk | pk ∈ F ,
∑

k

ak = 1, ak > 0

}
. (A3)

Theorem 2. For any set F it holds that

Qn(F ) = Qn(F̄ ). (A4)

Proof. Introduce the function

f : p ∈ F̄ �→
∑
m∈N

Rm,m p(m), (A5)

where the coefficients

Rm,m =
{

Pm,m if m � n,

Pn,m otherwise.
(A6)

It then holds by definition that Qn(A) = inf p∈A f (p) for
A ⊆ F̄ .

We can assume that F̄\F �= ∅, otherwise the theorem
holds trivially. Take p ∈ F̄\F and compute

f (p) =
∑
k∈N

ak f (pk ) � inf
l∈N

f (pl )
∑
k∈N

ak = inf
l∈N

f (pl ). (A7)

By definition pl ∈ F ∀l ⇒ inf l∈N f (pl ) � Qn(F ), so Qn(F )
is a lower bound to f on F̄\F . It therefore follows
that Qn(F̄\F ) � Qn(F ) and therefore it must be true that
Qn(F̄ ) = Qn(F ). �

Corollary 1. Let A and B be subsets of all probability
distributions on N. If Ā = B̄ then it holds that

Qn(A) = Qn(B). (A8)

Proof. Using Theorem 2 yields

Qn(A) = Qn(Ā) = Qn(B̄) = Qn(B). (A9)

�
Theorem 3. The PNR quality for the set of all probability

distributions on N is

Qn = min
{

min
m�n

Pm,m, inf
m>n

Pn,m
}
. (A10)

Proof. Introduce the set A as the set of all probability
distributions on N and let

F = { fk : m ∈ N �→ δk,m | k ∈ N}, (A11)

where δk,m is the Kronecker delta. Any p ∈ A can be written
as a linear combination of elements in F so it holds that
F̄ = A. Using Corollary 1 yields

Qn = Qn(A) = Qn(F ). (A12)

Noticing that the infimum on the set of Kronecker deltas can
be written as

Qn(F ) = min
{

min
m�n

Pm,m, inf
m>n

Pn,m
}

(A13)

completes the proof. �
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