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Chaotic self-trapped optical beams in strongly nonlocal nonlinear media
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The self-trapped optical beams possessing both chaotic and solitonlike properties, which are termed as
chaoticons, were predicted by us [Sci. Rep. 7, 41438 (2017)] in the strongly nonlocal nonlinear media. We
reveal that any random input beam, which has random initial transverse distribution and arbitrary input power,
propagating in the strongly nonlocal nonlinear media with the exponential-decay response, will evolve into a
chaoticon. The chaotic properties are signified by the positive Lyapunov exponents and spatial decoherence,
while the solitonlike properties are demonstrated by the invariance of the beam width and the interaction of
quasielastic collisions. Distinctively, the propagations of random inputs are always periodic in the strongly
nonlocal media with the Gaussian response.
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I. INTRODUCTION

An important class of nonlinearities in optics is asso-
ciated with the nonlocal process, the mechanism of which
includes the molecular reorientation, the thermal nonlinearity,
the photorefractive effect, the electrostriction, etc. Nonlocal
nonlinearity means that the nonlinear response at a certain
spatial point is determined not only by the optical wave at
that point but also by the wave in its vicinity; the stronger
the nonlocality, the larger range of wave concerned [1–3].
Since the pioneering theoretical work in 1997 [3], in which
the nonlinear equation guiding the paraxial propagation of
beams under the condition of strong nonlocality was simpli-
fied to a linear model and the nonlocal spatial solitons were
predicted, experimenters have discovered several media with
strong nonlocality. The most extensively studied ones are the
nematic liquid crystals [4–10] and the lead glass [11–18].
In the strongly nonlocal nonlinear media, some interesting
phenomena have been found, such as it supports various types
of complex spatial solitons [7,11–13,19,20].

The nonlocal nonlinearity can be described by the
nonlinear response function, which is usually of different
form in different kinds of media. For instance, there is the
logarithmic response function in the lead-glass [15–18], the
exponential-decay response function (ERF) in the (positive)
nematic liquid crystals [1,2,7–9,20,21], the sine-oscillatory
response function in the negative nematic liquid crystals
[22,23], and so on. In addition, the rather unphysical but
extremely instructive Gaussian response function (GRF) has
been considered abundantly owing to the convenience of an
analytical treatment [7,19,21,24–27]. The response function
plays an important role in the behavior of beams propagating
in the media. For the (1+1)-dimensional Kerr-type nonlocal
nonlinear system, in both cases with GRF and ERF there
exist the Hermitian-Gaussian-type stationary solutions
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(HGSS) [8,26]: q(x, z) = uN (x) exp(ibN z), where q(x, z) is
the dimensionless slowly varying complex amplitude of the
optical field, x and z stand for the transverse and propagation
directions, respectively, the transverse profile function uN (x)
is of the Hermitian-Gaussian-like shape with N (N � 1)
humps, bN is a real constant, PN = ∫ ∞

−∞ |uN (x)|2dx is the
critical power of the HGSS. However, the stability of the
HGSS are different. In the GRF system, all of the HGSS
are stable and form spatial solitons [7,26]. While in the ERF
system, only the low-order HGSS (with N < 5) are stable
[7], the high-order ones (with N � 5) are unstable, which
will evolve into chaoticons (chaotic solutions meanwhile
exhibit solitonlike properties) under the condition of strong
nonlocality [9]. Chaoticons, as a new kind of beams occurring
in the strongly nonlocal nonlinear media [9], whose model
is different from the chaoticons of the dissipative system
[28,29], have been largely unexploited to the best of our
knowledge.

On the other hand, the model describing the propagation
of beams in a nonlocal nonlinear media, expressing as the
nonlocal nonlinear Schrödinger equation, is a nonintegrable
conservative system. It is well known that, for a conservative
nonlinear system, the existence of chaos depends not only
on the equation and the parameters therein, but also on the
initial values [30–32]. Then an open question is whether the
chaos takes place only under the initial conditions of q(x, 0) =
uN (x), or it happens generally. Or in other words, will an
initial input other than the high-order HGSS evolve into a
chaoticon? Our aim of this work is to answer the question by
studying numerically the evolutions of random initial inputs
in the strongly nonlocal nonlinear media.

The paper is organized as follows. In Sec. II, we simulate
the propagation of random initial inputs in the ERF and the
GRF systems. For a clear comparison with the initial inputs
of the HGSS, we first select a random initial input with
the same power and beam width as the HGSS, and then
change the initial power to make the initial input stand for a
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completely random input. In Sec. III, the maximal Lyapunov
exponents and the spatial cross correlation function during
the propagation are computed. In Sec. IV, the interaction
of two equivalent beams are simulated. Section V presents
our conclusion that chaoticons exist generally in the strongly
nonlocal nonlinear media with the ERF.

II. EVOLUTIONS OF RANDOM INITIAL INPUTS

The paraxial propagation of a (1+1)-dimensional light
beam in media with a Kerr-type nonlocal nonlinearity is gov-
erned by the nonlocal nonlinear Schrödinger equation [1,2]

i
∂q

∂z
+ 1

2

∂2q

∂x2
+ q

∫ ∞

−∞
R(x − ξ )|q(ξ, z)|2dξ = 0, (1)

where R(x) is the normalized [
∫ ∞
−∞ R(x)dx = 1] nonlinear

response function. It contains both the effects of diffractive
spreading [depending on the profile of q(x)] and nonlinear
self-focusing (depending on the power of the beam in strong
nonlocality), which are commensurable in our scope of dis-
cussion. We consider here the ERF, which is also referred to
as the diffusive type of nonlinearity [20],

R(x) = 1

2wm
exp(− |x|

wm
), (2)

where wm is the characteristic length of the response function.
In general, a strong nonlocality means the ratio w/wm � 0.1,
in which the beam width w is defined statistically by the
second-order moment [8,9,22,26]

w(z) =
√

2

P

∫ ∞

−∞
[x − xc(z)]2|q(x, z)|2dx, (3)

where xc(z) = ∫ ∞
−∞ x|q(x, z)|2dx/P is the center of the beam,

P = ∫ ∞
−∞ |q(x, z)|2dx is the power of the beam. In the spec-

trum space, the statistic beam width can be calculated in the
same way as Eq. (3) via firstly obtaining the Fourier spectrum
q̃(k, z) = ∫

q(x, z) exp(−ikx)dx.
In order to find out the dependence of the existence of

chaoticons on the initial value, we change the initial value
from the HGSS step by step. In the (1+1)-dimensional dimen-
sionless system, a normal-incidence beam can be character-
ized by three parameters: the transverse profile, the power and
the beam width. First, we change the transverse profile and
keep the other two. That is, we select an initial input with a
random profile but holding the same power and statistic beam
width with the HGSS in both real space and spectrum space.
This kind of inputs can be obtained within two steps: we can
always pick out a random profile with a given beam width
(both in real and spectrum space) by repeatedly generating
random arrays, then we multiply a proper coefficient to make
the initial power Pi = PN . An example is shown in Fig. 1(a),
in which the solid blue curve denotes a random input r(x)
with the beam width and power equivalent to the nine-humped
HGSS [the black dotted curve in Fig. 1(a)]. The evolution of
the initial input q(x, 0) = r(x) under the condition of strong
nonlocality [wm = 10 and w(0) = 1 unless otherwise stated]
is shown in Figs. 1(b)–1(e), including the contour plots of
the amplitude |q(x, z)| (instead of the intensity |q(x, z)|2 for
a better discernibility) in Figs. 1(b) and 1(c) and the statistic

FIG. 1. The evolution of a random initial input with Pi = P9 in
the ERF model. (a) The initial input r(x) (blue solid curve) with a
random profile holding the same power and beam width with the
nine-humped HGSS (black dotted curve). (b), (c) The contour plots
of |q(x, z)|, (d), (e) the corresponding statistic beam widths w(z).
(c), (e)The enlargements of (b), (d) in the region of z ∈ [100, 105],
respectively.

beam width w(z) in Figs. 1(d) and 1(e). Figures 1(c) and
1(e) are the enlargements of 1(b) and 1(d) in the region of
z ∈ [100, 105], respectively. It is obvious that the evolutions
are aperiodic and irregular. However, the beam width remain
roughly invariant, the relative standard deviation of which is
less than 4%. The invariance of beam width may be con-
cerned with the fact that the nonlinearly induced refractive
index �n(x, z) = ∫ ∞

−∞ R(x − ξ )|q(ξ, z)|2dξ depends only on
the beam power, and is largely insensitive to the profile of the
intensity [3,12].

Then we also change the power of the initial inputs
arbitrarily, which are exemplified by Pi = 0.7P9 and Pi =
1.3P9. Alternatively, the initial inputs are q(x, 0) = √

0.7r(x)
and q(x, 0) = √

1.3r(x), respectively. The evolutions are dis-
played in Figs. 2(a) and 2(b) of which are the contour
plots of the amplitude for Pi = 0.7P9 and Pi = 1.3P9, respec-
tively, the corresponding beam width are shown in Figs. 2(c)
and 2(d). We can see that the evolutions in Fig. 2 appear
exactly similar to those in Fig. 1, except that the average beam
widths are changed. There is no significant difference in the
standard deviation among the beam width in Figs. 2(c), 2(d)
and 1(d).

Thirdly, we should consider the initial inputs with the beam
width changed too, such as rescaling the r(x) in the x direc-
tion. However, it is unnecessary in fact. Because the beam
widths in Fig. 2 at a certain z0 are varied from the initial
beam width, and q(x, z0) can be also viewed as an initial
input for the following evolution. That is to say, the cases
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(a) (b)(b)(a)

FIG. 2. The evolutions of random initial inputs with Pi = 0.7P9

(left) and Pi = 1.3P9 (right) in the ERF model. (a), (b)The contour
plots of |q(x, z)|, (c), (d) the beam widths corresponding to (a), (b),
respectively.

in Fig. 2 can represent the evolutions of absolutely random
initial inputs. Then, about the model described by Eqs. (1)
and (2) in a strong nonlocality, we can conclude that besides
the high-order HGSS any random initial input (even with
the beam width and power equal to those of the low-order
HGSS) will evolve into a self-trapped beam with a nearly
invariant beam width after a short transient process, while the
initial inputs of the low-order HGSS evolve periodically or
quasiperiodically [7,8]. Moreover, long enough simulations
show that the power of the beam is conserved without any
energy lost by radiation during the evolution.

For contrast, we also investigate the evolutions of random
initial inputs in the phenomenological system with the GRF:
R(x) = 1/

√
2πwm exp(−x2/2w2

m). Similarly, three cases are
considered: the initial inputs of the r(x) profile [shown in
Fig. 1(a)] with the input powers Pi = P9, Pi = 0.7P9, and Pi =
1.3P9, respectively, in which P9 is the nine-humped HGSS of
Eq. (1) with the GRF. Interestingly, we find that all of them
evolve periodically, as shown in Fig. 3. In order to demon-
strate the periodicity clearly, a small region of evolution of
z ∈ [100, 105] are displayed. We give the contour plot of the
amplitude only for the case of Pi = P9 in Fig. 3(a), since the
scenes for Pi �= P9 are completely similar. The evolutions of
beam width are shown in Fig. 3(b) (for Pi = P9) and 3(c) (the
upper red solid curve for Pi = 0.7P9, the lower green dashed
curve for Pi = 1.3P9), which show the periodicity more ob-
viously. The distinction of the evolution in the above two
systems may arise from the crucial difference of the two kinds
of nonlinear response functions: the ERF in the real physical
media is singular, while the unphysical GRF is nonsingular.

III. CHAOTIC PROPERTY WITH POSITIVE LYAPUNOV
EXPONENTS AND SPATIAL DECOHERENCE

To confirm whether the evolution is chaotic or not, we first
calculate the maximal Lyapunov exponents since a positive

FIG. 3. The periodic evolutions of random initial inputs for the
unphysical GRF model. (a) The contour plot of |q(x, z)| for Pi =
P9, (b) the beam widths corresponding to (a). (c) The beam widths
for Pi = 0.7P9 (the upper red solid curve) and Pi = 1.3P9 (the lower
green dashed curve), respectively.

Lyapunov exponent is a signature of chaos [30–32]. The
maximal Lyapunov exponent measures the typical exponential
rate of growth of an infinitesimal perturbation, which can be
computed by the so-called standard method: [30,33–36]

l = lim
δ→0

lim
z→∞

1

z
ln

d (q1, q2; z)

d (q1, q2; 0)
, (4)

where d (q1, q2; z) = [
∫ ∞
−∞ |q1(x, z) − q2(x, z)|2dx]1/2 is the

distance (the L2 norm in the Hilbert space) between
two functions q1(x, z) and q2(x, z). The two initial values
are q1(x, 0) = q(x, 0) and q2(x, 0) = q(x, 0) + δ(x), where
the initial perturbation δ(x) is assigned to be a random
function with the amplitude as small as machine pre-
cision allows (e.g., in the order of 10−8). Let λ(z) =
limδ→0 ln[d (q1, q2; z)/d (q1, q2; 0)]/z, then l = limz→∞ λ(z).
That is to say, in a curve of λ versus z, the maximal Lyapunov
exponent l is the convergent value of λ at a large enough z.

The maximal Lyapunov exponents of several cases men-
tioned above are shown in Fig. 4, in which the curves from
top to bottom correspond to the evolutions of Pi = 1.3P9

[Fig. 2(b)], Pi = P9 [Fig. 1(b)], Pi = 0.7P9 [Fig. 2(a)] in the
ERF system and Pi = P9 [Fig. 3(a)] in the GRF system,
respectively. In the computation, we choose the window of
the system x ∈ [−30, 30], which is discretized into 4096

FIG. 4. The maximal Lyapunov exponents for several cases. The
four curves from top to bottom are corresponding to the evolutions
show in Fig. 2(b), Fig. 1(b), Fig. 2(a), and Fig. 3(a), respectively.
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FIG. 5. The modulus of the spatial cross correlation function for
the evolution of the random input r(x).

points. We can see that the maximal Lyapunov exponent of
the bottom curve is 0, which coincides with the periodic
solution. The maximal Lyapunov exponents of the above three
curves are all positive, about l = 1.6, 1.4, 1.0, respectively.
As a matter of fact, for an infinite-dimensional system of
partial differential equation, there exists theoretically a contin-
uous spectrum of Lyapunov exponents, which should be the
convergence of all the Lyapunov exponents calculated [35].
However, a positive maximal Lyapunov exponent is sufficient
to indicate the chaotic behavior in the z direction. Also, we
have testified that the maximal Lyapunov exponents show a
good convergency (the relative error is less than 10%) by
repeated calculation adopting different numbers of discretiza-
tion points and other numerical parameters. Results suggest
that the random input beam propagating in the strongly non-
local nonlinear media with the ERF is chaotic.

Furthermore, we find that the values of lw̄2 are almost
equal to each other for the three chaotic cases in Fig. 4,
where the corresponding average beam widths are w̄ ≈
0.94, 1.00, 1.19 [shown in Fig. 2(d), Fig. 1(d), Fig. 2(c),
respectively] from top to bottom. This means that the degree
of nonlocality (denoted by w̄/wm) almost have no effect on the
value of the maximal Lyapunov exponent in view of the scal-
ing property of the nonlocal nonlinear Schrödinger equation
and the maximal Lyapunov exponent [9,21,22]. By the way, it
is worth mentioning that the value of the maximal Lyapunov
exponent for an initial input with a different profile (even the
equal beam width and power) may vary considerably.

In fact, for a partial differential system with respect to time
and space, there are two kinds of chaotic states: the temporal
chaos with spatial coherence (viewed as low-dimensional
chaos) [37,38] and the spatiotemporal chaos with spatial de-
coherence [38]. In order to make clear the kind of our chaotic
solutions, we will calculate the spatial cross correlation func-
tion of two long enough wave-amplitude series at locations x1

and x2

c(x1, x2) = lim
z0→∞

∫ z0

0 q(x1, z)q∗(x2, z)dz√∫ z0

0 |q(x1, z)|2dz
∫ z0

0 |q(x2, z)|2dz
, (5)

where the superscript ∗ denotes the conjugate complex. The
modulus of c for the random input r(x) are depicted in Fig. 5,
from which we can see that |c| equals 1 along the line x1 = x2

and decreases rapidly with the separation of two locations.
The inset gives the cutting line of |c(x1, x2)| at x1 = 0 to

FIG. 6. The interaction of quasielastic collisions between the two
identical beans shown in Fig. 1(b). (a) The contour plot of |q(x, z)|,
(b) the partially enlarged detail of (a) in box.

show more clearly the rapid decline of |c|. The quick drop of
correlation in the x direction means the spatial decoherence,
which can be viewed as the indication of the chaotic behavior
along the x direction [38–40]. So we can judge that the chaotic
solutions are spatiotemporal chaos if z is viewed as time.

IV. SOLITONLIKE PROPERTY WITH INTERACTION
OF QUASIELASTIC COLLISIONS

In addition to the invariance of the beam width during
the evolution, we find that the beams posses another typical
property of an optical soliton: the particlelike interaction phe-
nomena [6,14,41]. We explore the evolution of two identical
random inputs r(x)’s, which are initially parallel and separated
with a large enough distance [the center-to-center distance is
8w(0)] to prevent the overlap of waves. The interaction of
the two beams are displayed in Fig. 6. From Fig. 6(a) we can
see that the two chaoticons attract each other and bend their
trajectories, then combine and separate quasiperiodically. The
scene is quite similar to the elastic collisions between two
particles. The detail of a single collision is presented in
Fig. 6(b), which is the enlargement of Fig. 6(a) in box. In fact,
their interaction is of quasielastic collision, for it is actually
accompanied by a small energy loss to radiation.

V. CONCLUSION

In summary, we demonstrate the general existence of
chaoticons in the strongly nonlocal nonlinear media with the
exponential-decay response by the evolution of the random
initial inputs that have random initial transverse distribu-
tions and arbitrary input powers. The chaotic properties are
presented by the positive maximal Lyapunov exponents
and spatial decoherence, while the solitonlike properties
are demonstrated by the invariance of beam width and the
quasielastic particlelike interactions. Our findings may shine
new light on the secret communication in the nonlocal nonlin-
ear media.

ACKNOWLEDGMENTS

This research was supported by the National Natural Sci-
ence Foundation of China, Grant No. 11704169. We are
grateful to Professor Yuqi Li at East China Normal University
for his helpful discussion.

043816-4



CHAOTIC SELF-TRAPPED OPTICAL BEAMS IN … PHYSICAL REVIEW A 99, 043816 (2019)

[1] G. Assanto, Nematicons: Spatial Optical Solitons in Nematic
Liquid Crystals (John Wiley & Sons, New Jersey, 2013).

[2] Q. Guo, D. Lu, and D. Deng, Nonlocal spatial optical solitons,
in Advances in Nonlinear Optics, edited by X. Chen, Q. Guo,
W. She, H. Zhang, and G. Zhang (De Gruyter, Berlin, 2015),
pp. 227–305.

[3] A. W. Snyder and D. J. Mitchell, Accessible solitons, Science
276, 1538 (1997).

[4] C. Conti, M. Peccianti, and G. Assanto, Route to Nonlocality
and Observation of Accessible Solitons, Phys. Rev. Lett. 91,
073901 (2003).

[5] C. Conti, M. Peccianti, and G. Assanto, Observation of Optical
Spatial Solitons in a Highly Nonlocal Medium, Phys. Rev. Lett.
92, 113902 (2004).

[6] W. Hu, T. Zhang, Q. Guo, L. Xuan, and S. Lan, Nonlocality-
controlled interaction of spatial solitons in nematic liquid crys-
tals, Appl. Phys. Lett. 89, 071111 (2006).

[7] Z. Xu, Y. V. Kartashov, and L. Torner, Upper threshold for sta-
bility of multipole-mode solitons in nonlocal nonlinear media,
Opt. Lett. 30, 3171 (2005).

[8] L. Zhong, J. Yang, Z. Ren, and Q. Guo, Hermite-Gaussian sta-
tionary solutions in strongly nonlocal nonlinear optical media,
Opt. Commun. 383, 274 (2017).

[9] L. Zhong, Y. Li, Y. Chen, W. Hong, W. Hu, and Q. Guo, Chaoti-
cons described by nonlocal nonlinear Schrödinger equation,
Sci. Rep. 7, 41438 (2017).

[10] Y. V. Izdebskaya, V. G. Shvedov, P. S. Jung, and W.
Krolikowski, Stable vortex soliton in nonlocal media with ori-
entational nonlinearity, Opt. Lett. 43, 66 (2018).

[11] C. Rotschild, O. Cohen, O. Manela, and M. Segev, Solitons in
Nonlinear Media with an Infinite Range of Nonlocality: First
Observation of Coherent Elliptic Solitons and of Vortex-Ring
Solitons, Phys. Rev. Lett. 95, 213904 (2005).

[12] C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Incoherent
spatial solitons in effectively instantaneous nonlinear media,
Nat. Photon. 2, 371 (2008).

[13] L. Dong and F. Ye, Stability of multipole-mode solitons
in thermal nonlinear media, Phys. Rev. A 81, 013815
(2010).

[14] C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Long-
range interactions between optical solitons, Nat. Phys. 2, 769
(2006).

[15] Q. Shou, Y. Liang, Q. Jiang, Y. Zheng, S. Lan, W. Hu, and Q.
Guo, Boundary force exerted on spatial solitons in cylindrical
strongly nonlocal media, Opt. Lett. 34, 3523 (2009).

[16] Q. Shou, X. Zhang, W. Hu, and Q. Guo, Large phase shift of
spatial solitons in lead glass, Opt. Lett. 36, 4194 (2011).

[17] Q. Shou, D. Liu, X. Zhang, W. Hu, and Q. Guo, Large phase
shift of spatial soliton in lead glass by cross-phase modu-
lation in pump-signal geometry, Chin. Phys. B 23, 084204
(2014).

[18] Q. Shou, M. Wu, and Q. Guo, Large phase shift of
(1+1)-dimensional nonlocal spatial solitons in lead glass,
Opt. Commun. 338, 133 (2015).

[19] D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S.
Kivshar, Laguerre and Hermite Soliton Clusters in Nonlocal
Nonlinear Media, Phys. Rev. Lett. 98, 053901 (2007).

[20] S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, Sta-
bility of two-dimensional spatial solitons in nonlocal nonlinear
media, Phys. Rev. E 73, 066603 (2006).

[21] S. Ouyang, Q. Guo, and W. Hu, Perturbative analysis of gener-
ally nonlocal spatial optical solitons, Phys. Rev. E 74, 036622
(2006).

[22] G. Liang, W. Hong, and Q. Guo, Spatial solitons with compli-
cated structure in nonlocal nonlinear media, Opt. Express 24,
28784 (2016).

[23] Z. Wang, Q. Guo, W. Hong, and W. Hu, Modulational insta-
bility in nonlocal Kerr media with sine-oscillatory response,
Opt. Commun. 394, 31 (2017).

[24] Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Large phase shift
of nonlocal optical spatial solitons, Phys. Rev. E 69, 016602
(2004).

[25] Y. Huang, Q. Guo, and J. Cao, Optical beams in lossy non-local
Kerr media, Opt. Commun. 261, 175 (2006).

[26] D. Deng, X. Zhao, Q. Guo, and S. Lan, Hermite-Gaussian
breathers and solitons in strongly nonlocal nonlinear media,
J. Opt. Soc. Am. B 24, 2537 (2007).

[27] A. Picozzi and J. Garnier, Incoherent Soliton Turbulence in
Nonlocal Nonlinear Media, Phys. Rev. Lett. 107, 233901
(2011).

[28] N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Residori,
Spatiotemporal Chaotic Localized State in Liquid Crystal Light
Valve Experiments with Optical Feedback, Phys. Rev. Lett. 110,
104101 (2013).

[29] N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Residori,
Chaoticon: localized pattern with permanent dynamics,
Phil. Trans. R. Soc. A 372, 0011 (2014).

[30] J. C. Sprott, Chaos and Time-Series Analysis (Oxford University
Press, Oxford, 2003).

[31] H. G. Schuster and W. Just, Deterministic Chaos: An Introduc-
tion (Wiley-VCH Verlag GmbH, Weinheim, 2005).

[32] J. J. Lissauer, Chaotic motion in the solar system, Rev. Mod.
Phys. 71, 835 (1999).

[33] A. C. Cassidy, D. Mason, V. Dunjko, and M. Olshanii, Thresh-
old for Chaos and Thermalization in the One-Dimensional
Mean-Field Bose-Hubbard Model, Phys. Rev. Lett. 102, 025302
(2009).

[34] I. Brezinova, L. A. Collins, K. Ludwig, B. I. Schneider, and J.
Burgdorfer, Wave chaos in the nonequilibrium dynamics of the
Gross-Pitaevskii equation, Phys. Rev. A 83, 043611 (2011).

[35] M. G. Clerc and N. Verschueren, Quasiperiodicity route to spa-
tiotemporal chaos in one-dimensional pattern-forming systems,
Phys. Rev. E 88, 052916 (2013).

[36] G. Tancredi, A. Sánchez, and F. Roig, A comparison between
methods to compute Lyapunov exponents, Astron. J. 121, 1171
(2001).

[37] K. Nozaki and N. Bekki, Chaotic solitons in a plasma driven by
an rf field, J. Phys. Soc. Jpn. 54, 2363 (1985); K. Nozaki, and
N. Bekki, Low-dimensional chaos in a driven damped nonlinear
Schrödinger equation, Physica D 21, 381 (1986).

[38] D. Cai and D. W. McLaughlin, Chaotic and turbulent behav-
ior of unstable one-dimensional nonlinear dispersive waves,
J. Math. Phys. 41, 4125 (2000).

[39] Y. Zhang and J. J. Jiang, Spatiotemporal chaos in excised larynx
vibrations, Phys. Rev. E 72, 035201 (2005).

[40] R. Ramaswamy and F. Julicher, Activity induces traveling
waves, vortices and spatiotemporal chaos in a model acto-
myosin layer, Sci. Rep. 6, 20838 (2016).

[41] G. I. Stegeman and M. Segev, Optical spatial solitons and their
interactions: university and diversity, Science 286, 1518 (1999).

043816-5

https://doi.org/10.1126/science.276.5318.1538
https://doi.org/10.1126/science.276.5318.1538
https://doi.org/10.1126/science.276.5318.1538
https://doi.org/10.1126/science.276.5318.1538
https://doi.org/10.1103/PhysRevLett.91.073901
https://doi.org/10.1103/PhysRevLett.91.073901
https://doi.org/10.1103/PhysRevLett.91.073901
https://doi.org/10.1103/PhysRevLett.91.073901
https://doi.org/10.1103/PhysRevLett.92.113902
https://doi.org/10.1103/PhysRevLett.92.113902
https://doi.org/10.1103/PhysRevLett.92.113902
https://doi.org/10.1103/PhysRevLett.92.113902
https://doi.org/10.1063/1.2337268
https://doi.org/10.1063/1.2337268
https://doi.org/10.1063/1.2337268
https://doi.org/10.1063/1.2337268
https://doi.org/10.1364/OL.30.003171
https://doi.org/10.1364/OL.30.003171
https://doi.org/10.1364/OL.30.003171
https://doi.org/10.1364/OL.30.003171
https://doi.org/10.1016/j.optcom.2016.09.021
https://doi.org/10.1016/j.optcom.2016.09.021
https://doi.org/10.1016/j.optcom.2016.09.021
https://doi.org/10.1016/j.optcom.2016.09.021
https://doi.org/10.1038/srep41438
https://doi.org/10.1038/srep41438
https://doi.org/10.1038/srep41438
https://doi.org/10.1038/srep41438
https://doi.org/10.1364/OL.43.000066
https://doi.org/10.1364/OL.43.000066
https://doi.org/10.1364/OL.43.000066
https://doi.org/10.1364/OL.43.000066
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1038/nphoton.2008.81
https://doi.org/10.1038/nphoton.2008.81
https://doi.org/10.1038/nphoton.2008.81
https://doi.org/10.1038/nphoton.2008.81
https://doi.org/10.1103/PhysRevA.81.013815
https://doi.org/10.1103/PhysRevA.81.013815
https://doi.org/10.1103/PhysRevA.81.013815
https://doi.org/10.1103/PhysRevA.81.013815
https://doi.org/10.1038/nphys445
https://doi.org/10.1038/nphys445
https://doi.org/10.1038/nphys445
https://doi.org/10.1038/nphys445
https://doi.org/10.1364/OL.34.003523
https://doi.org/10.1364/OL.34.003523
https://doi.org/10.1364/OL.34.003523
https://doi.org/10.1364/OL.34.003523
https://doi.org/10.1364/OL.36.004194
https://doi.org/10.1364/OL.36.004194
https://doi.org/10.1364/OL.36.004194
https://doi.org/10.1364/OL.36.004194
https://doi.org/10.1088/1674-1056/23/8/084204
https://doi.org/10.1088/1674-1056/23/8/084204
https://doi.org/10.1088/1674-1056/23/8/084204
https://doi.org/10.1088/1674-1056/23/8/084204
https://doi.org/10.1016/j.optcom.2014.10.016
https://doi.org/10.1016/j.optcom.2014.10.016
https://doi.org/10.1016/j.optcom.2014.10.016
https://doi.org/10.1016/j.optcom.2014.10.016
https://doi.org/10.1103/PhysRevLett.98.053901
https://doi.org/10.1103/PhysRevLett.98.053901
https://doi.org/10.1103/PhysRevLett.98.053901
https://doi.org/10.1103/PhysRevLett.98.053901
https://doi.org/10.1103/PhysRevE.73.066603
https://doi.org/10.1103/PhysRevE.73.066603
https://doi.org/10.1103/PhysRevE.73.066603
https://doi.org/10.1103/PhysRevE.73.066603
https://doi.org/10.1103/PhysRevE.74.036622
https://doi.org/10.1103/PhysRevE.74.036622
https://doi.org/10.1103/PhysRevE.74.036622
https://doi.org/10.1103/PhysRevE.74.036622
https://doi.org/10.1364/OE.24.028784
https://doi.org/10.1364/OE.24.028784
https://doi.org/10.1364/OE.24.028784
https://doi.org/10.1364/OE.24.028784
https://doi.org/10.1016/j.optcom.2017.02.049
https://doi.org/10.1016/j.optcom.2017.02.049
https://doi.org/10.1016/j.optcom.2017.02.049
https://doi.org/10.1016/j.optcom.2017.02.049
https://doi.org/10.1103/PhysRevE.69.016602
https://doi.org/10.1103/PhysRevE.69.016602
https://doi.org/10.1103/PhysRevE.69.016602
https://doi.org/10.1103/PhysRevE.69.016602
https://doi.org/10.1016/j.optcom.2005.12.003
https://doi.org/10.1016/j.optcom.2005.12.003
https://doi.org/10.1016/j.optcom.2005.12.003
https://doi.org/10.1016/j.optcom.2005.12.003
https://doi.org/10.1364/JOSAB.24.002537
https://doi.org/10.1364/JOSAB.24.002537
https://doi.org/10.1364/JOSAB.24.002537
https://doi.org/10.1364/JOSAB.24.002537
https://doi.org/10.1103/PhysRevLett.107.233901
https://doi.org/10.1103/PhysRevLett.107.233901
https://doi.org/10.1103/PhysRevLett.107.233901
https://doi.org/10.1103/PhysRevLett.107.233901
https://doi.org/10.1103/PhysRevLett.110.104101
https://doi.org/10.1103/PhysRevLett.110.104101
https://doi.org/10.1103/PhysRevLett.110.104101
https://doi.org/10.1103/PhysRevLett.110.104101
https://doi.org/10.1098/rsta.2014.0011
https://doi.org/10.1098/rsta.2014.0011
https://doi.org/10.1098/rsta.2014.0011
https://doi.org/10.1098/rsta.2014.0011
https://doi.org/10.1103/RevModPhys.71.835
https://doi.org/10.1103/RevModPhys.71.835
https://doi.org/10.1103/RevModPhys.71.835
https://doi.org/10.1103/RevModPhys.71.835
https://doi.org/10.1103/PhysRevLett.102.025302
https://doi.org/10.1103/PhysRevLett.102.025302
https://doi.org/10.1103/PhysRevLett.102.025302
https://doi.org/10.1103/PhysRevLett.102.025302
https://doi.org/10.1103/PhysRevA.83.043611
https://doi.org/10.1103/PhysRevA.83.043611
https://doi.org/10.1103/PhysRevA.83.043611
https://doi.org/10.1103/PhysRevA.83.043611
https://doi.org/10.1103/PhysRevE.88.052916
https://doi.org/10.1103/PhysRevE.88.052916
https://doi.org/10.1103/PhysRevE.88.052916
https://doi.org/10.1103/PhysRevE.88.052916
https://doi.org/10.1086/318732
https://doi.org/10.1086/318732
https://doi.org/10.1086/318732
https://doi.org/10.1086/318732
https://doi.org/10.1143/JPSJ.54.2363
https://doi.org/10.1143/JPSJ.54.2363
https://doi.org/10.1143/JPSJ.54.2363
https://doi.org/10.1143/JPSJ.54.2363
https://doi.org/10.1016/0167-2789(86)90012-6
https://doi.org/10.1016/0167-2789(86)90012-6
https://doi.org/10.1016/0167-2789(86)90012-6
https://doi.org/10.1016/0167-2789(86)90012-6
https://doi.org/10.1063/1.533337
https://doi.org/10.1063/1.533337
https://doi.org/10.1063/1.533337
https://doi.org/10.1063/1.533337
https://doi.org/10.1103/PhysRevE.72.035201
https://doi.org/10.1103/PhysRevE.72.035201
https://doi.org/10.1103/PhysRevE.72.035201
https://doi.org/10.1103/PhysRevE.72.035201
https://doi.org/10.1038/srep20838
https://doi.org/10.1038/srep20838
https://doi.org/10.1038/srep20838
https://doi.org/10.1038/srep20838
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518

