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Seeded and unseeded high-order parametric down-conversion
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Spontaneous parametric down-conversion (SPDC) has been one of the foremost tools in quantum optics for
over five decades. Over that time, it has been used to demonstrate some of the curious features that arise from
quantum mechanics. Despite the success of SPDC, its higher-order analogs have never been observed, even
though it has been suggested that they generate far more unique and exotic states than SPDC. An example of
this is the emergence of non-Gaussian states without the need for postselection. Here we calculate the expected
rate of emission for nth-order SPDC with and without external stimulation (seeding). Focusing primarily on
third-order parametric down-conversion, we estimate the photon detection rates in a rutile crystal for both the
unseeded and seeded regimes.
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I. INTRODUCTION

Nonlinear optical effects are so far the most convenient
tool for generating nonclassical states of light. For instance,
parametric down-conversion [1–3] and four-wave mixing [4]
are widely used for producing photon pairs, single photons
(through heralding [5,6]), quadrature squeezed light [7], and
twin beams [8]. Meanwhile, there are attempts to realize
higher-order nonlinear effects, leading to the generation of
photon triplets (or third-order squeezing [9–11]). Despite a
large number of proposals and theoretical papers [12–17],
the direct decay of a pump photon into three daughter pho-
tons, further called third-order parametric down-conversion
(TOPDC), has not yet been realized experimentally. Pho-
ton triplet states have indeed been obtained in experiment
using cascaded quadratic nonlinear effects [18] or acciden-
tally overlapping photon pairs emitted through parametric
down-conversion [19]. However, the statistics of light emitted
through these effects is very different from the statistics of
photons being generated by TOPDC: for instance, in the “cas-
caded” experimental realizations, there is a strong asymmetry
between the photon numbers in the three output beams. Re-
cently, rather high rates of photon triplet generation have been
reported by using exciton and biexciton transitions in coupled
quantum dots [20], but it is not clear to what extent this
process is similar to TOPDC. One of the standout features of
TOPDC that sets it apart from the aforementioned processes
is that it forms a non-Gaussian state. Non-Gaussian processes
are highly sought after due to their application in quantum
computing [21].

As opposed to third-harmonic generation, an effect that
only involves the interaction of single-mode strong classical
fields, the reverse process TOPDC couples a continuum of
weak vacuum fields where the number of modes is limited by
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the phase-matching condition. This is general for all orders of
parametric down-conversion.

Due to the receding value of the nonlinear susceptibility,
higher orders of spontaneous parametric down-conversion
(SPDC) suffer from weaker and weaker efficiencies. It is
one of the primary explanations as to why TOPDC has not
been reported yet, as opposed to second-order SPDC which
is routinely observed. A natural step towards the observation
of TOPDC is to seed (stimulate) the emission of one of the
photons in the three-photon state. An important breakthrough
in this direction has been made in Ref. [22] where two seeding
beams were used. However, no nontrivial photon statistics
could be observed at the output in this case.

In this paper, we give a general description of nth-order
SPDC and compare the efficencies of lower-order processes
and higher-order processes. We then describe how the seeding
of a nth-order process using a strong coherent source affects
the rate of photon emission and changes the fundamental
properties of the emitted radiation. In particular, we show
that seeded TOPDC generates a two-photon state and not
a three-photon state, such as spontaneous TOPDC. Despite
the loss of the three-photon state, we still believe stimulated
TOPDC is an interesting effect to observe as it can be used
as a way to study spontaneous TOPDC, the same way as
stimulated emission tomography [23] is used to characterize
the properties of SPDC.

The paper is structured as follows. In Sec. II, we derive
the rate of n-photon SPDC starting from Fermi’s golden
rule. In Sec. III, we analyze the phase-matching function and
distinguish between two regimes: broadband detection and
narrow-band detection. In Sec. IV, we relate the emission rates
of high-order processes to the emission rates of lower-order
processes. The effect of seeding is considered in Sec. V,
and the spectral properties of seeded and unseeded TOPDC
emission are explored in Secs. VI and VII. In Sec. VIII, we
present an estimate for the expected triplet-, double-, and
single-photon count rates for seeded and unseeded TOPDC
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in rutile. We conclude (Sec. IX) with a discussion of the main
results.

II. THE RATE OF A n-PHOTON TRANSITION PER MODE

A nth-order parametric down-conversion process involves
the transition of a single pump photon to a state of n photons
occupying, in the general case, n modes. Using the approach
outlined in Ref. [24], we calculate the rate of a n-photon
transition per mode using Fermi’s golden rule,

�(n) = 2π

h̄2 |〈〈1||nĤ (n)||0〉〉n|2δ(�ω(n) ), (1)

where

�ω(n) = ωp −
n∑

i=1

ωi, (2)

the subscript i denotes the mode with frequency ωi and
wave-vector �ki, the subscript p denotes the pump mode, and
||0〉〉n, ||1〉〉n signify the n-dimensional vacuum state and the
product state of n modes each populated by a single photon,
respectively. Starting from the electric dipole Hamiltonian
[24,25]: Ĥ = −�d · �E , integrating over all dipole moments for
the macroscopic Hamiltonian and taking all nonlinear terms of
the resulting expression we can write Ĥ (n), the Hamiltonian of
a nth-order nonlinear perturbation, in an isotropic medium as

Ĥ (n) = −ε0
n!χ (n)

2n

∫
F (�r)E (+)

p (�r)
n∏

i=1

E (−)
i (�r)d3�r + H.c.,

(3)

where ε0 is the vacuum permittivity, χ (n)(�r) is the nth-order
susceptibility, which has been separated into the effective
susceptibility χ (n) and its spatial distribution F (�r), a function
that is dimensionless and takes a maximum value of unity.
E (+/−)

i (�r) is the positive or negative frequency electric-field
component of the ith mode. The pump field E (+)

p (�r), using
the correspondence principle, can be described classically in
the limit of large photon numbers. Assuming that the pump
propagates in the z direction, the classical and quantized
electric fields are

E (+)
p (�r) = Ap(x, y)

√
2Ip

ε0cnp
eıkpz,

E (−)
i (�r) = √

cia
†
i e−ı�ki ·�r, (4)

respectively. Here,

ci = − h̄ωivi

2Vqε0cni
, (5)

Ip is the pump intensity, c is the speed of light in the vacuum,
a†

i is the creation operator of mode i, Vq is the quantization
volume, and ni and vi are the refractive index and the group
velocity of mode i, respectively. Ap(x, y) is the transverse spa-
tial distribution of the pump which is dimensionless and has
a maximum value of unity. The temporal part of the electric
fields is accounted for in Fermi’s golden rule; therefore, only
the spatial part of the fields is considered. Combining Eqs. (3)

and (4), we obtain

Ĥ (n) = γ (n) f (�k(n) )
n∏
i

√
cia

†
i + H.c., (6)

where

γ (n) = −n!χ (n)

2n

√
2Ipε0

cnp
, (7)

f (�k(n) ), which we will call the phase-matching function, is
given by

f (�k(n) ) =
∫

F (�r)Ap(x, y)eı ��k(n)·�rd3�r, (8)

and

��k(n) = �kp −
n∑
i

�ki (9)

is the wave-vector mismatch. The phase-matching function
is of importance as it couples all modes involved in the
interaction together. From Eq. (1), the rate of transition from
the vacuum state to a n-photon state is

�(n) = 2π

h̄2 [γ (n)]2D(��k(n),�ω(n) )
n∏

i=1

|ci|, (10)

where

D(��k(n),�ω(n) ) = | f (�k(n) )|2δ(�ω(n) ). (11)

Equation (10) gives the rate of transition into a single set of
n modes. The total transition rate is given by the number of
transitions in the interval between �ki and �ki + d�ki. In three-
dimensional wave-vector space each state occupies a k-space
volume of (2π )3

Vq
. Therefore, the transition rate to a nth-order

state in the intervals d�ki is

dN (n) = �(n)
V n

q

(2π )3n

n∏
i=1

d�ki, (12)

which gives

dN (n) = 2π

h̄2 [γ (n)]2D(��k(n),�ω(n) )
V n

q

(2π )3n

n∏
i=1

|ci|d�ki.

(13)

A significant feature of Eq. (13) is the dependence on h̄. Each
factor of ci scales with h̄, which, in turn, leads to dN (n) scaling
as h̄n−2.

III. PHASE-MATCHING FUNCTION

The phase-matching function and the energy conservation
form a distribution D(��k(n),�ω(n) ) that limits the number of
available final states in which the initial state can transition.
The shape of the distribution dictates the spectral properties
and the degree of entanglement of the generated photons.
The energy conservation term due to the nearly instantaneous
response of nth-order SPDC is given by a δ function following
from Fermi’s golden rule. The phase-matching term, given by

043809-2



SEEDED AND UNSEEDED HIGH-ORDER PARAMETRIC … PHYSICAL REVIEW A 99, 043809 (2019)

(a) (b)

0

0.2

0.4

0.6

0.8

1.0

FIG. 1. The distributions of (a) the interaction volume in which
the nonlinear process takes place and (b) the phase-matching func-
tion in the reciprocal (k) space.

Eq. (8), can be normalized by defining the interaction volume
as V = ∫

F (�r)Ap(x, y)d�r. Then,

| f (��k(n) )|2 = |F[F (�r)Ap(x, y)]|2 ≡ | f̃ (��k(n) )|2V, (14)

where F denotes the Fourier transform. The function
| f̃ (�k(n) )|2 is constant and dimensionless when integrated
over all k spaces.

We assume the pump to be a Gaussian beam with the
waist w0,

Ap(x, y) = exp

(
−

[
x2 + y2

w2
0

])
, (15)

and a Rayleigh length much longer than the length L of
the nonlinear medium. If the spatial distribution of the
susceptibility is uniform throughout the medium, then

F (�r) = 


(
z

L

)
, (16)

where 
 is a rectangular function. Such a distribution is
shown in Fig. 1(a). From Eqs. (14)–(16), the squared modulus
of the normalized phase-matching function is

| f̃ (��k(n) )|2 = V exp

(
−�k2

x + �k2
y

2
w2

0

)
sinc2

(
�kzL

2

)
,

(17)

which is shown in Fig. 1(b).
As mentioned before, when integrated over all k spaces,

this function is a dimensionless constant. For this reason,
whenever a convolution with a broader function is considered,
we will replace Eq. (17) with

| f̃ (��k(n) )|2 → (2π )3δ(3)(��k(n) ). (18)

Further on, we will distinguish between two detection
regimes. The first is when the detection bandwidth Di is
broader than the phase-matching function V −1. This we will
refer to as the broadband regime. The second is when the
detection bandwidth is narrower than the phase-matching
function. This we will call the narrow-band regime. In the
broadband regime, without loss of generality, we will use
Eq. (18) to represent the phase-matching function, and in the
narrow-band case, we will use Eq. (17).

IV. COMPARISON OF HIGH-ORDER PROCESSES
TO LOW-ORDER PROCESSES

Unlike second-order SPDC where the final states are well
defined by energy and momentum conservation, the final
states of higher-order SPDC are almost continuous in k space
as the number of ways to fulfill the phase-matching condition
increases with the process order n. In this situation, the
number of states that can be registered are limited by the
detection scheme. For this reason, we will treat the broadband
and narrow-band regimes as two separate problems. For both
detection regimes, we find the rates of (n − 1)-photon gener-
ation via a nth-order process and a (n − 1)-order process and
derive a relationship between these rates.

A. Broadband detection

Integrating Eq. (13) over all wave vectors captured by the
detection bandwidths Di gives the (n − 1)-photon flux into
(n − 1)-detector bandwidths,

N (n)
n−1 = 2π

h̄2 [γ (n)]2
V n

q

(2π )3(n−1)
V

∫
D1

· · ·
∫

Dn−1

∫ ∞

−∞
δ(��k(n) )

× δ(�ω(n) )
n∏

i=1

|ci|d�ki. (19)

The ratio of (n − 1)-photon generation rates via a nth-order
process and a (n − 1)-order process is given by

N (n)
n−1

N (n−1)
n−1

= n2

32π3

[χ (n)]2

[χ (n−1)]2
〈E2

bb〉, (20)

where we introduce the squared effective broadband vacuum
field [26] as 〈

E2
bb

〉 = h̄

2ε0c

∫ ∞

−∞

ωnvn

nn
ξ (�kn)d�kn, (21)

where the reduced phase-matching function,

ξ (�kn) =

∫
D1

· · ·
∫

Dn−1

δ(��k(n) )δ(�ω(n) )
n−1∏
i=1

|ci|d�ki

∫
D1

· · ·
∫

Dn−1

δ(��k(n−1))δ(�ω(n−1))
n−1∏
i=1

|ci|d�ki

(22)

accounts for the increased number of ways to fulfill the phase-
matching condition with n modes. The effective broadband
vacuum field is the total electric field of all photons in mode
�kn that satisfy the reduced phase-matching condition.

B. Narrow-band detection

The rate of (n − 1)-photon generation into n − 1 narrow
detection intervals Di is

�N (n)
n−1 = 2π

h̄2 [γ (n)]2
V n

q

(2π )3n

∫ ∞

−∞
D(��k(n),�ω(n) )|cn|d�kn

×
n−1∏
i=1

|ci|Di. (23)
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The ratio of the (n − 1)-photon generation rate for a nth-order
process and a (n − 1)-order process is

�N (n)
n−1

�N (n−1)
n−1

= n2

32π3

[χ (n)]2

[χ (n−1)]2

〈
E2

nb

〉
, (24)

where we define the squared effective narrow-band vacuum
field as 〈

E2
nb

〉 = h̄

2ε0cV 2

∫ ∞

−∞

ωnvn

nn
| f (��k(n) )|2d�kn (25)

assuming that the (n − 1)-order process is exactly phase
matched and the nth-order process satisfies energy
conservation.

Approximating the nonlinear susceptibility as χ (n) ≈ E−n
a ,

where Ea is the atomic field strength [27], one finds that the
ratio of the effective vacuum field and atomic field gives the
reduction in efficiency from a high-order process to the next
lower-order process,

N (n)
n−1

N (n−1)
n−1

= n2

32π3

〈
E2

bb

〉
E2

a

, (26)

�N (n)
n−1

�N (n−1)
n−1

= n2

32π3

〈
E2

nb

〉
E2

a

. (27)

V. SEEDING

In this section, we move from the spontaneous generation
of photons via nth-order SPDC to the case where we stimulate
the process using a coherent seed beam. We assume that the
seed has a wave-vector �ks = �kn and a frequency ωs = ωn. If
the seed has a high intensity, then a classical field description
is adequate. The Hamiltonian of a seeded process is therefore

Ĥ (n)
s = γ (n)

s fs(��k(n) )(ı)n−1
n−1∏

i

√
cia

†
i + H.c., (28)

where [28]

γ (n)
s = −n!χ (n)

2n

√
4IsIp

c2npns
, (29)

Is is the seed intensity and the phase-matching function in the
seeded case is

fs(��k(n) ) =
∫

F (�r)Ap(x, y)As(x, y)eı ��k·�rd3�r, (30)

where As(x, y) is the transverse field distribution of the seed
beam.

The seeded nth-order Hamiltonian (28) contains (n − 1)-
photon creation operators. This means that the characteristics
of n-photon emission are lost and the photon statistics become
similar to that of (n − 1)-photon SPDC.

The rate of transition to a (n − 1)-photon state is

�(n)
s = 2π

h̄2

[
γ (n)

s

]2
D(��k(n),�ω(n) )

n−1∏
i

|ci|, (31)

which gives the rate of transition into the intervals d�ki,

dN (n)
s,n−1 = 2π

h̄2

[
γ (n)

s

]2
D(��k(n),�ω(n) )

V n−1
q

(2π )3(n−1)

n−1∏
i=1

|ci|d�ki.

(32)

A. Broadband detection

The seeded (n − 1)-photon emission rate in the broadband
case is

N (n)
s,n−1 = 2π

h̄2

[
γ (n)

s

]2 V n−1
q

(2π )3(n−1)

∫
D1

· · ·
∫

Dn−1

D(��k(n),�ω(n) )

×
n−1∏
i=1

|ci|d�ki. (33)

By taking the ratio of Eqs. (19) and (33) we obtain

N (n)
s,n−1

N (n)
n−1

= |Es|2〈
E2

bb

〉 , (34)

where the squared seed field amplitude is

|Es|2 = 2Is

ε0nsc
. (35)

B. Narrow-band detection

The seeded (n − 1)-photon emission rate into (n − 1)-
narrow-band detectors with bandwidths Di is

�Ns(n)
n−1 = 2π

h̄2

[
γ (n)

s

]2 V n−1
q

(2π )3(n−1)
D(��k(n),�ω(n) )

n−1∏
i=1

|ci|Di.

(36)

The ratio of the (n − 1)-photon emission rate into (n − 1)
detectors for a seeded and unseeded nth-order process is

�Ns(n)
n−1

�N (n)
n−1

= |Es|2〈
E2

nb

〉 . (37)

In both broadband and narrow-band cases, the use of a
seed has an advantage only if the seed field is larger than the
corresponding effective vacuum field.

In the broadband case, if the reduced phase-matching func-
tion |ξ (�kn)| is broad, then the effective field is comparatively
large. Using a continuous-wave (cw) seed would require too
high intensities to overcome the effective broadband vacuum
field strength. In this situation it is advantageous to work with
tightly focused pulsed seed and pump. The product of the seed
and pump peak intensities averaged over time and space yields
a factor of inverse duty cycle and area, significantly enhancing
the efficiency of the nth-order process. For the seed to be
used optimally, one must overlap the pump and seed waves
in space and time. This follows from the phase-matching
function Eq. (30), which is given by the convolution of the
seed and pump. There are drawbacks to using pulsed sources
and tightly focused beams. Other nonlinear effects, that also
scale as the product of strong classical fields, begin to compete
with seeded TOPDC. In particular, the Kerr effect will change
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the phase-matching conditions adding an extra term to �k.
Although we do not consider such effects, they are worth
noting. In addition, using tightly focused beams limits the
nonlinear interaction length.

VI. EFFICIENCY OF UNSEEDED TOPDC

Here, we consider the case of n = 3, which corresponds
to TOPDC. We estimate the photon emission rates for
both seeded and unseeded TOPDC in rutile (TiO2), which
has been suggested previously as potentially efficient for
TOPDC [29].

From Eq. (13), the differential generation rate of a three-
photon state via TOPDC into modes k1, k2, and k3 is

N (�k1, �k2, �k3) = dN (3)

d�k1d�k2d�k3

= R(3) ω1ω2ω3v1v2v3

n1n2n3
| f̃ (��k(3) )|2

× δ(�ω(3) ), (38)

where

R(3) = h̄V

8(2π )8ε3
0c3

[γ (3)]2. (39)

Again we consider the cases of: (1) broadband detection
and (2) narrow-band detection. In both situations, we can
choose to detect the rate of triple photons in modes k1, k2,
and k3, the rate of double photons in modes k1, k2 or the rate
of single photons in mode k1. For double- and single-photon
count rates Eq. (38) is integrated over all wave vectors of the
unregistered mode (mode 3).

A. Broadband detection of TOPDC

Following from Sec. III, the phase-matching function in
Eq. (38) can be replaced by a δ function. Calculating the
integrals,

N3 =
∫

D1

∫
D2

∫
D3

N (�k1, �k2, �k3)d�k1d�k2d�k3, (40a)

N2 =
∫ +∞

−∞

∫
D2

∫
D3

N (�k1, �k2, �k3)d�k1d�k2d�k3, (40b)

N1 =
∫ +∞

−∞

∫ +∞

−∞

∫
D3

N (�k1, �k2, �k3)d�k1d�k2d�k3 (40c)

gives the triple-photon, double-photon, and single-photon
fluxes into three-, two-, and one-broadband detectors whose
bandwidths are given by D1, D2, and D3.

B. Narrow-band detection of TOPDC

The phase-matching function in Eq. (38) is replaced by
Eq. (17) in the narrow-band regime. The triple-, double-, and
single-photon fluxes into three-, two-, and one-narrow-band

detector(s) are given by

�N3 = N (�k01, �k02, �k03)D1D2D3, (41a)

�N2 =
∫ +∞

−∞
N (�k1, �k02, �k03)d�k1D2D3, (41b)

�N1 =
∫ +∞

−∞

∫ +∞

−∞
N (�k1, �k2, �k03)d�k1d�k2D3, (41c)

where D1, D2, and D3 are the detector bandwidths centered
around modes �k01, �k02, and �k03.

In practice, integration over all unregistered wave vectors is
impossible as dispersion information only exists for a limited
bandwidth. In the calculations below, we integrate over a
range of wave vectors where dispersion relation for TiO2 still
holds true, which results in an underestimation of the total
photon flux. The deviation from the true emission rate is
comparatively small due to the factor ω1ω1ω3 in Eq. (38),
which implies that near-degenerate frequencies contribute
more than nondegenerate frequencies. An additional source
of error is introduced by assuming the cubic susceptibility is
fixed at an effective value, independent of frequency. This, in
general, is not true, however TiO2 is optically transparent over
the frequencies we consider, and the nonlinear susceptibility
changes by only 2% with a fixed pump [30].

From now on, we choose to work in frequency-angle
variables (ω, θ, φ) as opposed to wave-vector space (�k), the
transformation is given in the Appendix. The parameter [see
Eq. (38)],∫ +∞

−∞

∫ +∞

−∞
N (�k1, �k2, �k3)d�k1d�k2

= (2π )4R(3) ω3v3

c2n3

∫
ω̃1(θ2, �k3)ω̃3

2(θ2, �k3)ṽ1ñ2

ñ2
1

sin(θ2)dθ2

(42)

is common to both the narrow-band and broadband single-
photon emission rates and gives information on the spread
and spectral content of the photons emitted. The frequency
ω̃1(θ2, �k3) is given by Eq. (A5) and ṽ1, ñ1 are the group
and refractive index evaluated at ω̃1(θ2, �k3). The frequency
ω̃2(θ2, �k3) is given in Eq. (A10), ñ2 is the refractive index
evaluated at this frequency, and θ2 is the polar angle of mode 2.

A key point in all further calculations is finding the depen-
dence ω̃2(θ2, �k3) at fixed �k3 (assuming azimuthal symmetry).
This dependence, which we will refer to as the frequency-
angle contour of mode 2, gives all the points ω2, θ2 that satisfy
conditions ��k(3) = 0, �ω(3) = 0 at fixed �k3. An example is
plotted in Fig. 2 for TOPDC in TiO2 assuming the pump
wavelength to be λp = 532 nm and mode 3 parameters fixed
to collinear degenerate case: λ3 = 1596 nm, θ3 = 0◦.

Phase matching is satisfied using the birefringence present
in TiO2 crystals. Type-I phase matching (o → eee) is as-
sumed. Varying the angle subtended by the optic axis of the
crystal and the pump propagation direction, further called
the crystal orientation, it is possible to change the shape of
the frequency-angle contour as shown in Fig. 2.

The value of Eq. (42) and by extension the single-photon
flux scales as the length of the frequency-angle contour. How
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FIG. 2. Frequency-angle contour for a TiO2 crystal with type-I
(o → eee) phase matching at different orientation angles. The pump
wavelength is λp = 532 nm, and the parameters for mode 3 are fixed
at λ3 = 1596 nm and θ3 = 0◦.

the single-photon differential rate [Eq. (42)] changes with
the crystal orientation is plotted in Fig. 3. The highest rate
occurs at the crystal orientation 68.24◦, corresponding to a
contour that crosses the collinear degenerate point; hence for
all subsequent calculations, this orientation was considered.
The discontinuity in Fig. 3 is due to the fact that we describe
the phase-matching function as a δ function multiplied by
a constant width L−1. At the crossing point of degenerate
phase matching (see Fig. 2), the phase-matching width does
not scale as L−1 but as L−1/2. Hence the assumption that the
phase-matching width is constant is incorrect in this small
interval where degenerate phase matching occurs.

Plotting the integrated value of the frequency-angular
contour as a function of the mode 3 parameters gives the
frequency-angle spectrum of the single-photon emission from
unseeded TOPDC, shown in Fig. 4. The resulting spectrum
is very broad compared to the equivalent spectrum for SPDC.
This is expected in TOPDC due to the increased number of
degrees of freedom in which to satisfy phase matching. In
fact, we expect this trend to continue when looking at higher
orders of SPDC. Nevertheless, the TOPDC spectrum is not
uniform, and, for a fixed frequency, it does not span all angles.

66 68 70 72 74
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1.4

1.6

1.8

Crystal orientation (deg)

dN
3/
dω

3
dΩ

3
(1
0-
13
sr
-1
)

FIG. 3. The differential single-photon count rate for TOPDC in
a 5-mm TiO2 crystal pumped by 100 mW as a function of the crystal
orientation angle. The pump wavelength is λp = 532 nm, and the
parameters for mode 3 are λ3 = 1596 nm and θ3 = 0◦.

FIG. 4. The frequency-angle spectrum of the single-photon dif-
ferential generation rate in mode 3 for unseeded TOPDC in a TiO2

crystal oriented at 68.24◦. The crystal length is L = 5 mm, and the
pump power is Pp = 100 mW.

It follows from Eq. (40c) that integration over a region of the
spectrum shown in Fig. 4 with the limits set by D3 gives the
total single-emission rate N1 for the broadband case.

VII. EFFICIENCY OF SINGLY SEEDED TOPDC

From the general consideration of Sec. V, singly seeded
TOPDC results in the emission of photon pairs, similar to two-
photon SPDC. This is a consequence of fixing one of the final
states in TOPDC. In this case, we fix mode 3 such that �k3 = �ks.
From Eq. (32), the differential rate of two-photon transitions
via seeded TOPDC is

Ns = dN (3)
s

d�k1d�k2

= R(3)
s

ω1ω2v1v2

n1n2

∣∣ f̃
(
��k(3)

s

)∣∣2
δ
(
�ω(3)

s

)
, (43)

where

R(3)
s = V

4(2π )5ε2
0 c2

[
γ (3)

s

]2
. (44)

A. Broadband detection of seeded TOPDC

Equations (40) and (41) are simplified as seeded TOPDC
only generates pair states; hence, we are limited to detecting
just photon pairs and single photons. The rate of two-photon
and single-photon states collected by two and one detectors,
respectively, is

Ns,2 =
∫

D1

∫
D2

Ns(�k1, �k2)d�k1d�k2, (45a)

Ns,1 =
∫

D1

∫ +∞

−∞
Ns(�k1, �k2)d�k1d�k2. (45b)

B. Narrow-band detection of seeded TOPDC

The rate of double- and single-photon emissions into
narrow-bands D2 and D1 is

�Ns,2 = Ns(�k01, �k02)D1D2, (46a)

�Ns,1 =
∫ +∞

−∞
Ns(�k1, �k02)d�k1D2, (46b)

where �k01 and �k02 represent the central wave vectors of the
detection bands D2 and D1.
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FIG. 5. The frequency-angle spectrum of mode 2 for seeded
TOPDC in TiO2 of length L = 5 mm for the pump power Pp =
100 mW and the crystal orientation 68.5◦.

The seeded analog of Eq. (42) is∫ +∞

−∞
Ns(�k1, �k2)d�k1 = 2πR(3)

s V
ω̃3

1ω2n1v2

n2

× exp

(
−�k2

x + �k2
y

4
w2

0

)
× sinc2

(
�kzL

2

)
, (47)

which, again, is common to both the single-broadband and
the single-narrow-band seeded transition rates. For the sake
of completeness we assume that the phase-matching function
can be broader than D1, hence in Eq. (47), the phase-matching
function is given by Eq. (17).

The differential single-photon emission rate is plotted in
Fig. 5 as a function of the frequency, wavelength, and angle
of emission in mode 2. The first noticeable feature is that
the frequency-angle spectrum resembles the one typically ob-
served in SPDC. This follows from our earlier statement that
seeding a nth-order process reduces the nth-order Hamiltonian
to a (n − 1)-order Hamiltonian. The second is that, when
�k3 = �ks, the frequency-angle contour given by ω̃2(�2, �ks) is
similar to the spectrum in Fig. 5. The difference between
the two cases is that the frequency-angle spectrum has a
nonzero width due to the nonzero width of the phase-matching
function. A significant point is that the integrated values
of both the frequency-angular contour in Fig. 4 and the
frequency-angular spectrum in Fig. 5 over all frequencies
and angle spaces are equivalent. Comparing the frequency-
angle spectrum of seeded TOPDC in Fig. 5 and the equivalent
spectrum for spontaneous TOPDC shows that the seeded
spectrum is far more concentrated to particular regions. This
is advantageous especially in the narrow-band case as it is
clear where to place detectors to collect the largest number of
single photons. Conversely the TOPDC spectrum is broad and
uniform over a large region of the angular frequency spectrum,
making it harder to distinguish from background sources of
light.

Comparing Eq. (42) for spontaneous TOPDC and Eq. (47)
for seeded TOPDC reveals that the reduced Planck constant
enters only Eq. (42) through R(3) and is absent from Eq. (47).
It is also absent for the equivalent relations for SPDC. This,
along with other effects, such as a non-Gaussian Wigner
function [9,10], implies that spontaneous TOPDC displays

quantum features that are not observed in either seeded
TOPDC or SPDC. More generally, it follows from Eq. (13)
that SPDC of order n contains the Planck constant to the
power n − 2 as mentioned previously.

VIII. NUMERICAL ESTIMATIONS OF SEEDED
AND UNSEEDED PHOTON COUNT RATES

In this section, we take into account the available ex-
perimental parameters, including the quantum efficiencies
η1–3 for the three detectors, and estimate the count rates for
triple coincidences η1η2η3N3, double coincidences η1η2N2,
and single-photon counts η1N1 from unseeded TOPDC in both
the broadband regime and the narrow-band regime. The quan-
tum efficiencies are assumed to be independent of frequency
or angle. We take the effective cubic susceptibility for the
type-I process in TiO2 to be χ (3) = 2.1 × 10−20 m2 V−2 [27],
the length L = 5 mm and the orientation angle 68.24◦ (see
Fig. 3). For spontaneous TOPDC, we assume a cw pump
with power Pp = 100 mW. For seeded TOPDC, we assume
a pulsed pump and seed (see Sec. V) overlapped with a beam-
waist w0 = 100 μm and duty cycle D = 2 × 10−8. The seed
has mean power Ps = 10 mW and the pump Pp = 100 mW
which corresponds to peak intensities of Is = 1.6 × 1013 and
Ip = 1.6 × 1014 W m−2, respectively. The seed wavelength is
assumed to be 1620 nm, slightly redshifted from the detection
bandwidth.

A. Broadband detection

Broadband detection refers to both frequency and angle. In
this situation, the best strategy is using multimode avalanche
photodiodes (APDs) [31]. Despite their lower quantum effi-
ciency compared to superconducting nanowires, they are more
efficient to use due to the larger collection angle. For such
a situation, we assume a quantum efficiency of 15% over
a frequency range of 1200–1600 nm. The capture angle is
limited only by the aperture size of the emission collected
which, for arguments’ sake, we limit to −10◦ to 10◦.

Figure 6(a) shows the expected triple coincidence, double
coincidence, and single count rates via seeded and unseeded
TOPDC in TiO2. Without seeding, it is feasible to observe
single counts and double coincidences, whose rates are 33 and
1 Hz, respectively. The estimated triple-coincidence rate is on
the order of a few per hour and, after taking into account the
dark counts of the detectors (4 kHz), would be very difficult
to measure.

The seed enhances the detection rate of single and dou-
ble photons by roughly 107 times compared to the case of
unseeded TOPDC, although this comes at the cost of losing
the three-photon state. The seeded two-photon emission rate
is 300 kHz. However, this would be difficult to measure
experimentally with the duty cycle assumed, which would
require a low repetition rate. It is therefore more reasonable
to reduce the mean powers of the pump and seed pulses
so that the repetition rate of the laser is much larger than
the two-photon emission rate. Despite this, with such rates,
one can readily study the properties of the three-photon state
generated via spontaneous TOPDC by using methods, such as
stimulated emission tomography.
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FIG. 6. The expected triple-, double-, and single-photon count
rates of seeded and unseeded TOPDC in 5-nm TiO2 for (a) the
broadband regime and (b) the narrow-band regime. The seed beam
is centered at 1620 nm, the pump power is Pp = 100 mW, and the
overlapped seed peak intensity Is = 1.6 × 1013 W m−2. The count
rates calculated for the broadband regime assume collection of
wavelengths from 1200 to 1600 nm and angles from −10◦ to 10◦ with
a detection efficiency of 15%. The count rates for the narrow-band
regime assume collection of wavelengths from 1579 to 1589 nm and
angles from −0.25◦ to 0.25◦ with a detection efficiency of 80%.

B. Narrow-band detection

Working in the narrow-band detection regime is advanta-
geous if fluorescence or other sources of noise are competing
processes. By choosing a bandwidth where the three-photon
emission is particularly strong, one can maximize the signal-
to-noise ratio (SNR). Emission rates around the degeneracy
frequency are relatively high due to the factor ω1ω2ω3 that
appears in Eq. (10). For a 100-μm beam waist, single-mode
superconducting nanowire detectors capture angles between
−0.25◦ and 0.25◦ with a quantum efficiency of 80%. In ad-
dition to this, the number of dark counts for superconducting
nanowires can be as low as 50 Hz as opposed to multimode
APDs where the dark counts are around 4 kHz. This further in-
creases the SNR for the narrow-band regime. We assume that
the frequency bandwidth is restricted to 1584 ± 5 nm, which
is close to degeneracy but satisfies the frequency matching in
the seeded case.

The calculated narrow-band triple-, double-, and single-
photon count rates are compared in Fig. 6(b). Here the rates
are lower than in the broadband case, but the seed provides a
stronger enhancement. This is expected as seeding fixes one
of the triplet modes thereby reducing the number of degrees
of freedom; it follows that photons are emitted into a fewer
number of modes, but the count rate per mode increases.
The number of photon double counts from seeded TOPDC
is roughly 3 × 106 Hz, which as mentioned previously can
only be measured with a suitably fast laser repetition rate.
For comparison, the number of SPDC photon pairs generated
from potassium titanyl phosphate pumped by a 100-mW
pump centered on 532 nm with a 10-nm bandpass collection
is 1.6 × 109 Hz [32].

IX. CONCLUSION

In conclusion, we have derived a general expression for
the emission rate of nth-order SPDC. The phase-matching
and energy conservation conditions can be written as a single
function D(��k(n),�ω(n) ), which restricts the frequency-angle
distribution. As the function D(��k(n),�ω(n) ) restricts only
two degrees of freedom, the angular spectrum of two-photon
SPDC is fully defined. However, moving to higher-order
SPDC, the number of degrees of freedom exceeds the re-
strictions set by D(��k(n),�ω(n) ) leading to broader angular
spectra with increasing n.

Calculations are simplified by distinguishing between two
regimes with broadband and narrow-band collections of n-
photon radiation. In the broadband regime, the width of the
distribution D(��k(n),�ω(n) ) is irrelevant as only the inte-
grated distribution matters. As such, the TOPDC efficiency
does not depend on the width of the frequency-angular spec-
trum (see Figs. 5 and 2) for modes 1 and 2, only the length
of the curve. In the narrow-band case, D(��k(n),�ω(n) ) is
evaluated at the central position of the detector bandwidths.

By comparing the rate of (n − 1)-photon state generation
for a nth-order process and a (n − 1)-order process, one
can conveniently define an effective field that describes the
total electric field of all phase-matched states. We show that
the ratio of this effective field squared and the atomic field
squared roughly gives the reduction in efficiency from one
process to the next.

The rate of emission for nth-order SPDC scales as h̄n−2.
Scaling with the Planck constant is a feature commonly
attributed to quantum characteristics. As such, all high-order
SPDC states are very much distinguished from the two-photon
state generated from two-photon SPDC. This is in agreement
with the fact that these processes produce non-Gaussian states
whereas the output state of second-order SPDC without post-
selection is Gaussian.

Coherently seeding one of the modes that satisfies phase
matching maps the nth-order nonlinear Hamiltonian to a
(n − 1)-order Hamiltonian. As a result, the photon statistics
of a nth-order seeded process mimic those of a (n − 1)-order
process. Moreover, using a seed gives an enhancement to the
rate of photon emission, equal to the ratio of the seed field am-
plitude squared and the effective squared vacuum field. When
working in the pulsed regime, one uses the peak seed field am-
plitude, hence there can be a large enhancement using a seed.

Finally, for the particular case of TOPDC (n = 3) we
have estimated the photon emission rates for rutile. We show
that despite being far broader than the typical second-order
SPDC spectrum, the distribution D(��k(n),�ω(n) ) still limits
the angular spectrum of TOPDC. Plotting the distribution over
frequency and angle reveals optimum regions in which to
collect single, double, and triplet photons.

Optical fibers, planar waveguides, and whispering gallery
resonators [12,33,34] have all been suggested as promising
platforms on which to generate triplet states via TOPDC.
Although we have concentrated on bulk materials here, seed-
ing may also be implemented for each of the aforementioned
methods. However, in most cases, the phase matching in
fibers, planar waveguides, and whispering gallery resonators
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is satisfied by modal overlap. Hence there is a slight modi-
fication on the theoretical approach outlined in this paper to
calculate the number of photon triplets, doubles, and singles.

The estimated triplet rates are too low to readily observe,
however we show that by utilizing a pulsed seed beam one can
greatly improve the rate of emission. From the estimates, the
seed gives an enhancement of roughly 109 in the broadband
case and 1014 in the narrow-band case. The drawback is that
one can only observe double-photon counts in the seeded
regime and statistics predicted for the three-photon state can-
not be acquired. Despite this, using stimulated tomography
one can reconstruct the statistics of the three-photon state [23].
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APPENDIX: DERIVATION OF EMISSION RATES
FOR UNSEEDED TOPDC

The integrals,∫ +∞

−∞
N (�k1, �k2)d�k1, (A1a)∫ +∞

−∞

∫ +∞

−∞
N (�k1, �k2)d�k1 d�k2 (A1b)

can be solved analytically. As the integration domain is
broader than the phase-matching function, we can replace
| f̃ (�k(n) )|2 with (18), which gives∫ +∞

−∞
N (�k1, �k2)d�k1 = (2π )3R(3)

∫
ω1ω2ω3v1v2v3

n1n2n3
δ(��k(3) )

× δ(�ω(3) )d�k1. (A2)

The frequency is related to the wave vector as

n(ωi )ωi

c
=

√
k2

ix + k2
iy + k2

iz, (A3)

where n(ωi ) is the dispersion dependence. Then, integration
in Eq. (A2) gives∫ +∞

−∞
N (�k1, �k2) d�k1 = (2π )3R(3) ω̃1(�k2, �k3)ω2ω3ṽ1v2v3

ñ1n2n3

× δ[ωp − ω̃1(�k2, �k3) − ω2 − ω3],

(A4)

where ω̃1(�k2, �k3) is found from the equation,[
n(ω̃1(�k2, �k3))ω̃1(�k2, �k3)

c

]2

= (k2x + k3x )2 + (k2y + k3y)2

+ (k2z + k3z − kp)2, (A5)

and ñ1, ṽ1 are the refractive index and group velocity at this
frequency (both functions of �k2, �k3).

Finding the expression for the single-photon generation
rate requires integrating Eq. (A4) in �k2. It is now convenient to
pass from the wave-vector space to the frequency-angle space,
hence we use the following transformations to substitute into
Eq. (A5):

kix = niωi

c
sin θi cos φi, (A6a)

kiy = niωi

c
sin θi sin φi, (A6b)

kiz = niωi

c
cos θi. (A6c)

The differential d�ki is then,

d�ki = n2
i ω

2
i

c2vi
dωid�i, (A7)

where the solid angle interval is

d�i = sin(θi )dθidφi. (A8)

By assuming azimuthal symmetry, we can rewrite Eq. (A5) as

n2(ω̃1(�k2, �k3))ω̃2
1(�k2, �k3) = (n2ω2 sin θ2 + n3ω3 sin θ3)2

+ (n2ω2 cos θ2 + n3ω3 cos θ3

− npωp)2. (A9)

Due to the azimuthal symmetry, integration of Eq. (A4) in
dφ2 results in a factor of 2π . Integration in ω2 fixes it to be

ω̃2(ω3, θ2, θ3) = ωp − ω̃1(ω̃2, ω3, θ2, θ3) − ω3. (A10)

Obtaining the analytical expression for ω̃2 is difficult; there-
fore, in all calculations, we solve Eq. (A10) numerically or
graphically. As a result,∫ +∞

−∞

∫ +∞

−∞
N d�k1d�k2

= (2π )4R(3) ω3v3

c2n3

∫
ω̃1(ω̃2, ω3, θ2, θ3)ω̃3

2(ω3, θ2, θ3)ṽ1ñ2

ñ2
1

× sin θ2dθ2. (A11)

To find the rate of photon emission within a certain detection
bandwidth �ωdet in the frequency and ��det in the solid
angle, one should additionally integrate the differential rate
(A11) over these bandwidths.
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