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Photonic states with large and fixed photon numbers, such as Fock states, enable quantum-enhanced metrology
but remain an experimentally elusive resource. A potentially simple, deterministic, and scalable way to generate
these states consists of fully exciting N quantum emitters equally coupled to a common photonic reservoir,
which leads to a collective decay known as Dicke superradiance. The emitted N-photon state turns out to be
a highly entangled multimode state, and to characterize its metrological properties in this work we (i) develop
theoretical tools to compute the quantum Fisher information of general multimode photonic states, (ii) use it to
show that Dicke superradiant photons in one-dimensional waveguides achieve Heisenberg scaling, which can be
saturated by a parity measurement, and (iii) study the robustness of these states to experimental limitations in

state-of-the-art atom-waveguide QED setups.
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I. INTRODUCTION

Quantum metrology exploits quantum resources, such as
squeezing and entanglement, to enhance the precision of
measurements beyond the capabilities of any classical scheme
[1-4]. Given N probes to estimate an unkown parameter ¢,
classical measurements are limited by the shot-noise limit
(SNL) Ag = 1/+/N, whereas entangled probes can surprass
this bound possibly reaching the Heisenberg limit (HL),
Ag@ = 1/N, which in fact provides the ultimate bound on sen-
sitivity. In atomic ensembles, achieving quantum-enhanced
metrology with relatively large particle numbers appears
possible [5-13]. The situation becomes more challenging
when dealing with photonic states in optical interferome-
try. Squeezed states, a well-known resource [14], are very
challenging to scale up, with current demonstrations being
at the few-photon level [15,16]. States with a well-defined
photonic number, e.g., NOON [17] and twin-Fock [18] states,
also constitute a powerful resource, which has been exper-
imentally tested for few-photon states [19-21]. Yet, current
experimental methods to generate these states are limited by
both low fidelities and efficiencies, since they are based in
combining heralded single photons with postselection, which
naturally leads to an exponential decrease of the efficiency
with increasing N [22,23].

A promising approach for generating multiphoton states in
a deterministic, efficient, and scalable manner are quantum
emitters coupled to photonic waveguides [24-32]. In these
setups, the waveguide decay rate, '}y, can exceed the free
space one, I'*, and naturally enhance the photon collection
efficiency of the system. On top of that, when all the quantum
emitters couple equally to the waveguide, their dynamics is
described by the celebrated Dicke model [33], which predicts

“These authors contributed equally to this work.
a.gonzalez.tudela@csic.es

2469-9926/2019/99(4)/043807(15)

Ay # VNA,, -

043807-1

an additional collective enhancement of the waveguide decay
rate. Given N emitters in the waveguide and m collective
atomic excitations, previous studies focused on the regime
m < N [34], where the m collective excitations decay into a
single-mode m-photon wave packet with an error scaling as
&lin ~ mI'*/(NT14). The main limitation of this regime arises
in the preparation of the initial state, since creating a fixed
number m of collective atomic excitations requires the use of
sophisticated protocols [35-37].

A conceptually and experimentally simpler approach con-
sists of exciting all the quantum emitters, i.e., m = N. In this
regime, the emitters experience a nonlinear decay, known as
Dicke superradiance, leading to a multimodal structure of the
emitted N-photon wave packet [35], which can be generally
written as

o) dk; .. +
B A

where al{ is the creation operator of a waveguide photon of
momentum k;. The coefficient Ay = Ay, «,,...x, characterizes
the multimodal structure of the wave packet. In contrast to
the case of linear decay processes [34], it is not factorizable:
- Ay, . This protocol uses all possible excita-
tions while having a particularly simple initial state, making
it very attractive for experiments. However, the multimode
form of the emitted state prevents the direct use of previous
results in quantum optical metrology [1-4]. In fact, the poten-
tial of Dicke superradiant states for metrology has not been
addressed so far, despite being a promising candidate.

In this work, we show that one-dimensional Dicke su-
perradiant states achieve Heisenberg scaling as [A¢]picke &
0.41/N, performing only slightly worse than Fock states,
[A@]rock ~ 0.5/N. Furthermore, we characterize the robust-
ness of Dicke superradiant states to several experimental
error sources, showing how they are particularly robust to
photon losses with an error scaling as &, o In(N)["* /T4,
for I'yg > I'*. Thus, for a given ratio I';4/T"*, and desired
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FIG. 1. General scheme of the protocol: two emitter ensembles
are coupled collectively to two waveguides connected to the A/B
ports of a Mach-Zehnder interferometer.

error, &y, our protocol can potentially generate up to N ~
exp(enl'1a/T'*) photons, paving the way for efficient and
scalable quantum-enhanced metrology protocols. To obtain
these results, we develop theoretical tools to characterize the
metrological properties of general multimode states of the
form (1) in Mach-Zender interferometry. We illustrate their
potential in multimodal photonic states created in anharmonic
cavities [38], which we show to allow for quantum-enhanced
metrology without reaching Heisenberg scaling, and envisage
they can be readily applied to other multimode states that
appear in relevant experimental setups, such as biexciton
emission in quantum dots [39].

II. QUANTUM OPTICAL INTERFEROMETRY

A paradigmatic task in optical interferometry is the mea-
surement of a phase ¢ with high precision. The standard
setup is the so-called Mach-Zehnder interferometer depicted
in Fig. 1. The main resource of this protocol is the initial
photonic state, |1/), impinging onto the first beam splitter with
input (output) ports A/B (C/D) with annihilation operators
a/b (c/d). The beam splitter can be described as a unitary
Usps(6) = exp[0(a’h — bTa)] with the mixing angle 6. After
this operation the photon can travel in two different arms,
acquiring a relative phase ¢ through U, = exp[—ip/2(c'c —
d'd)]. This results in a state [¥,), which now contains in-
formation on ¢. By applying a measurement M on |,), the
phase ¢ can be estimated with an uncertainty Ag. In general,
Ag depends on |,), M, and the number of repetitions of
the experiment v. Assuming v >> 1, the quantum Cramér-Rao
bound [40,41] gives a lower bound for Ag that is independent
of M, (Ap)* > 1/vFpl¥,], where Fy[,] is the quantum
Fisher information (QFI) [42] of the state [,,),

FolW,] = 4| ¥,) — (W 1¥e) ). )

The QFI characterizes the potential of |,) for estimating ¢
with an optimal measurement.

Let us illustrate the power of the QFI, with relevant ex-
amples in optical interferometry. For example, in classical
sources using coherent states, [/!) = |a)4 ® |0)z, the QFI is
at most proportional to the average photon number, Fp < N,
with N = |«|?. The upper bound of the QFI, given by the

HL, Fp = N2, is obtained by NOON states [17], W};OON) =
\/%(lNO) + |ON)e™N?), where |N,N;) indicates the number of
photons in the C/D path. The more experimentally friendly
twin-Fock states (TFS) [18], [/,"°) = U, Ups (7t /4)IN/2)4 ®
|IN/2)p, obtained when two Fock states enter into the first
beam splitter, also lead to Heisenberg scaling with slightly
worse slope,

NN +2)

Folw,™] = — 3)

Furthermore, this bound can be saturated by a number-
resolved measurement [43] or a parity [44] measurement,
which is optimal for any bosonic state that is mode-symmetric
[45]. Many other two-mode quantum states enable quantum-
enhanced metrology (see, e.g., Refs. [46—48]), notably includ-
ing random bosonic states [49]. In the following section, we
go beyond the standard two-mode interferometry described
above (see, e.g., the review [4]), and analyze the QFI when
the input states of the interferometer are multimode states of
the general form (1).

III. QUANTUM FISHER INFORMATION
OF MULTIMODE STATES

Let us restrict our attention to the case where the initial
state |y) = |q>114V ) ® |¢BB) has a well-defined photon number
Nyyp at the A/B ports of the first beam splitter. The total
photon number N = Ny 4+ Np is the metrological resource.
The states have the multimodal structure (1) with modal co-
efficients Ay, /By, and where {k} = {ki, ..., ky,} and {q} =
{q1, ..., qn,} represent the internal degrees of freedom of the
A/B wave packet. In our case they are the momenta of the
photons in the A/B wave packets, although the problem is
generally formulated.

Generalizing the beam splitter and phase operation to deal
with multimode variables:

dk . +
Uss(0) = exp E(akbk — ba)0 “
and
dk
U, = exp [-i% / E(c}:ck - d,jdk)}, )

U,Ups(t /9o @

|¢1(5,NB) ). Exploiting the bosonic symmetry of the wave packets
Ayy/Byy under permutation, we simplify the QFI of |/") to
a very transparent formula (see Appendix A 1),

Fo [IPAB] = 2NaNglap + Na + N3,

which only depends on a single integral I4p:

we consider states of the form |1//£‘B)

NA Np
lj 1, ldk dq] % B*
Qr )NA+NBNA INp! kiseokng T g gy
X Ag k... kny BklytIz,...,LINB ’ Q)

where the two indices k;/q; have been exchanged in one
of the coefficients. This formula is applicable to general
multimode photonic states of a fixed photon number, and in
the Appendix A 1 we extend it to situations where the number
of photons is only fixed in one input of the interferometer. It is
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easy to see that in the single-mode case I,z = 1, in agreement
with previous results [43]. Let us now focus on the case
where the A/B wave packets have the same number of photons
Ny = Ng = N/2 and the same modal structure Ay = Byy.
These twin multimode states (TMS), denoted as |1, ), have
a simple expression for the QFI,

N(IyN +2)

FQ[ngS] 2 ’

where Iy is the integral of Eq. (6) for Ny = Ng = N/2 and
Ay = Byy. Thus a general multimode wave packet will beat
the SNL as long as Iy decays slower than 1/N, and reach HL
scaling if Iy tends to a constant. Importantly, in Appendix A 2
we show that the QFI saturates for a parity measurement. Now
we compute Iy of two experimentally relevant photonic states,
Dicke superradiant states, and photonic states generated in
anharmonic cavities.

(7

IV. QFI OF ONE-DIMENSIONAL SUPERRADIANT STATES

The first multimode photonic states that we consider are
the ones naturally generated from N fully excited quantum
emitters, described as two-level systems {|g), |e)}, with an op-
tical transition coupled to a waveguide mode at a rate I'14. We
focus on the so-called mirror configuration [30-32], in which
the emitter positions are fixed such that all of them interact
equally with the waveguide modes. In that configuration, and
assuming that the relaxation time scales of the waveguide
are much faster than the time scales of the system dynamics
[50], the quantum emitter dynamics are governed by the Dicke
model [33]

p = i(pH ) — Hetrp) + T10Sge 0eqs (8)

where p is the density matrix describing the quantum emitters’
state, Hef = woSee — i %SegSge the effective non-Hermitian
Hamiltonian, and where we denote the collective emitter
operators as Syp = Zj lee) i (BI.

Interestingly, if we initialize the system to be fully excited,
le)®V, both the effective Hamiltonian and the quantum jump
terms S, S, restrict the evolution to the fully symmetric
space. This guarantees that only N states participate in the
evolution, which can be classified depending on their number
of excitations, m, that we denote as |v,,) S;”g|g)®N . From
H.g, note that these energy levels are linearly spaced, w,, =
mawy. The nonlinearity of the process emerges from the decay
rates y,, (associated to the transition |v,,) — |¥;,—1)) which
depend on the number of excitations as y,, = m(N —m +
1)I'1q. In particular, |v,,) decays as y,, < N at the beginning
and end of the process, while accelerating in the middle
part, where yy/» & N 2, referred to as the Dicke superradiance
effect. When all the emitters have decayed, the resulting
photonic state reads [35]

N
7
Aw=]]-— - — +{k <ok} )
j=1 i(joo — -y @) = 3v;
where we use the notation {k; <> k;} to denote that the ex-
pression has to be symmetrized with respect to the momenta
k;j. This wave packet inherits the nonlinearity from the decay

Ym =Tipm(N —m+1) w, = nwo + n(n — 1)U
5 10 50 100

N

FIG. 2. Scaling of (A¢)? with N for several situations discussed
along the manuscript. In solid blue and yellow we plot both the shot-
noise and Heisenberg limit (as depicted in the legend), respectively.
In solid red, the scaling of Fock states. In black squares, we plot
the numerical results for TMDS. In red (below) and yellow (upper)
triangles. we plot the numerical results obtained of anharmonic
cavities for U/N = 10/10° in I'4 units, respectively.

process as temporal correlations between the N photons and,
thus, it cannot be factorized as a single-mode one.

We now study the metrological potential of the states (9).
For that, we consider a protocol where two ensembles with
N/2 emitters are placed at the input ports of a Mach-Zehnder
interferometer, as depicted in Fig. 1. Then, a simultaneous
collective 7 pulse is implemented in both ensembles, leading

to an emission of two heralded N/2-photon states: | ;N/ 2)),

|¢>gv/ Yy, In principle, the wave packets are emitted in two
directions but one can combine them such that they propagate
in a single direction, while keeping the same metrological
properties (see Appendix A 3). For obtaining the QFI of this
state, we need to calculate the N-variable integral Iy for Ay,
defined in Eq. (9). Note that there are (N/2)! terms in (9),
which lead to [(N/ 2)!1* terms in the integral. The number of
integrals can always be reduced to (N/2)* by noting that all
variables in Iy are exchangeable except for ¢; and k; [51]. For
the Ay, in (9), we develop a recurrence relation which can be
efficiently computed for large N, consisting of a multiplication
of N matrices of at most size 3N x 3N (see Appendix A 4).
This allows for determining Iy exactly for large N. With this
method, we numerically obtain that Iy quickly approaches a
constant Iy = 0.82 for the range of N considered (up to ~500
photons). This has the important consequence that the QFI of
superradiant TMDS shows the Heisenberg scaling:

Foly,MP3] ~ 0.41N* + N. (10)
where TMDS stands for twin multimode Dicke states. In
Fig. 2, we plot (Ag)* of ¥,MP in black squares, together with
Fock states (in solid red) showing how the multimodal case
has the same scaling, just with a slightly reduced prefactor.
This is the most important result of this work, since it provides
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a path towards efficient and scalable multiphoton states useful
for quantum metrology protocols.

V. EXPERIMENTAL CONSIDERATIONS

Since there are currently many platforms [24—32] with the
potential to obtain superradiant photonic states, we analyze
now the resilience of the QFI to several experimental imper-
fections in the preparation stage. We start by considering the
main source of noise of these setups which comes from the
emission into modes other than the waveguide ones, e.g., free
space or a different waveguide polarization, that we embed
into a single (individual) decay rate I'*. This term takes the
states |1,,,) out of the collective subspace at a rate mI™*, so that
it is especially critical when the system is fully excited. The
probability of emitting N-collective photons, which translates
into a photon state fidelity, can be estimated as the probability
of no jump in each step:

*

N
r* r
p%l_[(l—m )%l—m(zv)rld, (an
m=1

Yml1d

which is a valid assumption as long as I'jg > '™ In(N) and
N > 1, like we numerically confirm through exact integration
of the master equation (see Appendix A 5a). The resulting
photonic state will be a mixed state which can be written as
ONsx = p|¢f(,N))(¢/(4N)| + (1 — p)oy, where o7 is a convex com-
bination of state with less than N photons in the waveguide.
Using two such mixed states as input of the interferometer,
pTMDs = pn/2,+ ® PNj2,%» We can bound its QFI by noting
that the QFI is non-negative and additive under direct sum,

obtaining

Folpg™] = p*Foly™] (12)

This shows that, as long as we are in the limit I'1q4 > I'*,
the results become robust to photon loss with an error that
increases only logarithmically with N.

Let us now enumerate other error sources, and provide
the conditions under which they can be neglected (see Ap-
pendix A5 for details). Absorption within the waveguide (or
scattering through imperfections) provides a finite propaga-
tion length to the waveguide modes, Lyop, Which spoils the
collective behavior of the atomic interactions. To be able to
neglect this effect the propagation length must be larger than
the system size Lyop > NA,4, with A, being the wavelength
of the waveguide modes determining the distance between
QEs. State-of-the-art values for SiN waveguides [26] show
Lprop/Aa ~ 5 % 10%, such that this will be in general a small
correction. This finite lifetime of the waveguide modes also
leads to photon loss, while the wave packet propagates away
from the QEs. Furthermore, to neglect retardation effects, the
propagation time scales, ~N,/v,, must be much shorter than
the shortest emitter time scale, that in this case occurs in
the middle of the superradiant decay, being proportional to
(TaN? /471

Another error source is the deviation from the initial atomic
state, e.g., by an imperfect control of the timing, 7', or laser
amplitude, €2, in 7 pulse, that we embed in a single parameter
AQT). If A(QT)/N < 1, this translates into a different

initial state, ~(1 — iA(QT)v/NSg)|e)®", which leads to an
error scaling as ~A(QT)>N. Other deviations from the ideal
setting are that the two QE ensembles couple differently to
the waveguide, A"y = T'1g — F/ld, or that the wave packets
are emitted with a certain time delay, t, rather than simultane-
ously. Both deviations decrease the integral Iy in the following
way:

(AT'19)?
I ~Iyl|l — ———N 13
N, AT 14 N( 812, (13)
and
Iy: 2 Iy(1 = NT47) (14)

for ATy < I'jg and NT' 147 < 1, respectively. Summarizing,
one must ensure simultaneously that N(AT'j4)?/T'}; < 1 and
NT47 < 1 in order to guarantee quantum-enhanced metrol-
ogy.

Finally, let us now briefly discuss imperfections in the
interferometer and in the measurement. In Appendix A 5f,
we find that photon loss in the interferometer, quantified by
a probability 7, leads to a correction to the QFI that is smaller
than nN>Iy/4 (at first order in 1), so that one needs at most
n < 4.9N~? to ensure Heisenberg scaling. For sufficiently
large N, Heisenberg scaling is eventually lost with photon loss
independent of the state into consideration. Then, the quantum
advantage just shows up as a better prefactor in the scaling of
the QFI with N [52,53]. This regime, which requires dealing
with mixed states, will be discussed in a forthcoming pub-
lication [54], where we will show that TMDS of N photons
have similar metrological properties to twin-Fock states of
~0.91N photons. Given that twin-Fock states are known to be
robust to photon loss, both in the interferometer [55] and in the
measurement device [43], we expect TMDS to be a valuable
resource for quantum-enhanced metrology in the presence of
photon loss in the interferometer and in the apparatus [54].

VI. QFI OF ANAHARMONIC CAVITIES

Let us illustrate the potential of the tools we developed
with another class of nonlinear photonic states appearing from
anharmonic cavities [38], where the nonlinearity manifests as
a nonlinear energy shift, i.e., w, = nwy + n(n — 1)U, while
having linear decay rates y, = ny;. In Fig. 2 we plot the
(A@)? for the photonic state emerging from the decay at the
Nth level of the anaharmonic ladder for two values of U/y;.
Interestingly, we observe that Heinseberg scaling is lost for
any value of U, as we find numerically that Iy o< 1/N for large
enough N. This is illustrated in Fig. 2 for U/y; = 10, 103.
This result shows that different multimode states can have
completely different metrological properties, suggesting a rich
relation between the multimode structure and the potential
for metrology of the state. It also provides intuition on why
TMDS behave similarly than TFS, since in that case all
photons are spectrally centered at the same frequency wy, thus
being mostly indistinguishable. More details on the relation
between superradiant states and Fock states will be provided
in a forthcoming publication [54].
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VII. CONCLUSIONS

To sum up, we have proven that photons emitted from
Dicke superradiant states [33] are useful for quantum metrol-
ogy. To show it, we derive a computationally friendly way
of calculating the QFI for arbitrary multimode photonic wave
packets, illustrating its power with another physically relevant
example (photons emitted from anharmonic cavities). The
number of photons that can be produced for a fixed fidelity
scales exponentially with I'14/I"*. State-of-the-art nanopho-
tonic setups [28] have already achieved ratios ~60 with "4 ~
1 GHz, which indicates the possibility of generating hundreds
of photons at the level of 90% fidelities and GHz rates.
Furthermore, most of the conclusions can be extrapolated to
other systems where collective decays can be engineered, such
as cavity QED setups [56-59]. We foresee other possible ap-
plications in situations where Fock states provide advantage,
as it is the case in quantum lithography [60].
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APPENDIX
1. Derivation of the quantum Fisher information

To derive the quantum Fisher information of the TMS, we
work in a more general setting of two different multimode
states incident on the two ports of the first beam splitter. We
write them as

") / / ik ..l [0},
(271)’"

o) / / dk .. dky ... dky o b‘
(ZJT)"n' K.

.
b7 10),

Abusing notation, here we will also call the output modes of the interferometer a; and by. Then, the state after the beam splitter

and the phase operation, [/,) =

where we defined the creation operators ck = ((p)

di(p) = 75(—(3”“’”(1}2 + €*/2b]).

U,Usslpy™) ® |y, is given by

:"]" | dkidk; R
[Yy) = / / 2y rmin! Akl...kmB]}lm/;anl

ot gt A
U,pUssajUgsU; =

czmdgl . ..dg“|0>, (A1)

Tz(e”w/ 247 + e/ sz) and respectively for dT

For calculating the QFI of |,,) one has to take the derivative, which turns CZ (dk+ ) into éd,: (éck). This leads to

m+n

;anldkdk
V) = <> //<2n)m+"

il AR YA
Akl & Bi, k, (md d —i—ncklc~ )ckz...

i gt i
4 cp,dl ...d!10). (A2)

where we used the symmetry of Ay,..x, and By,..k, under permutations of k’s. The expressions |(1//¢,|1/}¢,)| and (lﬂw|l/}w), which

determine the QFI, can be evaluated by using the commutation relations [cp, d,i'] =[d

2w 8(p — k). It is clear that

(Wl ¥rg)] =0

i1 =0 and [cp, c]1 = [d,, d]] =

(A3)

as |y,) and hbw) contain a different number of ¢’s and d’s. To compute (1/},p|1/}¢), we use the symmetry of Ay, ..., and By,..k,,
which allows us to take one representative of each of the ¢;’s or d;’s and multiply by the number of times it appears. One has to
evaluate an integral over correlation functions f(X) over the k’s and k’s, for which we introduce the shorthand notation

[T dkidk;dpidp;

/de(X)E/...

1
/dX Old;, . . .dg,c,, -

Then we can write

(Yol ) =

- Z/dez([dpl,dle]( — Dep. ol ]

m n

X (m—2)!l_[[cpi,czi](n— 1)!1_[[dp ,dlj]

i=3 j=2

(27'[ )2(m+n)m !21’1!2

T gt ToT AT T
.. Cp,(mdp, dys +nc,;lc,;l)(mdkld]21 +ncklc‘]%])ckz. d

l’l me;] ~Akl"'kmB/zl"'/;:f(x)‘

(A4)

.
kn"ky dIEn 10)

— 1)[c,,2, czz])

dm ’ dk ] [dl’l ’ dk ] [dﬁ‘ ’ d,j]](m

m<>n
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n

1
=1 dem'n' Hzna(p, — k) [T 27855 — kp)lm +m)@m ?8(pr — ks (pr — ko)

i=2 j=2

+ 2nmQ27 ) 8(py — k1)S(B1 — k)]
1
= (L + 2mnr). (A9

where the 1/3‘;) and If\}g) read

dk; dk
) _ l] 1,1 2
= [ Tl e At By =1 (A6
(1 l J 1,1 dki dk * *
IAB (27_’: )m+nm|n| Akl ..... k,,,Blzl ..... ];"A/E],kz ..... k,,,Bk|,E2 ..... /E,l’ (A6b)

where in / /Sa) the two indices k; and k; have been exchanged in one of the coefficients. The QFI is then given by

Folr,] = 4((WglW) — (W) P) = 2mnliy + m + n.

This provides the desired result.
Finally, we note that this result can be easily generalized to states of the form

(m) l- l ('1) T T
/. / . )m ‘ kl kmakl ak |O) |¢)B E Cn / f . )nn' k] __[}nblzl - b/},, |0>

That is, when an arbitrary pure state with m photons enters one arm, and an arbitrary pure state enters into the other. By noting
that states with a different total photon number do not mix, we can use our previous derivation to arrive at the following QFI of

W) = UyUss|oy") ® |os):

Foly, ) =2m " (leal’nlip™) +m + (n), (A7)
with (n) = Y |ca|?n, and
dk; dk
(1),n ’] I 1 * (n)= 5 (n)
las / / Qm)ym+tm!n! Ak‘ """ k”’Bkl ~~~~~ Ak‘ by, kmBkl,Ez,.--,E,l' (A8)

This result extends one of the results of Ref. [43] on Fock states to arbitrary photonic states of a fixed photon number. We also
note that this result holds for pure states, leaving the extension to mixed states as an interesting challenge for the future.

2. Parity measurement

We now show that a parity measurement after the second beam splitter transformation of the MZI locally resolves the phase
at the Heisenberg limit when n = m = N/2, which is the case of main interest. Strictly speaking, this is achieved in the limit
¢ — 0, but one can always add phase shifters during the estimation processing so that this does not rest generality [1,4].

The measurement operator can be written as O = Ugs(—l)f S i Ugs, where the beam splitter transformation is generated
by Ups = exp[f l(a by — bzak)rr/4], such that

0= l—[ ef(a,ibkszak)nﬂ ema;ak e(a;brbzm)nm _ 1—[ ei(aszZ)(akfbk)rr/Z. (A9)
k
‘We used the transformation USSaZUBS = %(az — b]t). Because O? = 1, the phase variance around ¢ = 0 is

(A0%) . 1-(0)

A(p2 lim —— = hm )
0=0 (3,(0)F ~ +=0 (8,(0))%
and only depends on the expectation value (O) = (¥, |O|v,).
This expectation value can be evaluated by using the transformations O(a" £ b"HO' = £(a’ £ b"), and therefore OCk (p)O" =

cZ(—go) and OdT(go)O"' = —d*(—go). The expectation value

mmdkdk dpidp;
L Dl gz B . A,
(27_’:)4mm!4 ky -k ky -k, P1Pm

x cf (=) ch (=)} (=) - d} (—9)|0)

(A10)

B

1 (= 1) Oler, (@) - - - cx, (@)dr (@) - - - di (@)
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can then be further evaluated by using the commutation relations

[ep(@), e} (=) = [dy(@), d{ (—p)] = 278(p — q) cos ,
[ep(9), df (—)] = [dy(9), cl(—9)] = 28(p — )i sin ¢.

Because the commutators between ¢; and d; do not vanish, all
indices can become mixed and the expectation value yields

m 2
_ v w2l 20m—1) my
0) = E (—1)" sin” (¢) cos (go)(l) L’, (A12)

=0

where the integrals I{" are the natural extension of (A6),
i.e., in IV [ indices are exchanged in the integral. We note
that I;l) = 1;5111 I such that one can reduce the number of
calculations if they are necessary.

By observing that 8,(0)|,_, =0 and (O)y—0 =1\’ = 1,
the variance of the measured phase can be calculated from the
second derivative,

2 _
M)_hml (02 . =2(0)3,(0)

> _(_ 2 —1
#20 (2,(0) 2 %)

T 02020,(0092(0) (=%
(A13)

The second derivative around ¢ =~ 0 only contains the first two
terms, for which the sine terms vanish after the derivative, i.e.,
—02(0)|o = 2m(miD + I{"). Therefore, we reach the QCRB
locally around ¢ ~ 0,

1

= — Al4
Folw7] (A1

A¢2|¢%O

We note that for single-mode states I,f,l) =1, which leads
to the result derived in Ref. [44]. In that case the expec-
tation value (O) = P,[cos2¢] can be expressed in terms of
Legendre polynomials P,. In that case, the second derivative
—8£(O)|0 = 4P/ [1] is calculated with the help of the well-
known result P, [1] = m(m + 1)/2.

3. Transforming the bidirectional wave packet
into a unidirectional one

Let us finally give an example on how to merge the
bidirectional wave packet into a unidirectional one with the
same metrological properties. The wave packet emitted from
each atomic ensemble reads

(N) dkl +
Qn )NN' A -

where the k; integrals run from (—o0, 0o). This means that
the wave packet is actually emitted in both left and right
directions. It is possible however to join the left and right
emission into a common wave packet by joining both ends of
the waveguide through a 50:50 beam splitter transformation.
To make it more explicit, we can define r /I, for the a; modes
propagating to the right or left (k = 0), and rewrite the integral

.aj 10). (Al15)

(Alla)
(Allb)
[
with integration ranges from (0, 00):
dk 4 PR
(N) L- f i f
=l Gl A
il L0 1 T10). (AL6)
kl"'kleN ki © " Thyot Tky :

The Ay, factorizes out from the sum because it has the
symmetry k; — —k; since w(k) o |k|. Notice that now the
sum can also be written as a product:

(27T)NN‘

If the [/r modes are used as inputs of a beam splitter such
that the modes transform at the output ports C/D as c}:_ =

(ri +1)/v2and d] = (—r{ +1])/+/2, then
dky

(N) / / dky ..
2m)NN!

Since this state shares the same modal function, Ay;, as the
original one the metrological properties can be shown to be
the same as the ones calculated in the main manuscript.

[]‘[(l‘ +r, }o

(A17)

— = 0NPAcl10). (A18)

4. Derivation of recurrence relation

We now focus on the evaluation of the integral expression
1/(113) in the case of the same multimode input states, that is,
for m =n =N/2 and Ay = By,. Since only the integral

I/Sg) is relevant for the discussion, from now on, and in the

main manuscript we drop the superindex: I( = Ip. If the
input state is a product state, that is, if Ay, = fAklAk, -Ag,

factorizes, the Iz,,, = Iy4 can be straightforwardly integrated
in each k; and k; separately. This calculation yields I, = 1,

so that the single mode result of Fo[,°*] = N(N +2)/2 is
recovered.

On the other hand, the coefficient of the photonic state
emitted from a chain of quantum emitters along a waveguide
does not factorize in this way, such that the evaluation of I,
requires additional effort. Because the multimode coefficients
originate from the exponential decay of the emitters,

o0
Ayy = (—i)m/ Hdt[ ' 25T (010, O - - - Oy 1Y),
(U

_ » (A19)
where O, = O(t) = /T4 e’He“"S e"He“" with the effective
Hamiltonian H.i = (A — i 3 )See —jlu SegSge acting on the

symmetric Dicke states |y,,) = %(m) 1/ZS;’Z\JO). The action
of the time ordering operator 7 on commuting operators
is defined as 70,0, =6(t; — )0, 0, + 0(t: — 11)0,0,,.

Using this expression for the coefficients Ay, the integrals
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in momentum space can be transformed to integrals in time,

IZm - ml2 / l_[dtlds T(O|On Otz Oszm) <0|031032 : Otmhun) <0|0310f2 Otmwfm> <O|Ol1 5" O,"|I/fm> (AZO)

Notice that in the correlation functions one index is exchanged, in analogy with the expressions in momentum space, and that
the integral is symmetric with respect to the remaining #;/s; indices.

The integral can be evaluated recursively by picking a time ordering and integrating over the latest time T > max.{#;, 5;} =
T, and repeating this step on the next integral. The exponential decay then gives rise to the simple form of fTOO et = %e’CT
if Re(c) > 0. Using these results, one can define three structurally different integrals, depending on whether one has already

integrated over one or both of the special (i.e., exchanged) indices #; or sy,
@ _ dtrds T e~ maxiiy.s;) ‘ * ‘ % ‘
Fij - l_[ ty Sj’Te 4 / (¢m7171|0t1 Otz e Ot,-+| |'(pm) (wm717/|0s10s2 T Os,ur] |Wm> (1//t717171|0s1 Otz o 01‘,-+| |1//m)
I

X (me—l—j|0t| 052 e Osjur] |wm>7 (A21a)

FO— dtods T € maxlty.s;) 10,0, ---0 * 10. ---0 * 10, ---0
ij lt’ S]/ e (wm7171| Hhvn t,+1|wm) (’ﬁmfﬂ 52 S,+1|1/fm> (Wmfz| 15 ti+1|wm)

i

v,

X (wm—l—j|0t| O.Y2 te OSH] |Wm>a (A21b)

—c® oS %
FY = / [ [durds; T e ™ (4, 110, - O [ (Y105, -+ Oy [ (Wil Oy -+ - Oy |¥rm)

X (YUm—j|Oyg; - - - O, [Yrm). (A21c)

The integrals only run over the remaining time variables {#;} and {s;} and we have introduced the exponents c(z) = Ym—1-i +

VYm—1—j» € ,(, = Ym—i + Ym—j, and c(l) (c(z) + c(O))/Z The decay rates are given by y; = j(N — j+ DI'iq deﬁned through

'14SeeSeel¥j) = v1¥;). Note that these integrals always converge because cl(jz/ RN}

By integrating over the latest time, one can remove one operator O,, or Oy, from the above expressions until one ends up with
Fo((()) ) = 1. This motivates the fact that the integral

1
by = —5 —F2 (A22)

can be evaluated by a recurrence relation (see also Fig. 3). Let us understand the structure of the recurrence relation on the
example of F 2 1f the largest time is one with a regular index #,, . . ., #;+1 (for which there are i possibilities), we use the fact that

(wm—l—i|0t;+1 = Vm—iei(ym_iiym_i_])ti+]/2(wm—l—il- (A23)

This term appears twice such that the integral gives a prefactor xe) Y s = J2=1 The remaining integral is then of the

i+ Vi —Vm—i- D Y

form Fl(_zl) ;- The same holds if the largest time is one of s,, ..., s;41. If the largest time is s; (or equivalently #,), then after the

integration over this variable, the remaining integral is of the form Flgl). By carefully calculating all these steps, we find the
recurrence relation:

F(z> )::;a) i Fl(z) iy V(r;) J F(z) A+ 2\/Vm (iz/mfj E'(Jl'), (A242)
i—1,j cl,j*l i,j
‘ — . —— ——
FV = il pay ]—v”m(fl)”mfﬂﬁfjlgl 4 ] o), (A24b)
Ciz1,j Cij—1 Cij
F(O) _ Vm 1+1F(0) + . Ym— J+1F(0) (A24 )
i = J EONESEE ¢
i—1,j lj 1

w
g3
E
I
—

(A244d)

(

The trick to evaluating this recurrence relation efficiently  which only Fo((())) = 1 lies, one moves to a subspace with one
is to group elements of the same excitation subspace 0 < excitation more k — k + 1 until k = 2m is reached. This

k< 2m as (121)1 Flg 3.. Elemepts of this subspac.e are, for  subspace only contains the desired term Fn(12)1 m_1- For better
example, F;;” satisfying i+ j+2=k and 0 <i,j<m—  pumerical results it is also recommendable to remove the

1. By applying one recursive step starting from k =0, in  factors of i and j by substituting F(") i F(”)
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F
k=2m /(2, 2) ~e R
(172)  (21) ~.___~: ~~~~~~ (2.2) FY
NN T N
0,2 (1,1) (2,0 (L2) "@he T (2,2)
NN\ SN N T <\
k=3 (0,1) (1,0 (0,2) (1.1) (2,0 (1,2)7(2,1)
N NN\ N
k=2 0,0~ (0,1)  (1,0) (0,2) (1,1) (2,0
~~~~~~~~~~~~ \/ NN
=1 T 0.0) (0,1) (1,0
~~~~~~~~~~~~ N
k=0 == (0,0)

FIG. 3. Recurrence relation of F,j.z/ Y9 1o calculate 1, can be
represented pictorially; here on the example of m = 3. The solid
lines represent the terms of the recurrence relation in between every
group F™ — F_ whereas the dashed lines correspond to the terms
F® — F®and FO — FO_By grouping the elements in terms of
the number of excitations, or equivalently the number of remaining
time integrals, one can evaluate the recurrence relation efficiently.

5. Robustness to errors

In this section, we estimate how the different error sources
affect our protocol, deriving the conditions under which they
can be neglected. In particular, we study the impact of (i) free-
space spontaneous emission, (ii) finite propagation length of
the modes, (iii) retardation effects due to finite group velocity,
(iv) different coupling to the waveguide of the two emitter
ensembles, (v) time delay between the different wave packets,
and (vi) photon loss in the interferometer.

a. Impact of emission into free space

One of the greatest sources of decoherence in state-of-
the-art waveguide QED systems is the possibility of emitting
to other modes different from the relevant waveguide one.
We embed all these processes into a single decay rate, I'*,
and describe through an individual Lindblad decay terms as
follows:

r &
Lulpl = — > (200000 — oo — polt).

n=1

(A25)

With this extra term, the effective non-Hermitian Hamil-
tonian governing the atomic state evolution contains now
two contributions: the collective and individual decay terms,
which read

Her = —i(%segsge + %* Z oe"e>, (A26)
as well as the quantum jumps evolution:
Jlpl = Jualpl + Jilpl, (A27)
Jialp] = T1aSgepSeq, (A28)
(A29)

Jlpl=T* Za;epo:g.
n

The formal evolution of p(f) can be formally integrated as
a sum of different contributions: p(t) = Z_,‘ p;(t) depending

on the number of quantum jumps, denoted by j, that has
occurred during the evolution. In particular, the different p;(r)
can be formally computed as

po(t) = S(t,10)p(t), (A30)

Pj;l(l)=/ dnS(t, t1)J[pj-1(t)], (A31)
0

where we have defined the following operator: S(t,, t1)[p] =

e Ml ¢t which gives the evolution under the non-
Hermitian Hamiltonian. Since we assume an initial state
|W(0)) = |e)®Y and we are only interested in the probability
of decaying to |g)®" only through collective quantum jumps
(denoted as p in the main text), we restrict our attention to the
dynamics of the collective atomic states with m excitations,

that is, |m) o ng,\;‘m |W(0)), that we denote as

Pu(t) = (m|p(t)|m).

Using this notation Py(t — 00) = p. Since only collective
quantum jumps participate in the evolution of P,(¢), their
dynamics can be calculated straightforwardly from Egs. (A30)
and (A31). First, note that the non-Hermitian Hamiltonian
only connects states with the same number of excitations, such
that

(A32)

S(ta, t1)[|m) (m|] = |m) (mle~ Mm@ =mtD¥mIIG=0) - (A33)

For example, the evolution of the higher excited state is simply
given by

Py(t) = e~ Tt TONT (A34)

From here, the evolution of the p,,_n(¢) can be calculated
recursively using Eq. (A31):

P,t)=m(N —m+ +1)"4
t
« / dty e (DN = DTN p ()
0

(A35)

Using these formulas one can calculate the dynamics of
P, (¢) for all m and the set of parameters N, I'jq, and IT'*.
To gain intuition from the decay process, we start calculating
P, (t) for a situation with I'* = 0, that we show in different
colors in Fig. 4(a) for a situation with N = 20 QEs. We start
observing a collective decay from the highly excited state (in
red) m = N = 20, as the lower excited level starts building
up population until it gets accumulated in m = 0. From this
figure, it may look as if the transient time through the higher
excited states was faster than in the smaller ones. However, by
looking into the averaged time population,

oo
Po= [ drrao. (A36)
0
which we plot in the inset of the figure, we observe that in
fact the average time spent in each of the levels distribute
symmetrically around m = N/2 + 1. Thus, when considering
I'* # 0, the main source of errors will come from the upper
part of the ladder m & N, since the decay rate into free space
is proportional to the number of excitations ~mI"*.
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FIG. 4. (a) P, (t) for a situation with N = 20 and P4 for different m ranging from m = N = 20 (red, left) to m = 0 (purple, right). Inset:
integrated population P, = fooo P, (t)dt with the parameters. (b) 1 — Py(t — oo) [1 — p] as a function of P4 for N = 10 (black squares),

N = 100 (blue spheres), and N = 1000 (red triangles).

In Fig. 4(b) we show the effect of I'* # 0 on p, which is
the relevant parameter to estimate the lower bound of the QFI
given in the main text. In particular, we plot the scaling of
1 — p as a function of Pjg = ll:‘f for several N’s as depicted
in the legend. We observe that the exact calculation of 1 — p
obtains the same scaling, In(N)/Pyq, as we show in the main
text with a simplified description of the losses.

This error scaling can also be obtained by estimating the
time scale of the superradiant decay as the sum of the different

decay time scales of P, (t), which leads to

In(N)
NIl

TSR ~ (A37)

>
S Tij(N = j+1D
With this time scale, one can easily upper bound the error
of 1 — p by multiplying this time scale by the maximum error
rate, NI'*, from the higher excited state. This results into an

upper bound
. In(N)
I —p < NIMtgr » ;
Piq

(A38)

which has the same scaling as the one observed in the numer-
ical simulations.

b. Finite lifetime of waveguide modes

Another possible source of decoherence is the finite life-
time of the photonic waveguide modes, which appears due
to absorption or imperfections in the material which leads to
scattering into other modes. These photonic losses affect the
metrological properties during and after the N-photon emis-
sion. The effect of the losses after the wave packet has been
emitted can be considered as noise within the interferometric
process, which has been well studied in the literature [4],
leading to a loss of Heisenberg scaling for large N. Since
this is a common limitation of all metrological protocols, we
focus on the effect of photon losses during the emission of the
N-photon wave packet.

During the emission of the waveguide, the finite lifetime of
waveguide modes induce a finite propagation of waveguide
modes, Lpop, Which spoils the collective behavior of the
emitter interactions as follows:

Fm,n — [‘ldeflxn*xml/llpmp. (A39)

To be able to neglect this correction, the propagation length
of the modes has to be much larger than the system size,
that is, Lpop 3> NA,, where we have assumed a separation
between atoms of the order of X,, required to have the perfect
collective behavior. The propagation length of the modes is
approximately given by [35]

Lprop ~ 2

, A40
A 2n, ( )

where Q is the experimental quality factor of the waveguide
modes, whereas ny is the so-called group index, which mea-
sures the reduction of the speed of light within the waveguide.
Thus the inequality that must be satisfied is that

Q

— > N.

A4l
. (A41)

State-of-the-art numbers with SiN waveguides [26] are
0~ 10° and ng ~ 10, which gives Lyrop/Aq & 5 X 10*. Since
this size is even larger than typical waveguide lengths, this
correction will be typically small.

¢. Retardation effects: Validity of the Markov approximation

All the calculations shown in this manuscript, including the
one of the spectral shape of the wave packet, A, are per-
formed by using a Born-Markov master equation describing
the atomic dynamics as written in the main text. The under-
lying assumption of this equation is that the bath time scales
are faster than the emitter ones. In particular, the emergence
of superradiant behavior as predicted by Dicke superradiance
requires that the propagation time of the photons between all
the emitters is faster than the fastest emitter time scale. The
maximum propagation time for a system with N emitters is
given by

NX,
Tprop = Vg ’

(A42)

where v, = c/n, is the group velocity of the photons in
the waveguide. The fastest atomic time scale occurs in the
middle of the Dicke ladder, where the decay rate scales with
~T'14N? /4. Thus the condition that must be satisfied is that

4c

A43
ng)‘-arld ( )

4 3
Tprop < —Flsz - N’ K
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Using state-of-the-art numbers of I'jg ~ 27 x 6 MHz,
ng ~ 10, and A, =300 nm, we find 4c/(ngA,I"1q) ~ 107,
which implies N < 200. Moreover, by making use of a Raman
transition, one can decrease I'jq, while at the same time
attenuating I'* such that P4 remains fixed.

d. Different Purcell factors between wave packets

Until now we have assumed that the ensembles generating
the multimode state |¢Y) are coupled with the same decay
rate, "4, to the waveguide modes. Let us now assume they
are different, that is, that they are coupled with I'jy and
I"}4, respectively. Note that this does not affect the norm of
the state, but it does change the integral Iy. This can still
be evaluated by a similar recurrence relation as in (A24).
The only difference is that in every numerator one has to

replace y; —
D

Vi yjf and in every denominator, that is in every

Ciis Vi ™ 2(J/_,~ + ny). Because yj =y F:d every step of the
. o JT/T
recurrence relation gets an additional factor of 1(1+r]—d//11d) As
2 1a/* 1d

there are N steps in the recurrence relation, the integral Iy has
to be replaced by

N
2 Fldrid

Ivary=|=—="| Iv
" Fa+Ty

_ AT'4 AT\’
—IN(l_g( Ty ) +0|:< 'y ) :|>, (A44)

where AFld = (Fld - Fid)

e. Time delay between wave packets

Another deviation from the ideal situation appears if the
wave packets emitted from the first or second ensemble do
not arrive simultaneously to the beam splitter. This can occur
if either the collective m pulse exciting the ensembles is not
perfectly simultaneous or the traveling path between the two
wave packets is not exactly matched. In both cases, they will
give rise to a time delay, 7, between the two wave packets.
This time delay enters in the integral Iy as follows:

1_[1 ldk dk A* A* A A, : _—it(k—ky)
Al kAT AR K kA B € )
(27-[)271,1!”! LseeesKn

where n = N/2 and 7 is the delay between the wave fronts. By transforming this integral in momentum space to an integral in
time space, we find that it is equivalent to

(A45)

1 o0 o0
o= fo [Tan [ TTdssote =0 070,0, -0, 16" 0170, 0.0, 100)°
i T

X (0T 05,0y, - - Oy, 1Y) (01T 01, Oy, - - - Oy, [¥rn), (A46)

where 6(x) is the Heaviside function. One can find a similar recurrence relation, which one can lower bound by noting that
fTDo dtot —1)e " 2 0(T — 1) fTOO dt e, This means that the Heaviside function appears in every remaining integral after the
integral over #; has been performed. The final integral is then either of the form fooo dt0@ — t)e "' or ffj dsO(s — t)e ",
which both yield an additional factor of ¢™"** in addition to the integral one would have to perform without the time delay.
Therefore, the integral Iy ; is lower bounded by

Iyz > e Iy = e "Iy & Iy(1 — NT'jgt + O[(NT'147)*]). (A47)
One can compare this to the single-mode result, for which one obtains
Iy, =e " ~ 1 —NIut/24 O[(NT147)?]. (A48)

. Photon loss in the interferometer

In this section, we characterize the first-order corrections due to photon loss in one arm of the interferometer. This is described
by a beam splitter that mixes the modes b, with an external mode (ex) in the vacuum state with a reflection coeffficient /7. That
is,

by —> /1 —nby + /ne]. (A49)
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We also focus on the case m = n = N/2 and for twin states A = B. Due to the mixing (A49) the state |1,,) changes as

|1p_ >_> HD‘ n01se l_[lj ldkdk 2= YA A -
(2 (27_[)2,, 12 ki ko) .k,

< HE (e7¢/a] —{-e"/’/z(\/lTbT _{_\/—ek ) (= e +etw/2(\/f[9' +fek ))10).  (A50)
i

After tracing out over the undesired mode e; Vk the state can be written as

N
0= Tre(|w¢)noise<ww|noise) — ijo-(.i)’ (A51)

j=0

where o) is a state that has lost j photons into the modes e;. Because each state has a different photon number, it follows that

N
Folpl =Y piFolo]. (A52)
j=0

The computation of Fy[o ] is challenging because the o/’s with 1 < j < N are mixed states when the state is multimode. The
techniques developed here only allow for dealing with pure states, and we leave the development of techniques to compute the
QFI of mixed multimode states as an interesting problem for the future. Here, instead, we focus on the regime of small losses
and characterize the first-order corrections to the QFI due to photon loss.

We now focus on the limit n < 1, and in what follows we will only keep first-order corrections in 7 [so that & stands for
equality up to corrections of order O(*)]. We focus on the state o, which is a pure state o® = ) ({”| as no photons

have been lost. We have poo® = |4(?) (| with the non-normalized state

[T ._, dk: dk ~
0) i,j= - T ¥
2% / f (on D = A AL g & ...& dl . d; 10), (AS3)
where we defined
1 . nei‘/’/z N 1 . ne'*’?
~t —1(p/2 T ip/2 cl T T —1<p/2 T ip/2 T\ ~ g1 T
é + ev=\/1 b b, d =—(— + e 1 —nb, )~d,
k \/z( ) 2«/5 kj k \/i( ) Kk 2[ k
(A54)
Expanding |4} at first order in 7 we obtain
1., dkidk; nn e'¢/? ) .
) L= o (etat — i Pty ) ot i .
1& / / GEREIE Akl---knAk]...kn <Ck| d]21 Wi (bkld];'] +c, bk ))ck2 cknd]22 .. 'dlEn |0),
[T: j=1 dhidk; P M s gt L atal et et e it T
/ / (2’7”2,1 B Akl___k”A,;l”_,;, <ckld : (ZCkld]zl +dyd; + ckl)>ck2 o dy .. .d]|0), (A553)

where we used the symmetry of Ay, x, and By ; over permutations. By a similar calculation of the ones performed in the
previous sections, and recalling that ¢ (d;) commutes with d; (dy), one obtains

([ 0g”) ~ 1 —n. (A56)
Hence we have that
po~1—nn (A57)

and 0© = [y @) (| with

1 = -
)~ =) (143 19)

[T, diidk; |
/ / (21;)2,, B Akl...k,lAla...E,, (CZ] dg} (d,j] d; ¢! CZ]))C,Q ... c,i d/; dT |0). (AS8)
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To compute the corrections to the QFI, consider

lﬂ(o) / / ” ldkdk

A
JT = (2 22k

Tt T i
AL (ndk]d ckzd 3 + ”Cklck C,ﬁd

My gt
1 [chld ckzd- +2nd c ck2 k

+(n— 1)d,j]dgld,jzd- +(n— ) ck czzcz Det, ...c;;dg} ...d;n|0). (A59)

Using the shorthand notation

1} dkidk;dpidp;
/ dX f(X) = / / s A A Aty 1, F OO, (AGO)
we proceed to compute
0)[ @) oo "1 Pt et gt + t tqt t
(V") ~ — ( / dX (Oley, -+~ cp,dp, -+ dp, (2c} d] ¢} d} +2nd] ¢} c{.dl)c| ...c] d] ...d]|0)
n/dX[(0|c,,, cepepdy, - -dp el .,.cznczldgz . .dgn|0) +c< d])

- —Tm7<2+ 2nbon + ”/dX[<0|Cm s CpCpdpy - dp el ey c dT df;|0) +co d]) (A61)

and the second term yields

il T T il
/dX(Olc,,l ceepepdp, - dpel . clcldl ..l |0)

/dX([cpl, =] [ds-
=2

i=1

C%J”’H[%CL]+"[Cm,CL]"[pr P ”_1)'1_[ Pio ‘, ”_1)'1_[ Cpis Ck

)

1
=+ D, (A62)
n
Putting everything together,
. N N
)], O\ — 2
(YD) = —377(1 + 31N> +0(), (A63)
where we used that n = N/2. A similar derivation yields
o N?
(" 1" = =-Iv + N + 0(n) (A64)
and hence
N2nl
Folwy"] ~ Folry] = — = (A65)

where Fyp[v,] is the QFI without losses and we considered only dominant terms in n and N. Note that this is a conservative
bound, since we expect the other terms in Eq. (A52), where more photons have been lost, to also contribute to the QFL.
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