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Slow-light soliton beam splitters
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We propose a scheme to realize slow-light soliton beam splitters by using a tripod-type four-level atomic
system. We show that optical solitons, which have ultraslow propagation velocity and ultralow generation power,
can be generated in the system via electromagnetically induced transparency and can be stored and retrieved with
high efficiency and fidelity. In particular, a nonlinear beam splitter that splits one optical soliton into two or more
ones can be obtained by switching on and off of two or more control laser fields subsequently. The results
reported here open a route not only for active manipulation of nonlinear optical pulses in multistate quantum
systems but also for promising applications in optical information processing and transmission.
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I. INTRODUCTION

Optical beam splitters are basic devices that can split an
incident optical beam or pulse into two or more beams or
pulses in space and/or time domains, which may or may
not have the same light power. Optical beam splitters play
significant roles in modern physics; especially, they are cru-
cial parts of most interferometers, widely exploited in both
thought and real-world physical experiments in the areas of
quantum theory, relativity theory, and many other fields of
physics and engineering [1,2].

In recent years, much attention has been paid to slow-light
beam splitters and their extension [3–24] via electromagnet-
ically induced transparency (EIT) [25] in various multilevel
atomic systems that resonantly interact with three or more
laser fields. In addition to the interest for fundamental re-
search, the study of slow-light beam splitters has potential ap-
plications in both classical and quantum information process-
ing and communication networks. For instance, they can be
used to design dynamically reconfigurable all-optical routers
and to produce highly efficient entanglement for quantum
repeaters [3–27]. However, all works on EIT-based slow-light
beam splitters reported up to now are only for linear optical
pulses, which may generally experience serious deformation
since these optical pulses interact with atoms in a resonant
way and hence significant dispersion is generally unavoid-
able. Thus it is desirable to seek techniques to balance the
dispersion and hence to obtain optical pulses that have better
performance for the design of slow-light beam splitters. One
method of such techniques is to make the system work in weak
nonlinear optics regimes.

In this paper, we present a proposal for realizing slow-light
soliton beam splitters by exploiting a tripod-type four-level
atomic system coupled with two control laser fields and a
weak nonlinear probe laser field. We show that optical solitons
with ultraslow propagating velocity and ultraslow light power
can be created via EIT and they can be stored and retrieved
with high efficiency and fidelity based on an EIT-memory

scheme through two different optical excitation channels. We
also show that a nonlinear beam splitter that makes one optical
soliton split into two ones can be obtained by switching on and
off of the two control laser fields separately. In addition, the
scheme can also be generalized to cases where one slow-light
soliton can be split into three or more ones via a multichannel
optical excitation process.

Before proceeding, we note that some studies have been
carried out on soliton-related splitters in systems of photo-
voltaic materials [28–30], nonresonant Kerr media [31,32],
liquid crystals [33,34], and Bose-Einstein condensates [35].
However, our paper is completely different from these studies.
First, due to the resonant character of our system, the signif-
icant energy transfer via different quantum excitation chan-
nels plays a crucial role for the realization of the slow-light
soliton splitters, which was absent in the systems considered
in Refs. [28–35]. Second, the system suggested in our paper
can be actively manipulated, and is easy to extend to cases
with more optical excitation channels. Third, the slow-light
soliton splitters obtained in our system can work at extremely
low and even single-photon level, which is not viable in
the systems used in Refs. [28–35]. The results reported in
our paper open a route not only for active manipulation of
nonlinear optical pulses but also for promising applications in
optical and quantum information processing and transmission.

II. MODEL AND SLOW-LIGHT SOLITONS

A. Model

The system under consideration is a lifetime-broadened
four-state atomic gas with a tripod-type level configuration,
interacting resonantly with a weak pulsed probe laser field
(with center wave number kp = ωp/c, center angular fre-
quency ωp, and time duration τ0 at the entrance of the
medium) and two strong continuous-wave control laser fields
(with wave numbers kc1 = ωc1/c and kc2 = ωc2/c, and angu-
lar frequencies ωc1 and ωc2, respectively). The probe field
drives the transition |1〉 ↔ |0〉, and the two control fields

2469-9926/2019/99(4)/043821(13) 043821-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.043821&domain=pdf&date_stamp=2019-04-16
https://doi.org/10.1103/PhysRevA.99.043821


CHONG SHOU AND GUOXIANG HUANG PHYSICAL REVIEW A 99, 043821 (2019)

FIG. 1. (a) Atomic gas (brown dots) couples with a pulsed probe laser field (with center angular frequency ωp and half Rabi frequency
�p) and two continuous-wave control laser fields [with angular frequencies ωc1 (half Rabi frequency �c1) and ωc2 (half Rabi frequency �c2),
respectively]. Inset: Energy-level diagram and excitation scheme of the atomic gas with a tripod-type level configuration. �10 (�20, �30) is the
decay rate from |0〉 to |1〉 (|0〉 to |2〉, |0〉 to |3〉); �0 (�2 and �3) is one-photon (two-photon) detuning. (b) The imaginary part Im(K ) (K is the
linear dispersion relation of the system) as a function of ω, for �2 �= �3 (solid blue line, which displays two transparency windows), and for
�2 = �3 (dashed red line, which displays only one transparency window). The lower half part of the panel is the real part Re(K ), for �2 �= �3

(solid blue line), and for �2 = �3 (dashed red line).

drive, respectively, the transitions |2〉 ↔ |0〉 and |3〉 ↔ |0〉
[see Fig. 1(a)]. The total electric field in the system can be ex-
pressed as E = Ep + Ec1 + Ec2 = ∑

l=p,c1,c2 elElexp[i(klz −
ωl t )] + c.c., where el (El ) is the unit polarization vector
(envelope) of the electric field El . For simplicity, we have
assumed that all laser fields propagate along the z direction.

The Hamiltonian of the system in the interaction picture
reads

Hint = −h̄

⎛
⎝ 3∑

j=0

� j | j〉〈 j| + �p|0〉〈1| + �c1|0〉〈2|

+�c2|0〉〈3| + H.c.

⎞
⎠, (1)

where �1 = 0, �0 = ωp − (E0 − E1)/h̄ (one-photon
detuning), �2 = ωp − ωc1 − (E2 − E1)/h̄, and �3 =
ωp − ωc2 − (E3 − E1)/h̄ (two-photon detunings); Ej ( j =
0, 1, 2, 3) is the energy eigenvalue of the atomic state
| j〉; �p = (ep · p10)Ep/h̄, �c1 = (ec1 · p20)Ec1/h̄, and
�c2 = (ec2 · p30)Ec2/h̄ are, respectively, the half Rabi
frequencies of the probe and the two control fields; pi j

is the electric dipole matrix element associated with levels
|i〉 and | j〉, with ep (Ep), ec1 (Ec1), and ec2 (Ec2), respectively,
the polarization unit vectors (envelopes) of the probe and two
control fields.

The atomic dynamics is described by a 4 × 4 density
matrix σ , obeying the optical Bloch equation

∂σ

∂t
= − i

h̄
[Hint, σ ] − �[σ ], (2)

where � is a relaxation matrix characterizing the spontaneous
emission and dephasing in the system [36]. The explicit form
of Eq. (2) is presented in Appendix A.

The evolution of the probe field Ep is governed
by the Maxwell equation ∇2Ep − (1/c2)∂2Ep/∂t2 =
(1/ε0c2)∂2Pp/∂t2, where Pp = Na{p10σ01 exp[i(kpz −
ωpt )] + c.c.} is the electric polarization intensity induced
by the probe field, with Na the atomic density. Under slowly
varying envelope approximation, the Maxwell equation is
reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + κ10σ01 = 0, (3)

where κ10 = Naωp|p10|2/(2ε0ch̄) is the coupling coefficient
describing the interaction between the light field and atoms.

Notice that in the derivation of the above Maxwell-Bloch
(MB) Eqs. (2) and (3), we have made the following assump-
tions.

(i) The probe pulse has a large transverse size so that
the diffraction effect [i.e., the term proportional to (∂2/∂x2 +
∂2/∂y2)�p] can be neglected.
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(ii) Compared with the probe field, the two control fields
are strong, so that their amplitudes (Ec1 and Ec2) can be
undepleted during the evolution of the probe field. However,
when considering the storage and retrieval of the probe field
(see the next section), Ec1 and Ec2 (hence �c1 and �c2) will be
assumed to be varied adiabatically in time.

(iii) The atomic gas is cold and dilute, thereby the Doppler
effect is negligible and the interaction between atoms can be
described by the dephasing parameter γ

dep
jl (see Appendix A).

Note that the model mentioned above may be re-
alized in realistic experiments. One example is an ul-
tracold 87Rb atomic gas [37], with the energy lev-
els selected to be |1〉 = |5 2S1/2, F = 1, mF = −1〉, |2〉 =
|5 2S1/2, F = 2, mF = −1〉, |3〉 = |5 2S1/2, F = 2, mF = 1〉,
and |0〉 = |5 2P1/2, F = 1, mF = 0〉, which gives |p10| �
|p20| � |p30| = 2.54 × 10−27 C cm. If the atomic density is
chosen as Na = 1.1 × 1012 cm−3, κ10 takes the value of
3.0 × 1010 cm−1 s−1. This set of parameters will be used in
the analysis and calculation given below.

B. Slow-light solitons

We start to consider the propagation of a linear probe
pulse in the system. We assume that the two control fields are
applied first and hence all the atoms are prepared in the ground
state |1〉. When a weak probe pulse is present, the system
undergoes a linear evolution. In this case, the MB Eqs. (2) and
(3) admit the solution for �p with the form F exp[i(Kz − ωt )]
[38], where F is a constant and K is the linear dispersion
relation

K (ω) = ω

c
− κ01(ω + d21)(ω + d31)

D
, (4)

with D = (ω + d01)(ω + d21)(ω + d31) − |�c1|2(ω + d31) −
|�c2|2(ω + d21). Shown in Fig. 1(b) is the imaginary part
[i.e., Im(K )] and the real part [i.e., Re(K )] of K as func-
tions of ω. The solid blue line and dashed red line in the
figure are for (�2, �3) = (−2π × 15.9, −2π × 47.7) and
(−2π × 0.16, −2π × 0.16) MHz, respectively. The other pa-
rameters are �0 = −2π × 15.9 MHz, γ01 = 2π × 2.8 MHz,
γ21 = 2π × 8 Hz, and γ31 = 2π × 15.9 Hz. We see that when
�2 �= �3 the system displays a double EIT with two trans-
parency windows; however, if �2 = �3, the double EIT is
degenerated into a single EIT with only one transparency
window. The reason for the occurrence of such degeneration is
due to the symmetry of the tripod level configuration for �2 =
�3. With such symmetry, the system is largely simplified,
which will be considered in the discussion below.

EIT has been widely used for nearly free propagation of
linear optical pulses in multistate quantum systems [25–27].
Yet, linear optical pulses in EIT-based systems generally
experience serious deformation. The physical reason for the
deformation is that in such systems the optical pulses inter-
act with atoms (or other quantum emitters) resonantly and
hence a significant dispersion is unavoidable for long-distance
propagation. Thus it is necessary to find a way to suppress
the dispersion and hence to obtain optical pulses that are
robust during propagation. It has been shown in recent years
that stable optical pulses are indeed possible if EIT-based
systems work in a weak nonlinear region [39–41]. We now

demonstrate that stable slow-light solitons are also possible in
the present tripod system.

A weak nonlinear probe pulse in the system still has the
form �p = F exp[i(Kz − ωt )], but F is now an envelope
function modulated slowly in both time and space. By exploit-
ing a perturbation expansion with multiple scales developed
in Ref. [40], the nonlinear envelope equation describing the
evolution of F can be derived based on the MB Eqs. (2) and
(3), which reads

i
∂

∂z
F − 1

2
K2

∂2

∂τ 2
F + W |F |2Fe−2αz = 0, (5)

where τ = t − z/Vg [Vg ≡ (∂K/∂ω)−1 is the group velocity
of the probe pulse], α = Im(K ) is an absorption coefficient,
K2 = ∂2K/∂ω2 is a coefficient describing group-velocity dis-
persion, and W is a coefficient describing self-phase modu-
lation. The detailed derivation of the nonlinear Schrödinger
Eq. (5) and the explicit expressions of W and solutions up
to the third order of the perturbation expansion have been
presented in Appendix B.

If α is small, and the imaginary parts of K2 and W are
smaller compared with their corresponding real parts, Eq. (5)
has the following soliton solution:

�p = 1

τ0

√
|K̃2|
W̃

sech

[
1

τ0

(
t − z

Ṽg

)]
exp

[
i

(
K̃0 − 1

2LD

)
z

]
,

(6)

for sgn(K̃2) = −1. Here K0 ≡ K|ω=0; the tilde symbols over
K0, K2, W , and Vg represent their corresponding real parts;
LD ≡ τ 2

0 /|K̃2| is the typical dispersion length of the system.
To check that (6) is indeed a physical solution of the

system, we take the realistic system parameters �c1 = 2π ×
27.1 MHz, �c2 = 2π × 27.1 MHz, �0 = −2π × 15.9 MHz,
�2 = �3 = −2π × 1.9 MHz, τ0 = 5.0 × 10−8 s, γ21 =
2π × 8.0 Hz, γ31 = 2π × 15.9 Hz, γ01 = 2π × 2.5 MHz,
ωp = 2.37 × 1015 Hz. Then we obtain α = 0.02, K2 =
(−2.4 + 0.3i) × 10−15 cm−1 s2, and W = (3.5 − 0.02i) ×
10−16 cm−1 s2. We see that α and the imaginary parts of K2

and W are indeed small. The physical reason is that, under
the EIT condition, the absorption of the system is largely
suppressed by the EIT effect induced by the control fields,
which guarantees the validity of the soliton solution given by
(6). For more detailed discussion on the slow-light soliton
and its stable propagation, see Appendix B.

Based on the parameters given above, we obtain the prop-
agation velocity of the soliton:

Ṽg � 6.14 × 10−5c, (7)

which is much smaller than the light speed c in vacuum,
thereby (6) is a slow-light soliton. The maximum average
power density P̄max of the slow-light soliton can be estimated
by using Poynting’s vector [40]. For the transverse radius of
the probe pulse R = 300 μm, we obtain

P̄max � 7.06 × 10−9 W, (8)

which is very low. From results (7) and (8), we see that
the optical soliton obtained in the present tripod system has
ultraslow propagation velocity and ultralow generation power,
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FIG. 2. Storage and retrieval of the slow-light pulses in the tripod system, for �2 = �3 = −2π × 1.9 MHz and �c1 = �c2. (a) Evolution
of |�pτ0| in the soliton region as a function of t/τ0 and z, with �p(0, t )τ0 = 3.3 sech(t/τ0). Lines 1, 2, and 3 are, respectively, soliton profiles at
z = 0, 0.6, and 1.2 cm (before storage); lines 4, 5, and 6 are, respectively, soliton profiles at z = 1.8, 2.4, and 3.0 cm (after the storage). The solid
black line shows the switching off and on of the two control fields (they are overlapped completely) simultaneously. (b) Atomic coherences
|σ21|, |σ31| (|σ21| ≈ |σ31|) in the soliton region [corresponding to (a)] before, during, and after the soliton storage. (c) |�pτ0| in the dispersion-
dominant region, with �p(0, t )τ0 = 0.05 sech(t/τ0 ). (d) |�pτ0| in the nonlinearity-dominant region, with �p(0, t )τ0 = 5.0 sech(t/τ0 ).

which is very different from that obtained by using conven-
tional optical media (e.g., fibers).

III. SLOW-LIGHT SOLITON BEAM SPLITTERS

EIT is one of the important methods for the storage and
retrieval of optical pulses [25–27,42,43]. Recently, it has been
shown that the EIT-based linear light memory can be extended
to weak nonlinear optics regimes [44–46]. In the following,
we show that the slow-light solitons of the tripod system
obtained above can be used to build slow-light soliton beam
splitters through the manipulation of the control fields in the
system.

A. Storage and retrieval of slow-light solitons

Before the presentation on how to realize slow-light soliton
beam splitters, we give a simple description for the storage
and retrieval of optical solitons in the tripod system for the
simple case where the two control fields are switched on and
off simultaneously. The simultaneous switching on and off
of the two control fields can be described by the following
switching function:

�c j = �c j0

[
1 − 1

2
tanh

(
t − T j

off

Ts

)
+ 1

2
tanh

(
t − T j

on

Ts

)]
,

(9)

where �c j0 ( j = 1, 2) is constant, Ts is the switching time,
and T j

off (T j
on) is the time when switching off (on) �c j .

We take �c10 = �c20 = 2π × 27.1 MHz, T 1
off/τ0 = T 2

off/τ0 =
19.0, T 1

on/τ0 = T 2
on/τ0 = 30.0, and Ts/τ0 = 0.2 (with τ0 =

5.0 × 10−8 s−1), and exploit Runge-Kutta method to solve
Eqs. (2) and (3).

Shown in Fig. 2(a) is the result of a numerical simulation
on the storage and retrieval of the slow-light soliton for �2 =
�3 = −2π × 1.9 MHz, by taking |�pτ0| as a function of t/τ0

and z. Lines 1, 2, and 3 are, respectively, soliton profiles at
the positions z = 0, 0.6, and 1.2 cm (before storage); lines 4,
5, and 6 are, respectively, soliton profiles at positions 1.8, 2.4,
and 3.0 cm (after the storage). The solid black line in the figure
shows the simultaneous switching off and on of the two con-
trol fields (i.e., �c1 = �c2). The initial condition used in the
simulation is �p(0, t )τ0 = 3.3 sech(t/τ0); system parameters
are �0 = −2π × 15.9 MHz, γ21 = 2π × 8.0 Hz, γ31 = 2π ×
15.9 Hz, γ01 = 2π × 2.5 MHz. From the figure, we see that
the soliton is very stable before the storage, and the retrieved
soliton (after the storage) is also quite stable and has nearly
the same wave shape as that before the storage. The physical
reason of the shape preservation during the soliton generation
process is due to the balance between the dispersion and the
Kerr nonlinearity of the system. The approximated expression
of the probe soliton during the storage and retrieval is pre-
sented in Appendix C1.
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Figure 2(b) shows the result of atomic coherences |σ21|
and |σ31| (|σ21| ≈ |σ31|), as functions of t/τ0 and z during the
process of the storage and retrieval of the soliton. One sees
that |σ21| and |σ31| are nonzero during the period when both
control fields are switched off. Such result is a manifestation
of the information transfer from the probe field to the atomic
internal states during the storage, which can be understood
through the stable propagation of the dark-state polaritons in
the system [44–46].

The efficiency of the slow-light soliton memory can be
characterized by [44–46]

η =
∫ +∞
−∞

∣∣Eout
p (t )

∣∣2
dt∫ +∞

−∞
∣∣E in

p (t )
∣∣2

dt
, (10)

where E in
p (t ) = E in

p (z, t )|z=0 (the input soliton pulse) and
Eout

p (t ) = Eout
p (z, t )|z=Lz [the output (i.e., retrieved) soliton

pulse], with Lz (=3.0 cm) the medium length. From Fig. 2(a)
we obtain η = 0.92. The soliton memory efficiency will be
increased if its storage time is shortened (or Lz is reduced).

The fidelity of the soliton memory can be described by the
parameter ηJ2, where J2 describes the degree of coincidence
of the wave shapes for the input and output solitons, defined
by the overlap integral

J2 =
∣∣ ∫ +∞

−∞ Eout
p (t )E in

p (t + �T )dt
∣∣2

∫ +∞
−∞

∣∣Eout
p (t )

∣∣2
dt

∫ +∞
−∞

∣∣E in
p (t + �T )

∣∣2
dt

, (11)

where �T is the time interval between the peak of the input
soliton pulse E in

p and the peak of the output soliton pulse Eout
p .

From Fig. 2(a) we obtain J2 = 0.98 and hence ηJ2 = 0.90.
Thus, the memory of the slow-light soliton in the tripod
system has a nice quality due to the balance between the
dispersion and nonlinearity in the system.

Plotted in Fig. 2(c) is the result for the optical pulse
memory in a dispersion-dominant (i.e., linear) region, with
�p(0, t )τ0 = 0.05 sech(t/τ0). In this case, the dispersion
length of the system LD = 1.05 cm is much smaller than the
nonlinearity length LNL = 719.0 cm. From the figure we see
that the optical pulse is broadened significantly before and
after the storage, with the memory efficiency and fidelity
given by (η, ηJ2) = (0.93, 0.75). Figure 2(d) shows the pulse
memory in a nonlinearity-dominant (i.e., strong nonlinear)
region, with �p(0, t )τ0 = 5.0 sech(t/τ0). In this situation,
the nonlinearity length LNL = 0.36 cm is much smaller than
the dispersion length LD = 1.05 cm. We see that the optical
pulse has a very large distortion before and after the storage,
with (η, ηJ2) = (0.79, 0.60). Consequently, the optical pulse
memory in these two regions has lower quality compared with
that of the soliton region.

B. Slow-light soliton beam splitters through two optical
excitation channels

We now turn to describe how to realize a slow-light soliton
beam splitter in the system. Similar to linear beam splitters
[22], the slow-light soliton beam splitter can be realized
through an adiabatical switching off and on of the two control
laser fields subsequently. The switching off and on of the two

control fields can be described by the following switching
functions:

�c1 = �c10

[
1

2
− 1

2

2∑
i=1

tanh

(
t − T 1

off i

Ts

)
+ 1

2
tanh

(
t − T 1

on1

Ts

)]
,

(12a)

�c2 = �c20

[
1 − 1

2
tanh

(
t − T 2

off1

Ts

)
+ 1

2
tanh

(
t − T 2

on1

Ts

)]
,

(12b)

where �c j0 ( j = 1, 2) is constant, Ts is the switching time, and
T j

off i
(T j

oni ) is the ith switching off (switching on) of the control
field �c j . The timing sequence of the switching off and on of
�c j for obtaining a slow-light soliton beam splitter is shown
in Fig. 3(a), with T 1

off1
= T 2

off1
< T 1

on1
< T 1

off2
< T 2

on1
.

Figure 3(b) shows the result of a numerical simulation on
how to obtain a slow-light soliton beam splitter by taking
|�pτ0| as a function of t/τ0 and z (with τ0 = 5.0 × 10−8 s).
The operation steps can be described as follows.

(1) A weak nonlinear probe pulse is incident at z = 0
with the waveform �p(0, t )τ0 = 3.3 sech(t/τ0). A slow-light
soliton forms via the balance between dispersion and Kerr
nonlinearity, and propagates stably to z = 0.6 and 1.2 cm
(corresponding times are 5.3τ0 and 11.0τ0), respectively. This
is the soliton (the leftmost red pulses) before the storage.

(2) Both �c1 and �c2 are switched off at t = T 1
off1

= T 2
off1

=
15τ0; the (input) probe soliton is stored in the two atomic
coherences σ21 and σ31 (which are not shown in the figure
for saving space) simultaneously.

(3) By switching on �c1 at t = T 1
on1

= 30τ0 but keeping
�c2 switched off, the atomic coherence σ21 is converted back
into the probe pulse, and hence a new soliton (called soliton
1) is retrieved. The figure (the middle blue pulses) shows
the propagation of the soliton to z = 2.4, 2.7, and 3.0 cm
(corresponding times are t = 44.9τ0, 50.4τ0, and 56.1τ0),
respectively.

(4) At t = T 1
off2

= 80τ0, �c1 is switched off; after time
20τ0, �c2 is switched on at t = T 2

on1
= 100τ0. The atomic

coherence σ31 is converted back into the probe pulse, and thus
another new soliton (called soliton 2) is retrieved. The figure
(the rightmost yellow pulses) shows the propagation of the
soliton 2 to z = 2.4, 2.7, and 3.0 cm (corresponding times are
t = 114.9τ0, 120.4τ0, and 126.0τ0), respectively.

In the simulation, the other system parameters are
chosen to be �0 = −2π × 15.9 MHz, �2 = �3 = −2π ×
1.9 MHz, γ21 = 2π × 8.0 Hz, γ31 = 2π × 15.9 Hz, γ01 =
2π × 2.5 MHz, and �c10 = �c20 = 2π × 28.6 MHz, Ts =
0.2τ0. From the figure, we see that the input probe soliton
can indeed be stored and partially retrieved by switching on
both control fields subsequently, behaving like a soliton beam
splitter. The retrieved soliton 1 and soliton 2 are very similar to
the stored one due to the balance between the dispersion and
Kerr nonlinearity, except for a smaller amplitude and a wider
temporal width compared with the input soliton. Note that the
amplitude of each retrieved pulse has the same magnitude of
order as that of the stored soliton, thereby two retrieved pulses
are still solitons of the system. The approximated expression
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FIG. 3. Slow-light soliton beam splitters through two optical excitation channels. (a) Timing sequence of the switching on and off of the
control fields �c1 and �c2 for obtaining the slow-light soliton beam splitter, with T j

off i
(T j

oni
) the ith time of switching off and on of the control

field �c j ( j = 1, 2). (b) Soliton splitting by taking |�pτ0| as a function of t/τ0 (τ0 = 5.0 × 10−8 s) and z. The leftmost three red pulses are for
the probe soliton before the storage when it propagates to z = 0.6 and 1.2 cm (corresponding times are t = 5.3τ0 and 11.0τ0), respectively.
The middle three blue pulses are for the retrieved new soliton (soliton 1) when it propagates to z = 2.4, 2.7, and 3.0 cm (corresponding times
are t = 44.9τ0, 50.4τ0, and 56.1τ0), respectively. The rightmost three yellow pulses are for another retrieved new soliton (soliton 2) when it
propagates to z = 2.4, 2.7, and 3.0 cm (corresponding times are t = 114.9τ0, 120.4τ0, and 126.0τ0), respectively. For more details, see the
text. (c) Similar to panel (b) but for the pulse splitting in a dispersion-dominant region. (d) Similar to panel (b) but for the pulse splitting in a
nonlinearity-dominant region.

of the probe pulse during the soliton splitting is presented in
Appendix C2.

For comparison, Fig. 3(c) [Fig. 3(d)] shows the result of
numerical simulations on the pulse splitting in a dispersion-
dominant (nonlinearity-dominant) region, with the input
pulse given by �p(0, t )τ0 = 0.3 sech(t/τ0) [�p(0, t )τ0 =
4.5 sech(t/τ0)] and all other parameters the same as those
used in panel (b) but τ0 = 2.5 × 10−8 s (τ0 = 5.0 × 10−8 s).
We see that, though one can get pulse storage and splitting,
the retrieved pulses have large deformation compared with
the input one. The reason is that in both the dispersion- and
nonlinearity-dominant regions there is no balance between the
dispersion and Kerr nonlinearity, and thereby a spreading or

distortion of the pulse is unavoidable in the processes of the
storage and splitting.

We now give a simple explanation for the memory and
splitting of the slow-light soliton described above, based on
the Bloch Eq. (2) (its explicit expression is given in Ap-
pendix A). Since for a weak probe pulse d21σ21, d31σ31, �pσ02,
and �pσ03 are small, from Eqs. (A2a) and (A2b) one has

σ01 = −i
1

|�c1|2 + |�c2|2
(

�c1
∂σ21

∂t
+ �c2

∂σ31

∂t

)
. (13)

Substituting Eq. (13) into Eq. (A2d) and using σ11 ≈ 1 and
σ00 ≈ 0, we obtain

�c1σ21 + �c2σ31 = −�p − 1

|�c1|2 + |�c2|2
(

∂

∂t
+ id01

)(
�c1

∂σ21

∂t
+ �c2

∂σ31

∂t

)
� −�p. (14)

Equation (14) can be rewritten as the form σ21 +
(�c2/�c1)σ31 � −(�p/�c1). Thereby, σ21 and σ31 may ac-
quire nonzero values if the rations �c2/�c1 and �p/�c1

remain finite constant values, though during the storage �c1

and �c2 are switched off and �p approaches zero; in the
retrieval process, the probe pulse can be recovered when �c1

and �c2 are switched on again. This can also be understood
by the existence of the two dark-state polaritons in the system,
which read [6,8].

� = cos θ�p − g
√
Na sin θ [cos φ exp(iχc1)σ21

+ sin φ exp(iχc2)σ31], (15a)

Z = sin φeiχc1σ21 − cos φeiχc2σ31, (15b)

where g2 = |p01|2ωp/(2ε0h̄), cos φ = |�c1|/|�c|, sin φ =
|�c2|/|�c|, sin θ = g

√
Na/

√
|�c|2 + g2Na, cos θ =

|�c|/
√

|�c|2 + g2Na, χc j = −i ln(�c j/|�c j |) ( j = 1, 2),
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FIG. 4. Slow-light soliton beam splitter via multiple optical excitation channels. (a) Excitation scheme of the N-pod system. (b) Timing
sequence for adiabatically manipulating the three control fields �c1, �c2, and �c3 in a quadripod system, for obtaining a slow-light soliton
beam splitter via three optical excitation channels. (c) Numerical result on the splitting of the slow-light soliton in the quadripod system, by
taking |�pτ0| as a function of t/τ0 and z. (d) When the system works in a dispersion-dominant region, the retrieved (linear) optical pulse
deforms significantly. See the text for more details.

with |�c| =
√

|�c1|2 + |�c2|2. Since the nonlinear effect
under consideration is weak, and during the soliton memory
process both �c1 and �c2 are changed adiabatically, it can
be shown that the dark-state polariton functions (15a) and
(15b) satisfy equations ∂�/∂t + c cos2 θ∂�/∂z ≈ 0 and
∂Z/∂t ≈ 0. This means that during the soliton memory
process the information of the probe soliton �p is transferred
into the two atomic coherences σ21 and σ31, and vice versa,
as shown in Fig. 2(b). This explanation applies also for
the storage and retrieval processes in the soliton splitting
illustrated in Fig. 3. For expressions of the probe pulse during
the soliton splitting, see Appendix C2.

C. Slow-light soliton beam splitters through multiple optical
excitation channels

The scheme proposed above can be generalized to systems
with more optical excitation channels. Shown in Fig. 4(a) are
the level diagram and excitation scheme of a N-pod system,
where one probe field (with half Rabi frequency �p) drives
transition |1〉 to |0〉 and N − 1 control fields (with half Rabi
frequencies �c j ) drive transitions | j〉 to |0〉 ( j = 2, · · · , N).
� j0 is the decay rate from |0〉 to | j〉 and � j ( j �= 1) is the
two-photon detuning ( j = 1, · · · , N). To realize a slow-light
soliton beam splitter in such system, the control fields �c j

( j = 1, · · · , N − 1) must be adiabatically manipulated in a
suitable way. For simplicity, here we consider only the case
of a quadripod system, with the timing sequence of the three
control fields �c1, �c2, and �c3 shown in Fig. 4(b). Plotted
in Fig. 4(c) is the result of a numerical simulation for how
to obtain the slow-light soliton beam splitter via three optical
excitation channels, with operation steps described as follows.

(1) Initially (before the storage), the three control fields
are switched on simultaneously, so a probe soliton forms
in the system. The leftmost three red pulses in Fig. 4(c)
are the soliton profile when it propagates to z = 0, 0.6, and
1.2 cm (corresponding times are t = 0, 4.5τ0, and 9.1τ0),
respectively.

(2) At the time T 1
off1

, the three control fields are switched
off simultaneously. When �c1 is switched on again at the time
slot T 1

on1
< t < T 1

off2
(but �c2 and �c3 remain switched off),

a new soliton (called soliton 1) is retrieved from the atomic
coherence σ21. Blue pulses in Fig. 4(c) are for the retrieved
soliton 1 when it propagates to z = 2.4, 2.7, and 3.0 cm
(corresponding times are t = 41.0τ0, 48.2τ0, and 55.5τ0),
respectively.

(3) At the time T 1
off2

, we switch off �c1 and hence the
soliton 1 disappears. Then, at the time T 2

on1
, �c2 is switched

on again in the time slot T 2
on1

< t < T 2
off2

(but �c1 and �c3

remain switched off), and another new soliton (called soliton
2) is retrieved from the atomic coherence σ31. Yellow pulses
in Fig. 4(c) are for the retrieved soliton 2 when it propagates
to z = 2.4, 2.7, and 3.0 cm (corresponding times are t =
111.0τ0, 118.3τ0, and 125.6τ0), respectively.

(4) At the time T 2
off2

, we switch off �c2 and hence the
soliton 2 also disappears. Then, at the time T 3

on1
, �c3 is

switched on again (but �c1 and �c2 remain switched off),
and a third new soliton (called soliton 3) is retrieved from
the atomic coherence σ41. Purple pulses in the figure are for
the retrieved soliton 3 when it propagates to z = 2.4, 2.7, and
3.0 cm (corresponding times are t = 181.1τ0, 188.3τ0, and
195.6τ0), respectively.

In the simulation, we use the parameters τ0 = 5.0 ×
10−8 s, T 1

off1
= 25τ0, T 1

on1
= 30τ0, T 1

off2
= 80τ0, T 2

on1
= 100τ0,
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T 2
off2

= 150τ0, and T 3
on1

= 170τ0. The probe pulse at the en-
trance of the medium is �p(0, t )τ0 = 3.5 sech(t/τ0). We see
that the slow-light soliton beam splitter can be indeed realized
through three optical excitation channels through adiabati-
cally manipulating the three control fields. We stress that the
retrieved pulses are indeed solitons because there is a balance
between the dispersion and nonlinearity in the system, thereby
these retrieved pulses are very stable during propagation. For
comparison, panel (d) shows a retrieved linear pulse with
τ0 = 2.5 × 10−8 s (which has been stored in the system first
by switching off the three control fields simultaneously) when
�c1 is switched on again. Here the probe pulse at the entrance
of the medium is �p(0, t )τ0 = 0.1 sech(t/τ0). One sees that
the retrieved pulse (green profiles) is deformed significantly
during propagation since in this case the system works in a
dispersion-dominant region.

IV. SUMMARY

Note that a retrieval of multiple optical pulses stored in a
three-level �-type atomic system was considered in an inter-
esting work by Reim et al. [48]. We stress that our work is dif-
ferent from that reported in Ref. [48]. First, the storage and re-
trieval of the optical pulses in our work are based on a scheme
of EIT memory, while Ref. [48] is based on a Raman memory.
Second, what we have investigated here is for the storage and
retrieval of nonlinear (soliton) optical pulses, while Ref. [48]
is for those of linear optical pulses. Third, the slow-light
soliton beam splitter is hard to realize by using the three-level
�-type atomic system with the control field consisting of
several narrow subpulses in the retrieval period, proposed in
Ref. [48]. To demonstrate this, based on a three-level �-type
memory scheme we have carried out a numerical simulation
on the single-pulse storage and multiple-pulse retrieval by
using the retrieval technique described in Ref. [48]. We found
that, though a beam splitting for the input narrow probe pulse
may be obtained and the retrieved probe subpulses can be
shaped by engineering the control field, a slow-light soliton
beam splitter is not possible to realize with such scheme. The
physical reason is that with such scheme the retrieved probe
subpulses are unstable during propagation due to the loss and
the unbalanced nonlinearity and (large) dispersion that cannot
be avoided in the multiple-pulse retrieval process. In contrast,
in our four-level tripod-type scheme with multiple excitation
channels illustrated above, during the retrieval process the loss
is small and the dispersion (also small) is well balanced by
the weak nonlinearity of the system. Thus the optical solitons
obtained in our scheme are quite stable during the processes of
the propagation, storage, and retrieval, which makes the high
performance realization of the soliton beam splitters possible.

In conclusion, in this paper we have proposed a scheme
for realizing slow-light soliton beam splitters with a tripod-
type four-state atomic system. By using the method of mul-
tiple scales, we have derived the nonlinear envelope equation
governing the evolution of the probe pulse. We have shown
that optical solitons with ultraslow propagation velocity and
ultralow generation power can be produced in the system via
EIT. We have also shown that these slow-light solitons can be
stored and retrieved with high efficiency and fidelity through
two different photonic channels. Based on this, a slow-light

soliton beam splitter that splits one optical soliton into two
ones can be implemented through the switching off and on
of the two control laser fields subsequently. Furthermore, the
possibility of the soliton beam splitter that splits one optical
soliton into three or more ones via multiphotonic channels has
also been illustrated.

The results reported here can be generalized to high-
dimensional nonlinear optical pulses with orbital angular
momenta, surface polaritons in metal-metamaterial interfaces,
excitons in semiconductor quantum wells and dots, etc. Hence
our paper opens a route not only for active manipulation of
nonlinear optical pulses in multistate quantum systems but
also for potential applications in optical information process-
ing and transmission.
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APPENDIX A: BLOCH EQUATION FOR THE DENSITY
MATRIX

The explicit form of the Bloch Eq. (2) reads [36]

i
∂

∂t
σ11 − i�10σ00 + �∗

pσ01 − �pσ
∗
01 = 0, (A1a)

i
∂

∂t
σ22 − i�20σ00 + �∗

c1σ02 − �c1σ
∗
02 = 0, (A1b)

i
∂

∂t
σ33 − i�30σ00 + �∗

c2σ03 − �c2σ
∗
03 = 0, (A1c)

i
∂

∂t
σ00 + i�0σ00 − �∗

pσ01 + �pσ
∗
01 − �∗

c1σ02 + �c1σ
∗
02

−�∗
c2σ03 + �c2σ

∗
03 = 0, (A1d)

for diagonal matrix elements, and(
i
∂

∂t
+ d21

)
σ21 − �pσ

∗
02 + �∗

c1σ01 = 0, (A2a)

(
i
∂

∂t
+ d31

)
σ31 − �pσ

∗
03 + �∗

c2σ01 = 0, (A2b)

(
i
∂

∂t
+ d32

)
σ32 − �c1σ

∗
03 + �∗

c2σ02 = 0, (A2c)

(
i
∂

∂t
+ d01

)
σ01 − �p(σ00 − σ11) + �c1σ21 + �c2σ31 = 0,

(A2d)(
i
∂

∂t
+ d02

)
σ02 − �c1(σ00 − σ22) + �pσ

∗
21 + �c2σ32 = 0,

(A2e)(
i
∂

∂t
+ d03

)
σ03 − �c2(σ00 − σ33) + �pσ

∗
31 + �c1σ

∗
32 = 0,

(A2f)

for nondiagonal matrix elements, where djl = � j − �l +
iγ jl . Here γ jl = (� j + �l )/2 + γ

dep
jl is the decay rate of the
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atomic coherence σ jl , with � j = ∑
El <Ej

�l j the spontaneous-

emission rate of the state | j〉 and γ
dep
jl the dephasing rate

representing the loss of phase coherence between | j〉 and
|l〉 contributed by atomic collisions and other incoherent
processes [36].

APPENDIX B: DERIVATION OF THE NONLINEAR
ENVELOPE EQUATION AND ITS SOLITON SOLUTION

To obtain the envelope equation governing the nonlinear
evolution of the probe field based on the MB Eqs. (2) and (3),
we take the asymptotic expansions [40,47]

σ jl = σ
(0)
jl + εσ

(1)
jl + ε2σ

(2)
jl + ε3σ

(3)
jl + · · · , (B1a)

�p = ε�(1)
p + ε2�(2)

p + ε3�(3)
p + · · · , (B1b)

with σ
(0)
jl = δ j0δl0 the steady-state solution when the probe

field is absent and ε the dimensionless small parameter char-
acterizing the typical amplitude of the probe field. To have a
divergence-free expansion that is valid for the nonlinear evolu-
tion of the system, all the components on the right-hand side

of the expansion (B1) for σ jl and �p must be considered to
be functions of the multiscale variables zl = εl z (l = 0, 1, 2),
tl = εl t (l = 0, 1) [40,47]. Substituting such expansion to the
MB Eqs. (2) and (3), we obtain a set of expansion equations
which can be solved order by order.

At the first order of the expansion, we obtain the solution

�(1)
p = F exp (iθ ), (B2a)

σ
(1)
21 = [�∗

c1(ω + d31)/D]F exp (iθ ), (B2b)

σ
(1)
31 = [�∗

c2(ω + d21)/D]F exp (iθ ), (B2c)

σ
(1)
01 = −[(ω + d21)(ω + d31)/D]F exp(iθ ), (B2d)

with all other σ
(1)
jl zero. Here θ = K (ω)z0 − ωt0 [38]; F is the

envelope function of the slow variables z1, z2, and t1; K (ω) is
the linear dispersion relation [given by Eq. (4)]. The explicit
expression of the quantity D can be found just below Eq. (4).

At the second order of the expansion, we obtain the enve-
lope equation

i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0, (B3)

where Vg ≡ (∂K/∂ω)−1 is the group velocity of the probe pulse. Explicit expressions of the solution at this order are given by
σ

(2)
j1 = a(2)

j1 i ∂
∂t1

F exp(iθ ) ( j = 0, 2, 3), σ
(2)
02(03,32) = a(2)

02(03,32)|F |2 exp(−2ᾱz2), and σ
(2)
j j = a(2)

j j |F |2 exp (−2ᾱz2) ( j = 1, 2, 3, 0),
with

a(2)
01 = 1

κ01

(
1

Vg
− 1

c

)
, (B4a)

a(2)
21 = −�∗

c1

D2
(ω + d31)2(2ω + d01 + d21) + �∗

c1

D2
|�c2|2(d31 − d21), (B4b)

a(2)
31 = −�∗

c2

D2
(ω + d21)2(2ω + d01 + d31) + �∗

c2

D2
|�c1|2(d21 − d31), (B4c)

a(2)
22 = −�30X + �10(B − B∗)

�10(A − A∗)
, (B4d)

a(2)
33 = Q + i�10|�c1|2(N∗ − N )a(2)

22

i�10P
, (B4e)

a(2)
11 = X − i�10

(
a(2)

22 + a(2)
33

)
i�10

, (B4f)

a(2)
02 = M

[
�∗

c2

(
1

i�10
X + a(2)

33

) + a(1)
31

] − a∗(1)
21 − �c1

(
1

i�10
X + a(2)

22

)
N

, (B4g)

a(2)
03 = − M∗d∗

32

�c1�c2

[
�c2

(
1

i�10
X + a(2)

33

)
+ a∗(1)

31 − �c1�c2

d∗
32

a∗(2)
02

]
, (B4h)

a(2)
32 = 1

d32

(
�c1a∗(2)

03 − �∗
c2a(2)

02

)
, (B4i)

where

A = −d∗
32M∗

�∗
c1

{ |�c1|2�c2

P
(N∗ − N ) − �c1�c2

d∗
32N∗

[
M∗|�c1|2�c2

P
(N∗ − N ) − �∗

c1

]}
, (B5a)
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B = d∗
32M∗

�∗
c1

{
�c2

1

i�10
X + �c2Q

i�10P
+ a∗(1)

31 − �c1�c2

d∗
32N∗

[
M∗�c2

(
1

i�10X
+ Q

i�10P

)
+ M∗a∗(1)

31 − a(1)
21 − �∗

c1
1

i�10
X

]}
, (B5b)

M = �c1�c2

d32

( |�c1|2
d32

+ d∗
03

)−1

, (B5c)

N = d02 + �∗
c1�

∗
c2M − |�c1|2

d32
, (B5d)

P = N∗M�∗
c1�

∗
c2 − NM∗�c1�c2, (B5e)

Q = [−i|N |2�20 − P + |�c1|2(N∗ − N )]X − i�10
[
�∗

c1N∗(Ma(1)
31 − a∗(1)

21

) − c.c.
]
, (B5f)

X = (ω + d21)(ω + d31)

D
− (ω + d∗

21)(ω + d∗
31)

D∗ . (B5g)

With the solutions obtained above, we proceed to the third
order of the expansion and obtain the envelope equation by a
divergence-free condition

i
∂

∂z2
F − 1

2
K2

∂2

∂t2
1

F + W |F |2Fe−2αz2 = 0, (B6)

where α = ε−2α [α ≡ Im(K )] is the absorption coefficient,
K2 = ∂2K/∂ω2 is the coefficient of group-velocity dispersion,
and W is the coefficient of self-phase modulation, which
reads

W = −κ01
S + �c1(ω + d31)a∗(2)

02 + �c2(ω + d21)a∗(2)
03

D
,

(B7)

where S = (ω + d21)(ω + d31)(2a(2)
11 + a(2)

22 + a(2)
33 ). Combin-

ing the above two envelope Eqs. (B3) and (B6), we obtain
Eq. (5) in the main text when returning to the original vari-
ables.

Because under the EIT condition the absorption of the
probe pulse is largely suppressed, the imaginary parts of K2

and W2 are thus much smaller than their corresponding real
parts. Neglecting these small imaginary parts in K2 and W2,
we get the dimensionless nonlinear equation

i
∂U

∂s
− sd

∂2U

∂σ 2
+ 2|U |2U = ig0 U, (B8)

with U = εF exp(−iαz)/U0, s = z/(2LD), σ = (t −
z/Vg)/τ0, LD = τ 2

0 /|K̃2| (the tilde symbol denotes taking
the real part), sd = sgn(K̃2), and g0 = 2LD/L0. Here
L0 = 1/Im(K ) is typical absorption length; LD is typical
dispersion length, which has been assumed to be equal
to typical nonlinearity length LNL ≡ 1/(W̃U 2

0 ), and hence
U0 = (1/τ0)

√
|K̃2|/W̃ . Note that W̃ has been assumed to

be positive, which is valid if both two-photon detunings
�2 and �3 are negative, the case we consider here. For
U0 = 2π × 8.3 MHz and the other system parameters the
same as given in the main text, we have LD = 1.1 cm,
L0 = 46.3 cm, and hence g0 = 0.05. Since sd = −1 and ig0U
is very small, one can get the approximated single bright

soliton solution of Eq. (B8), i.e.,

U = β sech[β(σ − c0s − σ0)]

× exp

[
i
c0

2
σ + i

(
β2 − c2

0

4

)
s − iφ0

]
. (B9)

Here β, c0, σ0, and φ0 are free parameters which determine
the amplitude (temporal width), velocity, initial position, and
initial phase of the soliton, respectively. When taking β = 1,
c0 = 0, σ0 = 0, and φ0 = 0, the half Rabi frequency of the
probe pulse corresponding to the solution (B9) is just that
given by Eq. (6) after returning to the original variables.

Figure 5 shows the time evolution of the slow-light soliton
by taking U as a function of t/τ0 and z/(2LD). The boundary
condition at z = 0 is chosen to be U = 0.8 sech(0.8t/τ0) with
τ0 = 1.0 × 10−7 s. We see that the soliton is very stable during
propagation due to the balance between the dispersion and the
Kerr nonlinearity in the system.

APPENDIX C: EXPRESSIONS OF PROBE PULSES FOR
SOLITON MEMORY AND SPLITTING

For the problems of soliton memory and soliton splitting,
it is not possible to get exact solutions of the MB Eqs. (2)
and (3), because these equations not only are nonlinear
ones (due to the coupling between light and atoms) but
also have variable coefficients (due to the time-dependent
control fields needed to implement the manipulation of the

FIG. 5. Evolution of the slow-light soliton by taking U as func-
tion of t/τ0 and z/(2LD).
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probe solitons). However, it is possible to provide approxi-
mated analytical solutions of the probe field in different time
slots.

1. The case of soliton memory

In the case of the storage and retrieval (Sec. II.B.1 in the
main text), the two control fields �c1 and �c2 are (or recover
to) constant values in the time slots before the storage and
after the retrieval of the slow-light soliton. In these time slots,
the description by the envelope Eq. (5) in the main text is
still valid. Thus one has the following solution for the probe
pulse:

�p ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0
τ0

√
|K̃2|
W̃

sech
[

1
τ0

(
t − z

Ṽg

)]
ei[K̃0−1/(2LD )]z,

for t < Toff ,

0, for Toff < t < Ton,

B0
τ0

√
|K̃2|
W̃

sech
[

1
τ0

(
t − z

Ṽg

)]
ei[K̃0−1/(2LD )]z+iφ0 ,

for t > Ton,

where A0 and B0 are constants, φ0 is a constant phase factor,
Toff ≡ T 1

off = T 2
off , and Ton ≡ T 1

on = T 2
on.

2. The case of soliton splitting

The realization of the soliton beam splitter requires that
initially the two control fields are switched on simultaneously,
and then switched off and on in subsequent time slots [see
Fig. 3(a) in the main text]. In the time slot t < T 1

off1
, the two

control fields are constants and the envelope of the probe
pulse is described by Eq. (5), so it is a slow-light soliton
given by Eq. (6). In the time slot T 1

on1
< t < T 1

off2
, the control

field �c1 is switched on again but �c2 remains switched off,
thus the four-level tripod system is reduced into a three-level
�-type system (with �p and �c1 coupling the levels |0〉, |1〉,
and |2〉). In this case, due to the existence of the constant
�c1, the envelope of the probe pulse is still described by
Eq. (5) but with �c2 = 0. In the time slot T 1

off2
< t < T 2

on1
,

the control field �c1 is switched off but �c2 is switched on
again to a constant value; the four-level tripod system is thus
converted into another three-level �-type system (with �p

and �c2 coupling the levels |0〉, |1〉, and |3〉). In this case,
due to the constant �c2, the envelope of the probe pulse is
still described by Eq. (5) but with �c1 = 0. That is to say,
in the time slots of t < T 1

off1
, T 1

on1
< t < T 1

off2
, and t > T 2

on1
,

the description by the envelope Eq. (5) in the main text is
valid but with different control fields. Consequently, during
the soliton splitting, the probe pulse can be written as the

form

�p ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0
τ0

√
|K̃2|
W̃

sech
[

1
τ0

(
t − z

Ṽg

)]
ei[K̃0−1/2LD]z,

for t < T 1
off1

,

0, for T 1
off1

< t < T 1
on1

,

B′
0

τ0

√
|K̃ ′

2|
W̃ ′ sech

[
1
τ0

(
t − z

Ṽ ′
g

)]
ei[K̃ ′

0−1/2L′
D]z+iφ′

0 ,

for T 1
on1

< t < T 1
off2

,

0, for T 1
off2

< t < T 2
on1

,

B
′′
0

τ0

√
|K̃ ′′

2 |
W̃ ′′ sech

[
1
τ0

(
t − z

Ṽ ′′
g

)]
ei[K̃

′′
0 −1/2L′′

D]z+iφ
′′
0 ,

for t > T 2
on1

,

where A0, B′
0, B

′′
0, φ

′
0, and φ

′′
0 are constants. In the above

expression,

K ′(ω) = ω/c + κ10(ω + d21)/D′, (C1a)

K ′
0 = K ′(ω)|ω=0, (C1b)

V ′
g = (∂K ′/∂ω)−1, (C1c)

K ′
2 = ∂2K ′/∂ω2, (C1d)

W ′ = κ01
[
�c1a′(2)∗

32 + (ω + d21)
(
2a′(2)

11 + a′(2)
22

)]
/D′,

(C1e)

L′
D = τ ′2

0 /|K̃ ′
2|, (C1f)

D′ = |�c1|2 − (ω + d21)(ω + d01), (C1g)

and

K ′′(ω) = ω/c + κ10(ω + d31)/D′′, (C2a)

K ′′
0 = K ′′(ω)|ω=0, (C2b)

V ′′
g = (∂K ′′/∂ω)−1, (C2c)

K ′′
2 = ∂2K ′′/∂ω2, (C2d)

W ′′ = κ01
[
�c2a′′(2)∗

32 + (ω + d31)
(
2a′′(2)

11 + a′′(2)
22

)]
/D′′,

(C2e)

L′′
D = τ ′′2

0 /|K̃ ′′
2 |, (C2f)

D′′ = |�c2|2 − (ω + d31)(ω + d01). (C2g)

Expressions of a′(2)
jl (a′′(2)

jl ) can be obtained from that of a(2)
jl

in Sec. IV described above by taking �c2 = 0 (�c1 = 0).
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