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Simultaneous ultrabroadband quasi-phase-matching for high-order harmonic generation

Georgiy Shoulga” and Alon Bahabad
Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering,
Tel-Aviv University, Tel-Aviv 69978, Israel

® (Received 5 December 2018; revised manuscript received 3 February 2019; published 11 April 2019)

We propose a simple quasi-phase-matching (QPM) scheme in high-order harmonic generation (HHG) based
on the approximately linear dependence of the phase mismatch on harmonic order. With this scheme, essentially
all the harmonic orders are phase matched simultaneously, with harmonic order ¢ experiencing a gth-order QPM.
We validate this proposal by simulations using a semiclassical numerical model of HHG.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a nonlinear
optical up-conversion process creating extremely broadband
radiation emitted in the form of (tens of) attosecond-duration
pulses [1,2]. At the single-atom level, the HHG process
can be described by a three-step model [3]: tunnel ion-
ization, at which an intense laser field ionizes an electron
out of its parent atom; oscillating acceleration; and, finally,
recombination of the accelerated electron with its parent
ion, where excess kinetic energy is delivered to an emitted
high-energy photon with a frequency lying in the soft x-
ray part of the spectrum. Such a process suffers in many
cases from a mismatch between the phase velocities of
the pump pulse and the HHG emission, hindering efficient
up-conversion.

Quasi-phase-matching (QPM) is a well-known, widely
explored, and commonly used technique for phase match-
ing optical nonlinear conversion processes [4,5]. In QPM,
a modulation of a parameter relevant to the interaction re-
places the strict requirement of momentum matching for
the photons involved in the process with a quasimomentum
balance [6]. The most common modulation geometry of QPM
used for HHG is a periodic modulation, which is useful for
efficiently phase matching a specific harmonic order [7-19],
although the use of random and quasiperiodic modulations
was also suggested to phase match several or a group of
harmonic orders [20], while a sophisticated, hard to real-
ize, spatiotemporal accelerating QPM modulation was pro-
posed to phase match an extremely broadband HHG emission
[21]. Other QPM techniques for HHG, such as the use of
multiple plasma jets [22], might also be relevant provided
the features of the spatial modulation can be varied fast
enough.

Here we propose and validate through numerical simula-
tions that a judicious choice of the period in a simple periodic
QPM scheme can phase match simultaneously essentially all
the HHG emission.
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II. THEORY

Consider an up-conversion of the fundamental harmonic
to a gth harmonic. The phase mismatch for this process is
Ak, = gko — kg, with ko and k, being the wave vectors of the
fundamental and the gth harmonics, respectively. The phase
mismatch also defines the coherence length /, L q/ Ak, over
which the gth harmonic would be built constructively (in
phase). QPM with a periodic modulation of period 2/, (that
is, with a frequency Ak,) would phase match the generation
of the gth harmonic. Using the regular dispersion relation
k(w) = wn(w)/c, we set

1 TC

- q woln(wo) — n(wy)]

l — Lin(g). (M)

q
where w( is the fundamental frequency. As the index of
refraction of the high harmonics depends only weakly on the
frequency, n(w,) ~ 1 (this approximation gets better as ¢ gets
higher), we can safely approximate ly(q) =~ [y = m
With Aky =7 /lp we also get Ak, ~ gAko. We call [y and
Ako the fundamental coherence length and the fundamental
phase mismatch, respectively.

Now, using a QPM modulation at the fundamental phase
mismatch frequency (with a period 2l), it is clear that
harmonic order ¢ would experience a gth-order QPM [23]
provided that the modulation contains a component with a
frequency gAky in its spectrum. Clearly, a perfect sinusoidal
modulation with a frequency Aky would not serve for this
purpose, but a rectangular modulation with a period 2/, and
a duty cycle of 50% (giving a square wave) would be able
to phase match all odd-order harmonics simultaneously. We
define the relative enhancement 7, in a medium of length L
for each harmonic as the intensity of that harmonic at the end
of the medium with QPM modulation divided by the same
without the modulation. Without modulation the intensity

is proportional to I, o | fOL exp(iAqu)exp(—aqz/2)dz|2, with
a, being the absorption coefficient of a harmonic order g.
With QPM of order ¢ the intensity at the end of the medium
is proportional to /; |f0L cqexp(—aqz/Z)dz|2, where ¢, =
2/mq is the Fourier coefficient of the gth harmonic of the
rectangular modulation [23] (this last expression is accurate
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only for long enough interaction lengths: L/I, > 1). Dividing
the latter by the former, we obtain the relative enhancement:

2V (A : 1 — 2e%L/2 4 gmok
o q aglo 1 — 2e~%l/2 cos AkyL + el
2)
Remarkably, if we neglect absorption altogether and cal-
culate the ratio of the intensity at the end of the medium

to just after one coherence length, we get a value which is
independent of the harmonic order:

L(L>1,)

= |LAky/7|* = |L/Iy|?. 3
1)) |LAko/m|” = |L/ll ©)

no absorption

We can easily understand this result: each harmonic order
is phase matched with a gth-order QPM, and as such, its
intensity is lower by g than that with a first-order QPM
dedicated to phase match solely that harmonic. However, with
no QPM the maximum intensity of harmonic order ¢ also
scales as 1/¢°, which causes Eq. (3) to be constant.

Of course, a perfect rectangular modulation is impossible
as its spectrum is unbounded, but we can assume that a finite-
bandwidth QPM modulation would be possible and practical
as we need to phase match only the harmonic orders up to the
cutoff. Thus, this method can achieve a simultaneous QPM of
practically all the HHG spectrum.

In passing, we mention several possible experimental ap-
proaches to realize a QPM scheme for HHG which is rel-
atively sharp enough, that is, composed of several Fourier
components. The first is an all-optical scheme in which the
interference of several spatial optical modes realizes a spatial
intensity grating which translates to a phase grating of the
harmonic emission. Such a QPM approach for HHG was re-
cently demonstrated in a gaseous medium for a small number
of spatial modes [19]; however, in principle, it can easily
be extended to the superposition of several or many modes.
This is especially relevant to scenarios where the required
fundamental spatial frequency is small (say, of the order of
~1 mm™!), as is the case considered in the simulations in
the current work. Another approach, which was demonstrated
experimentally a few years ago, uses a periodically poled
lithium niobate waveguide for HHG in a solid-state medium
[24], where the electric field poling technique which can be
applied at a submicron poling resolution [25] can produce a
rather sharp modulation. Another approach might be using
an ultrasonic transducer driven with an electronic wave-form
generator to modulate the gas pressure in the medium, a
method which was suggested for third-harmonic generation
[26] but needs to be modified for HHG as, generally, it
is inefficient for invariant conditions along the propagation
length [27].

III. SIMULATIONS

We test our hypothesis using a semiclassical one-
dimensional numerical model of high-order harmonic gener-
ation. The propagation of the fundamental harmonic along
the optical axis z is calculated using a known extreme non-
linear propagation equation [28] (which includes the effects
of plasma dispersion). At each propagation step we solve a

one-dimensional (1D) time-dependent Schrédinger equation
with absorbing boundary conditions using a Crank-Nicolson
scheme. The Coulombic potential was modeled with a mod-
ified 1D cusp potential [29] of the form —21,/(1 + \/21,|x|)
(in atomic units), with I, being the ionization potential. The
polarization in each step is calculated using the expectation
value of the electron’s position along the direction of polariza-
tion of the electric field x multiplied by the electron’s charge e
and the atomic density of the medium N: P = Ne(y|x|y).
Finally, the emitted field is calculated by integrating the
propagation equation [28]

0E(z, T) :_Z_HE @

0z c 0t

using a fourth-order Runge-Kutta method. We chose to simu-
late a medium of a preformed plasma waveguide [30,31] made
of argon ions. Such a medium is characterized by relatively
short coherence lengths such that a pump pulse propagating
over the length of dozens of QPM modulation periods at mod-
erate pressures (tens of torr) would hardly be distorted due to
dispersion. Such a medium was already suggested to serve in
several macroscopic manipulation schemes of HHG [21,32].
Explicitly, we simulated HHG in 50 torr of a singly ionized
argon (I, = 27.629 eV) at a temperature of 24 °C; absorption
in the medium was modeled according to the work by Reilman
and Manson [33]; the pump pulse was a transform-limited
Gaussian with a 20-fs FWHM duration, an 800-nm center
wavelength, and a peak intensity of 4 x 10'® W/m? (leading
to a maximal ionization level of ~2% above the already
preionized medium); the total propagation length was 5 mm.

Note that for the conditions simulated in this work, where
there are no diffraction effects providing geometric phase
terms and the intrinsic atomic phase [34] can be neglected,
the phase mismatch of any specific harmonic order is pro-
portional to the pressure [19,35,36]. The HHG cutoff har-
monic order is calculated to be 56. For these parameters the
value of the fundamental coherence length is [y = 0.857 mm.
We simulated QPM with a fundamental frequency of Ak
by modulating the polarization through multiplication with
a rectangular periodic function S;(z) = sgn[sin (Akyz)]. The
results of the simulation are summarized in Fig. 1, where we
see the evolution of the intensity of various harmonic orders
as well as the spectrum at the end of the interaction with
and without the applied QPM scheme. It is evident that all
harmonic orders are indeed simultaneously phase matched,
with each harmonic order experiencing a gth-order QPM. The
relative enhancement [Eq. (2)] is shown in Fig. 1(d). We note
that the prediction of the simplified theoretical model [Eq. (2)]
is not constant in the harmonic order due to absorption, but the
variations in our case are very small on a log scale.

It is also interesting to consider a more elaborate
QPM modulation geometry where we add to the pre-
vious modulation another frequency component which is
set to phase match a particular harmonic order ¢’. In
this case the QPM modulation takes the form S$,(z) =
{sgn[sin(Akgz)] + sin(q' Akoz)}/2. This way we shift the ef-
ficiencies of the generation of different harmonic orders to
better favor the generation of harmonic order ¢/, while all
harmonic orders are still simultaneously phase matched. The
results of simulations with this modulation are shown in Fig. 2
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FIG. 1. HHG with simultaneous QPM of all harmonic orders
using modulation of the polarization vector by the function S;(z) (see
text). (a) Evolution of the intensity /, of various harmonic orders,
(b) the same evolution in logarithmic scale, (c) the HHG spectrum at
the end of the interaction without (black) and with (colored line) the
application of S;(z) modulation at the fundamental phase mismatch
frequency, (d) relative enhancement of each harmonic order (blue
circles) in a logarithmic scale, where the solid red line shows the
theoretical prediction according to Eq. (2) and the vertical dash-
dotted line indicates the cutoff location, and (e) the Ar™ transmission
[33] for a 5-mm propagation.
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FIG. 2. Same as Fig. 1, but the QPM modulation is of the form
of S>(z) (see text) set to phase match all harmonic orders with a
preference to harmonic order ¢/ = 35. In this case, Iy = 7w /Aky =
857 um, and I, = mw/q/Aky = 24.5 pm is the coherence length of
the 35th harmonic. The thick black arrows denote the values related
to harmonic order ¢/ = 35.

for g7 = 35. The preference given to harmonic ¢/ (and its
neighbor harmonics) is obvious in this case. The relative
enhancement of this harmonic order [Fig. 2(d)] is clearly
shifted above that of the other harmonic orders which are
shifted slightly below the value of the previous square-wave
modulation [S;(z)] case. We note that a longer modulation
would better isolate the preferred harmonic from its neighbor
harmonics.

We would like to note that, as indicated above, we modeled
the QPM modulation as an amplitude perturbation of the
polarization excited in the medium. Other types of modula-
tions would change only the Fourier components associated
with the spatial frequencies of the QPM grating, while the
overall effect would be the same in all cases (up to overall
scaling of the conversion efficiency). The exact modeling of
the QPM modulation should depend on the specific physical
realization of the modulation. For example, with pump inten-
sity modulations the grating is essentially a phase modulation
applied to the polarization [19], while for a polarization
beating modulation [14] or a density (pressure) modulation
[27] the grating is applied as both an amplitude and a phase
modulation.

IV. CONCLUSIONS

In conclusion, we have proposed a simple periodic QPM
modulation to simultaneously phase match essentially all
harmonic orders. The low spatial frequency of this modulation
compared to regular QPM schemes necessitates the use of
relatively long interaction lengths with a relatively constant
pump. Thus, this method requires a condition in which the
pump pulse does not vary much during several coherence
lengths for all relevant harmonic orders, while absorption
should not be too dominant (generally, the absorption length
for any relevant harmonic order should be longer than a few
coherence lengths). Thus, conditions that can be relevant are
guiding the pump beam within a preionized medium as con-
sidered in this work or, alternatively, using a neutral gas with
a long interaction length at low pressures and loose focusing
(or using long waveguides) while keeping ionization to a
low level to prevent pulse distortion. Such conditions would
also keep the integrity of the QPM modulation along the
propagation length in the case it is applied all optically [19].
Another option, which was already mentioned, is to use HHG
in long, nonlinear crystal waveguides [24]. We numerically
demonstrated that this technique can be successfully com-
bined with a traditional single-order harmonic QPM, in which
a particular, prechosen harmonic order is favorably quasi-
phase-matched. This work is also relevant in the context of
creating attosecond pulses by employing macroscopic effects
[37], which can benefit from ultrabroadband enhancement, as
well as for probing electronic and nuclear dynamics through
HHG [38,39].
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