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Strong mechanical squeezing in an unresolved-sideband optomechanical system
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We study how strong mechanical squeezing (beyond 3 dB) can be achieved through reservoir engineering in
an optomechanical system which is far from the resolved-sideband regime. In our proposed setup, the effect of
unwanted counter-rotating terms is suppressed by quantum interference from two auxiliary cavities. In the weak
coupling regime, we develop an analytical treatment based on the effective master equation approach, which
allows us to obtain explicitly the condition of maximum squeezing.
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I. INTRODUCTION

Quantum squeezed states of mechanical resonators rep-
resent a striking exhibition of macroscopic quantum effects.
Besides their conceptual interest, they have important applica-
tions to ultrasensitive measurements and continuous-variable
quantum-information processing [1,2]. A standard approach
to generate squeezing is to introduce a coherent drive modu-
lating the mechanical spring constant at twice the mechanical
resonance frequency. In cavity optomechanics, such coherent
parametric drive can be realized by an amplitude-modulated
laser drive [3–7]. However, due to mechanical instability, the
degree of squeezing generated by this approach is bounded by
the so-called 3-dB limit [8]. In other words, any quadrature
cannot be squeezed below 50% of its zero-point level.

Possible ways to overcome the 3-dB limit have been pro-
posed but usually pose significant experimental challenges,
e.g., require the assistance of continuous weak measurement
and feedback [9–12] or a strong intrinsic nonlinearity of the
system [13,14]. Unbounded squeezing can also be generated
by injecting squeezed light into the cavity and transferring
optical squeezing into the mechanics [15,16], which requires
strong coupling and a highly squeezed broadband field. In-
stead, a relatively simple way to generate strong mechani-
cal squeezing is based on reservoir engineering [17]. Such
proposal has been demonstrated experimentally [18–21] and
recently the 3-dB limit has been surpassed in Ref. [21]. Never-
theless, all these realizations are based on electromechanical
systems, while for optomechanical systems the requirement
of achieving the deep resolved-sideband regime is still chal-
lenging [22]. This is mainly due to the difficulty of improv-
ing the optical finesse in a cavity with floppy mechanical
elements.

To address this problem, we propose here an improved
version of the reservoir engineering approach. As illustrated in
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Fig. 1(a), we consider a driven optomechanical cavity linearly
coupled to two auxiliary high-Q cavities (these are pure
optical cavities without movable elements and much higher
quality factors are realizable). Such linear coupling can be
readily implemented in optomechanical systems like micro-
toroids [23] or photonic crystal nanobeams [24]. The two
auxiliary cavities can be considered as part of the engi-
neered reservoir for the mechanics and, for carefully cho-
sen parameters, provide the fine structure necessary to sup-
press the two counter-rotating processes in the unresolved-
sideband regime. The suppression arises from quantum in-
terference, analogously to electromagnetically induced trans-
parency (EIT), and relies on the coherence properties of the
two auxiliary modes. Similar ideas has also been explored in
unresolved-sideband cooling [25–27], with a single auxiliary
cavity.

In the following, we first analyze the system based on a
full numerical solution of the Langevin equations. As shown
in Fig. 1(b), we find that squeezing beyond 3 dB in the
unresolved-sideband regime can indeed be achieved using this
approach, with an appropriate choice of realistic parameters.
In the weak-coupling limit, we also derive an effective master
equation for the mechanics, by treating the three coupled
optical cavities as an engineered reservoir. Within the effective
master equation approach, we obtain transparent analytical
results which allow us to discuss how to maximize squeezing
by optimizing system parameters.

The detailed outline is as follows. In Sec. II, we briefly
review squeezing generation via reservoir engineering, intro-
duce our model, and discuss results obtained by solving the
Langevin equations. In Sec. III, we derive the weak-coupling
effective master equation and the explicit expression for the
the steady-state mechanical variance. In Sec. IV, we analyze
the spectrum of the coupled optical cavities. In Sec. V, we
derive the conditions to achieve maximum squeezing and
discuss the experimental feasibility. Section VI contains our
concluding remarks and Appendixes A–E discuss some tech-
nical details.
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FIG. 1. (a) System schematics. (b) Mechanical squeezing with
and without the auxiliary cavities: J/� = 0 (red circles) and J/� =
10 (blue squares). Both curves have been optimized over G+ (at fixed
G− = �/10) and a symmetric configuration is assumed: J1,2 = J and
κ1,2 = κ . Other parameters are κ/� = 1/2, �1,2/� = ±2, nth = 0,

γ /� = 10−5. Inset: Partial energy diagram of the coupled optical
cavities â and âi (i = 1 or 2). E2 (E3) is the energy of the state with
one more photon in the â mode (âi mode). When the probe light has
frequency ωp = ωi, the two-photon resonance condition is satisfied
and dips appear in the optical spectrum at those frequencies. In the
rotating frame, the dips locate at ωp = ωi − ωc = −�i [cf. Eq. (20)].

II. MODEL

We consider the system schematically shown in Fig. 1(a)
and described by the following Hamiltonian:

Ĥ = ωcâ†â + �b̂†b̂ + gâ†â(b̂† + b̂) + Ĥdr

+
∑
i=1,2

[ωiâ
†
i âi + Ji(â

†âi + ââ†
i )] + Ĥenv, (1)

where â is the annihilation operator of the main cavity
(frequency ωc), which is coupled to a mechanical mode (an-
nihilation operator b̂, frequency �) and two auxiliary cavities
(annihilation operators â1,2, frequencies ω1,2). The coupling to
the mechanical mode is a standard optomechanical interaction
with coupling strength g. J1,2 are the coupling constants
between the main and auxiliary cavities. To induce squeezing
of the mechanical state, a two-tone drive is applied to the main
cavity [17,18]:

Ĥdr = (α+e−iω+t + α−e−iω−t )â† + H.c., (2)

where ω± = ωc ± � are the frequencies of the two laser
drives. Finally, Ĥenv describes the coupling to Markovian

reservoirs. As indicated in Fig. 1(a), the damping rates of the
main cavity, auxiliary cavities, and mechanics are respectively
given by κc, κ1,2, and γ .

For a weak optomechanical interaction g < κ, γ , the
Hamiltonian can be linearized with the standard procedure,
where we perform the displacement transformations â = α +
d̂ for the main cavity, âi = αi + d̂i for the auxiliary cavities
(i = 1, 2), and b̂ = β + d̂m for the mechanical mode, and
neglect small nonlinear effect (see details in Appendix A). Fi-
nally, in a suitable rotating frame, the linearized Hamiltonian
reads

ĤI = d̂†(G+d̂†
m + G−d̂m ) + H.c.

+ d̂†(G+d̂me−2i�t + G−d̂†
me2i�t ) + H.c.

+
∑
i=1,2

(−�id̂
†
i d̂i + Ji(d̂

†d̂i + d̂†
i d̂ )) + Ĥenv, (3)

where �1,2 = ωc − ω1,2 and G± are the dressed optomechan-
ical couplings. The first line of Eq. (3) realizes the standard
squeezing via reservoir engineering [17], since the cavity can
cool the mechanical Bogoliubov mode

B̂ ≡ d̂m cosh ζ − d̂†
m sinh ζ , (4)

where the squeezing parameter is tanh ζ = G+/G−. As the
vacuum of B̂ is exactly the mechanical squeezed state
|0〉B̂ = exp[ζ (d̂2

m − d̂†2
m )/2]|0〉d̂m

, cooling of mode B̂ directly
yields mechanical squeezing. Note that the coefficients
of the Bogoliubov transformation are real, and thus the
maximally squeezed quadrature is X̂1 = (d̂m + d̂†

m )/
√

2 (see
Appendix B), with variance e−2ζ /2.

Such an ideal cooling of the B̂ mode becomes impossible
in the unresolved-sideband regime (κc > �), as one cannot
neglect the two counter-rotating terms appearing in the second
line of Eq. (3). With respect to the original mechanical mode,
the first counter-rotating term (∝G+, induced by the upper
sideband laser drive) has a cooling effect on d̂m, while the
second counter-rotating term (∝G−, induced by the lower
sideband laser drive) has a heating effect on d̂m. Both pro-
cesses lead to heating of the Bogoliubov mode B̂. Because of
the large optical state density at these frequencies, mechanical
squeezing cannot be achieved in the unresolved sideband
regime. The degradation of squeezing with κc is illustrated in
Fig. 1(b) where the squeezing is quantified through

SdB = −10 log10

[
2
〈
�X̂ 2

1

〉]
. (5)

As seen from the plot, the maximum achievable squeez-
ing decreases with the increasing cavity damping and large
squeezing is only achievable in the resolved-sideband regime.
A quantitative analysis regarding this point will be given in
Sec. V.

Figure 1(b) also shows that turning on the couplings with
the auxiliary cavities can greatly improve the performance
when κc/� > 1. Even in the bad cavity limit (κc/� = 10),
squeezing beyond 3 dB is achievable under appropriate con-
ditions, which will be discussed in the rest of the paper.
The general principle is that the auxiliary cavities allow us
to modulate the optical density of states through destructive
interference and therefore alleviate the damaging effects of
the counter-rotating terms.
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The two curves of Fig. 1(b) are obtained by numerically
solving the Langevin equations of the full system [28]. In the
following, to gain physical understanding of the mechanism,
we pursue an approach based on the effective master equation
for the mechanical mode. This treatment is valid in the weak-
coupling regime and provides explicit analytical expressions
for the optimal working point and maximum squeezing.

III. MECHANICAL SQUEEZING
IN THE WEAK-COUPLING REGIME

At weak coupling, i.e., G± � κc, κ1,2, the interacting cav-
ities can be viewed as a structured environment for the me-
chanics. Hence, as described with more detail in Appendix C,
we can follow the standard Born-Markov procedure [29] and
trace out the cavity degrees of freedom. As a result, we obtain
the following effective master equation for the mechanics:

d ρ̂(t )

dt
= �−D(d̂m )ρ̂ + �+D(d̂†

m )ρ̂

+ �S (DS (d̂m )ρ̂ + DS (d̂†
m )ρ̂). (6)

Here D(Â)ρ̂ = Âρ̂Â† − 1
2 Â†Âρ̂ − 1

2 ρ̂Â†Â is a standard dissi-
pator, thus D(d̂m ) and D(d̂†

m ) represent cooling and heating ef-
fects caused by the optical cavities and thermal environment.
The corresponding rates are given by

�− = γ (1 + nth) + G2
−Sop(0) + G2

+Sop(2�),

�+ = γ nth + G2
+Sop(0) + G2

−Sop(−2�), (7)

with the optical spectral function

Sop(ω) =
∫ +∞

−∞
dteiωt 〈d̂ (t )d̂†(0)〉, (8)

which will be extensively discussed in the next section. Here
we only note that Sop(ω) is a real quantity, which can be easily
shown using 〈d̂ (t )d̂†(0)〉 = 〈d̂ (0)d̂†(−t )〉.

Equation (7) shows how the standard mechanical dissipa-
tion, given in terms of damping γ and thermal occupation
nth, can be strongly modified by the optical environment. In
particular, G2

±Sop(0) is contributed from the rotating-wave
terms, while G2

+Sop(2�) and G2
−Sop(−2�) originate from the

counter-rotating terms in the Hamiltonian Eq. (3). In the case
of resolved sideband, only G2

±Sop(0) contributes significantly.
While the first line of Eq. (6) would simply lead to a

thermal state of the mechanical mode, the stationary solution
is modified by the squeezing superoperators in the second line.
They are given by DS (Â)ρ̂ = Âρ̂Â − 1

2 ÂÂρ̂ − 1
2 ρ̂ÂÂ, with the

rate

�S = G+G−Sop(0). (9)

The generation of squeezing can be ascribed to the presence
of such terms.

General formula for the squeezed quadrature

The master equation becomes physically more transparent
when rewritten in Lindblad form. Equation (6) deviates from
the Lindblad form due to the squeezing terms DS (d̂m ) and
DS (d̂†

m ), whose role is to induce squeezing by relaxing the
mechanics to a thermal state of a certain Bogoliubov mode.

For example, in the extreme resolved sideband limit we
have Sop(0) = 4/κc and Sop(±2�) = 0. Neglecting the small
mechanical damping γ = 0, Eq. (6) reads

d ρ̂(t )

dt
= �optD(B̂)ρ̂, (10)

where �opt = 4(G2
− − G2

+)/κc. This limit is in agreement with
our previous discussion about relaxation into the vacuum of
the B̂ mode.

In the general case, the Lindblad form of Eq. (6) is derived
as follows (see details in Appendix D):

d ρ̂(t )

dt
= �B′

−D(B̂′)ρ̂ + �B′
+D(B̂′†)ρ̂, (11)

where the new Bogolubov mode is

B̂′ ≡ �S

b

√
2b

a − b
d̂m +

√
a − b

2b
d̂†

m, (12)

with a = �− + �+ and b =
√

(�− + �+)2 − 4�2
S . The cor-

responding rates are �B′
± = (�± − �∓ + b)/2. Setting �B′

− >

�B′
+ (or, equivalently �− > �+), we obtain the stability

condition

G2
+

G2−
<

1 − ε− + 1/Ce

1 − ε+
, (13)

where we defined the effective cooperativity

Ce = G2
−Sop(0)/γ (14)

and the parameters ε±, characterizing the strength of the
counter-rotating terms:

ε± = Sop(±2�)/Sop(0). (15)

The stationary state of Eq. (11) is a thermal state of mode
B̂′ and, since the coefficients in Eq. (12) are real, the largest
squeezing is obtained for the X̂1 quadrature. The final result
reads〈
�X̂ 2

1

〉 = 〈
X̂ 2

1

〉 − 〈X̂1〉2

= 1

2

e−2ζ + (ε−+(1 + 2nth)/Ce) cosh2 ζ + ε+ sinh2 ζ

1 + (1/Ce − ε−) cosh2 ζ + ε+ sinh2 ζ
,

(16)

where the denominator is always positive, due to the stability
condition in Eq. (13). Equation (16) shows how the ideal
squeezing e−2ζ /2 of Eqs. (4) and (10) is degraded by the
effect of counter-rotating terms (giving ε± �= 0) and mechani-
cal damping (giving 1/Ce �= 0). Intuitively speaking, stronger
squeezing requires larger Ce and smaller ε±, and this is also
easy to show from an analysis of Eq. (16) (see Appendix E).
However, in the bad cavity regime and without coupling to
the auxiliary cavities, Sop(±2�) is comparable to Sop(0) and
the relatively large value of ε± (reflecting significant heating
of mode B̂) degrades the mechanical squeezing; see Fig. 1(b).
Quantum interference in the coupled-cavity system allows us
to decrease Sop(±2�) and achieve squeezing beyond 3 dB. In
the next section, we will discuss in detail how to modulate the
optical spectrum to achieve this goal.
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IV. SPECTRUM OF THE STRUCTURED ENVIRONMENT

From the above discussion, we see that the values of the
optical spectrum Sop(ω) at ω = 0,±2� are crucial to achieve
strong mechanical squeezing. In the following, we investigate
the dependence of the optical spectrum on system parameters
and how to set up the cavities to achieve strong squeezing.

In the weak-coupling regime, the backaction of mechanics
to the optical cavities can be neglected, and thus the optical
spectrum is determined by the Hamiltonian,

ĤBO =
∑
i=1,2

[−�id̂
†
i d̂i + Ji(d̂

†
i d̂ + d̂†d̂i )] + ĤO

env, (17)

where ĤO
env describes the baths of the optical cavities. The

corresponding quantum Langevin equations are

˙̂d = −iJ1d̂1 − iJ2d̂2 − κc

2
d̂ + √

κcd̂c,in, (18)

˙̂di = −iJid̂ + i�id̂i − κi

2
d̂i + √

κid̂i,in, (19)

where in Eq. (19) i = 1, 2 and the noise operators d̂α,in (α =
c, 1, 2) satisfy 〈d̂α,in(t )d̂†

β,in(t ′)〉 = δαβδ(t − t ′). The above
Langevin equations yield the following spectrum,

Sop(ω) = 1

A(ω)
+ 1

A∗(ω)
, (20)

with

A(ω) = κc

2
− iω + i

∑
j=1,2

J2
j

ω + � j + iκ j/2
. (21)

Some representative plots of Sop(ω) are shown in Fig. 2.
Without auxiliary cavities, the optical spectrum has a
Lorentzian shape with a single peak located at ω = 0, the
width of the peak being κc. In the deep unresolved-sideband
regime κc 
 �, the values of Sop(±2�) are close to Sop(0)
(i.e., ε± ≈ 1), and the mechanical squeezing effect is sup-
pressed.

With two coupled cavities, the simple Lorentzian line
shape is modified. Two dips emerge at −�1 and −�2,
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S
op
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FIG. 2. (a) Optical spectrum for small J/� = 1/2 (green
dashed), large J/� = 10 (orange dash-dotted), and without auxil-
iary cavities (blue). (b) Optical spectrum with different couplings,
J1/� = 1 and J2/� = 3 (green dashed). As a reference, we also
plot the spectrum with J1/� = J2/� = 3 (orange dot-dashed) and
J1/� = J2/� = 0 (blue). In both panels, the decay of the main
cavity and the auxiliary cavities are κc/� = 10 and κ/� = 1/10,
respectively.

i.e., at the two-photon resonance condition [E3 − E1 − ωp =
E3 − E2, see inset of Fig. 1(b)]. Furthermore, the position of
the central peak remains unchanged if κ1 = κ2 and J1 = J2. To
achieve small values of ε±, Sop(±2�) should be minimized
while Sop(0) should be maximized. Hence, a natural choice
is to set the two dips at frequency ±2� and the peak at fre-
quency 0, i.e., �1 = −�2 = 2�, J1 = J2 = J , and κ1 = κ2 =
κ (some effects of asymmetry will be discussed in Sec. VI).
With this symmetric setting, ε− = ε+ = ε and

Sop(0) = 2

κc/2 + J2κ/(κ2/4 + 4�2)
. (22)

When J, κ � �, this expression reduces to the result without
the auxiliary cavities Sop(0) ≈ 4/κc.

In the large-J limit (J 
 κc), which is analogous to the
Autler-Townes regime, we find three distinct resonances
located at ω = ±√

2J2 + 4�2 and 0, obtained by diagonaliz-
ing ĤBO. The width of the middle peak is (κc − κ )�2/J2 +
κ/2, i.e., is limited by the linewidth of the auxiliary cav-
ities, with its height suppressed by the coupling J [see
Eq. (22)]. The width of the two side peaks is (κc + κ )/4 −
(κc − κ )�2/(2J2). For small J � κc, the optical spectrum
follows a line shape similar to EIT, with two narrow dips
at ω = ±2� [cf. Fig. 2(a)]. However, for typical parameters
of this system, we find that the optimal J should be on the
same order of κc (see Sec. V B). Then, the spectrum takes an
intermediate shape of the type shown in Fig. 2(b).

To characterize the dependence of ε, we should consider
Sop(±2�). If the auxiliary cavities are weakly damped, such
that κ � �, and assuming J2 
 κcκ , one has

Sop(±2�) ≈ κ

J2
. (23)

Then, Eqs. (22) and (23) lead to

ε � κcκ

4J2
+ κ2

8�2
(κ � �), (24)

which is a decreasing function of J and saturates to the
lower bound ε � κ2/(8�2) when J2 
 (�/κ )2κcκ . Note that
Eq. (24) is also a decreasing function of the ratio κ/�. In
conclusion, to decrease the value of ε, it is beneficial to set
�1 = −�2 = 2�, increase J , and decrease κ . At the same
time, it is important to note that a larger J suppresses the
effective cooperativity Ce.

V. OPTIMIZITION OF THE MECHANICAL SQUEEZING

So far, we have discussed the desirable setting of the
auxiliary cavities. In this section, we focus on how to achieve
the maximum squeezing effect by optimizing the coupling
strength of the main optomechanical cell to the drives and to
the auxiliary cavities.

A. Optimal mechanical squeezing with respect to laser strength

With the optical parameters of the auxiliary cavities fixed
as in the previous section, the mechanical squeezing effect
varies with respect to the strength of the applied lasers. In
particular, it can be rather sensitive to the relative strength
of the blue- and red-detuned drives, which we define as r ≡
tanh ζ = G+/G−.
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FIG. 3. Mechanical squeezing vs G+/G−, with different values
of G−. The solid curves are from Eq. (16), while the discrete points
(circles, squares, and triangles) are from a numerical solution of
the Langevin equations. As expected, small deviations appear at
the largest G− (approaching strong coupling). The black dots mark
the approximated optimal points, i.e., Eqs. (28) and (29). We used
J/� = 5, κ/� = 1/5, κc/� = 10, and γ /� = 10−5. The thermal
phonon number is nth = 10.

In Fig. 3, the variance 〈�X̂ 2
1 〉 is plotted as a function of

r for several values of G−. Like in the resolved-sideband
regime (i.e., without auxiliary cavities), the squeezing has a
maximum with respect to r. By increasing r, the squeezing pa-
rameter becomes larger, but at the same time the influence of
counter-rotating terms and heating is also enhanced [17,30]. A
balance between these two opposite effects leads to an optimal
value of r. For fixed G− and ε < 1, this optimal value can be
derived from Eq. (16):

ropt = D −
√

D2 − Ce(1 − ε)[Ce(1 − ε) + 1]

Ce(1 − ε)
. (25)

where

D = Ce(1 − ε2) + nth(1 − ε) + 1. (26)

The corresponding optimal mechanical variance is:

〈
�X̂ 2

1

〉
ropt

= 1 + 2nth + Ce
[
(ropt − 1)2 + ε

(
r2

opt + 1
)]

2
[
1 + Ce(ε − 1)

(
r2

opt − 1
)] . (27)

Considering the relevant limit of large effective cooperativ-
ity Ce 
 1 and small counter-rotating effect ε � 1, Eq. (25)
can be simplified to

ropt ≈ 1 −
√

1 + 2Ceε + 2nth

Ce
+ 1 + Ceε + nth

Ce
. (28)

In this regime, the minimum variance is

〈
�X̂ 2

1

〉
ropt

≈
√

1 + 2Ceε + 2nth

4Ce
+ nth

2Ce
. (29)

Figure 4 shows a comparison of the above Eqs. (28) and (29)
with the numerical results. From Eq. (29), we see that the
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FIG. 4. Mechanical squeezing with optimized r. All lines are the
analytical results from Eqs. (28) and (29) while circles, squares, and
triangles are the corresponding numerical results. The boundary be-
tween the weak- and strong-coupling regime is marked by G− = κ .
In the strong-coupling regime, the effective master equation ap-
proach becomes inadequate. The parameters used here are J/� = 5,

κ/� = 1/5, κc/� = 10, and γ /� = 10−5.

variance decreases monotonically with G− and saturates at

〈
�X̂ 2

1

〉∣∣
bound =

√
ε/2 ≈

√
κcκ

8J2
+ κ2

16�2
, (30)

where in the last step we used Eq. (24). This lower bound im-
plies 〈�X̂ 2

1 〉 > κ/(4�), which shows that squeezing beyond
3 dB requires κ < �.

In Fig. 3, small deviations between our analytical results
and the direct numerical solution are visible when G− is large,
due to the violation of the weak-coupling condition. This issue
is explored more systematically in Fig. 4, where the optimal
mechanical variance is plotted with respect to G−. In the
weak-coupling regime, the analytical results are consistent
with numerical results. In the strong-coupling regime, the
numerical results deviate from the analytical ones, showing a
nonmonotonic behavior with respect of G−. This is due to the
significant hybridization of the mechanical and optical modes
in the strong coupling regime, which invalidates the whole
reservoir engineering approach toward a mechanical squeezed
vacuum.

B. Optimal mechanical squeezing with respect to J

The physics of optimization over the ratio r, discussed in
Sec. V A, is similar to the resolved-sideband regime [17,30].
In the unresolved-sideband case, the coupling strength J be-
tween the main and auxiliary cavities represents an additional
crucial parameter for the design of the engineered reservoir.
As is evident from Fig. 1 and our previous discussion, a
nonzero J is able to mitigate the effect of unwanted counter-
rotating terms. In particular, when J is very large, the spectrum
reflects three well-separated hybridized modes, of which the
one at ω = 0 is very sharp, i.e., leads to a small values of ε (see
Fig. 2). However, in the regime of large J , this central peak
is mainly due to a superposition of auxiliary cavity modes
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FIG. 5. (a) Mechanical squeezing vs J for optimized r. The black
solid line is the result of Eq. (27). The dashed and dash-dotted lines
show the corresponding values of 1/Ce and ε; see Eqs. (14) and (15).
Here κc/� = 10 and nth = 10. (b) Optimal Jopt, with black lines from
the approximate analytical result Eq. (35). (c) Optimized squeezing,
with black lines from the approximate analytical result Eq. (34). In
both panels (b) and (c), the red circles (nth = 0) and blue squares
(nth = 10) are obtained by minimizing Eq. (27) with respect to J .
Other parameters: κ/� = 1/10, γ /� = 10−5, and G−/� = 1/10.

and thus is very weakly coupled to the mechanical element
and becomes ineffective in squeezing its thermal state. As a
consequence, the variance has a nonmonotonic dependence
on J and attains the smallest value at an optimal coupling Jopt;
see Fig. 5(a) for a concrete example.

Mathematically, the existence of such optimal point is
indicated by Eqs. (22) and (24). As we have discussed in
detail, Eq. (24) describes the decrease of ε by increasing J ,
which at moderate J is beneficial to overcome the condition of
unresolved sidebands and obtain a larger mechanical squeez-
ing. The strong decrease of ε with increasing J is shown
by the dot-dashed curve of Fig. 5(a). Eventually, ε saturates
to a small finite value when J 
 √

κκc. On the other hand,
the dashed curve of Fig. 5(a) shows a strong decrease of the
effective cooperativity Ce at large J , which can be understood
from Eq. (22): A large J suppresses the spectral density at ω =
0 (Sop(0) ∝ J−2 for J 
 �

√
κc/κ , supposing � 
 κ) and the

decrease of Sop(0) implies a vanishing effective cooperativity,
since Ce ∝ Sop(0). Therefore, increasing J will eventually
reduce the degree of squeezing, despite the tiny ε.

For a more quantitative analysis, we resort to Eq. (29),
where the strengths of the laser drives are optimized, and
consider the limit of � 
 κ . We obtain the following approx-
imation for Ce:

Ce � C

(
1 + J2κ

2�2κc

)−1

, (31)

where C = 4G2
−/(γ κc) is the standard cooperativity. Further-

more, ε is well described by Eq. (24). Performing these

approximations in the first term of Eq. (29) yields

〈
�X̂ 2

1

〉
ropt

� 1

2

√
C−1

th

(
1 + J2κ

2�2κc

)
+ κκc

2J2
+ κ2

4�2
, (32)

where the “thermal” cooperativity is defined as

Cth = C

2nth + 1
. (33)

Note that the second contribution of Eq. (29) was omitted:
Since we are interested in reaching a small variance, we
need nth/(2Ce) � 1. Then, the first term of Eq. (29) is larger
than

√
nth/(2Ce), and thus becomes the dominant one in this

regime. Note also that Eq. (32) recovers Eq. (30) in the limit
of infinite cooperativity.

Performing the optimization of Eq. (32) with respect to J ,
we finally obtain the maximum achievable squeezing:

〈
�X̂ 2

1

〉
opt � 1

2

(√
C−1

th + κ

2�

)
, (34)

with both r and J optimized, and the optimal coupling

Jopt � (Cth )1/4
√

�κc. (35)

As shown in Figs. 5(b) and 5(c), these approximations are
able to describe accurately the numerical results. Furthermore,
the compact result of Eq. (34) highlights the two limiting
factors of the squeezing protocol: The first is the thermal
cooperativity and the second is due to the finite line width
of the auxiliary cavities. These two sources of imperfec-
tion contribute to the minimum achievable variance in an
additive way.

We also note that for typical system parameters the factor
(Cth )1/4√�/κc is of order unity, so the optimal J is of the
same order of κc. In this regime, the corresponding optical
spectrum is neither Autler-Townes nor EIT. Instead, it shows
three gentle peaks as the dot-dashed lines of Fig. 2(b).

VI. DISCUSSION AND CONCLUSIONS

In previous sections, the two couplings between the main
and auxiliary cavities have been assumed to be equal, such
that the optical spectrum Sop(ω) peaks at the cavity frequency
(or ω = 0 in the rotating frame). This is generally the optimal
setting except for small J1/� and J2/�, where the effect
of counter-rotating terms are comparable to the resonant
terms. As shown Fig. 6, J1 > J2 can suppress heating and
enhance cooling to benefit squeezing. However, to achieve
large squeezing, large values of J1 and J2 are desirable (see the
black curve of Fig. 6) and, in this regime, the optimal choice
of J1/J2 remains at the symmetric setting assumed in previous
discussions.

Regarding the realization of the proposed setup, parame-
ters we used in this paper about the optomechanical system
and the high-finesse optical cavities are feasible with current
technology, especially in photonic crystal nanobeams [31,32].
The only element which is not common is a strong coupling
between the optomechanical system and the auxiliary cavities.
However, strong coupling between two optical cavities as
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FIG. 6. The optimal ratio of J1/J2 (blue line) and the corre-
sponding mechanical squeezing (black line) vs J2. Other parameters
are G−/�=1/10, G+ =4/5G−, κc/�=10, κ/�=1/5, γ /�=1/5,
and nth =10.

large as 25 GHz has already been realized in photonic crystal
nanobeams [24]. In microtoroid system, optical cavities can
also be coupled and the coupling strength can be sufficiently
large [33] to reach J > �.

In summary, we have shown that, for an optomechanical
system in the unresolved sideband regime driven with a two-
tone laser, mechanical squeezing can still be achieved with an
improved version of reservoir engineering: The main cavity
is coupled to two auxiliary ones with carefully designed
parameters. The role of these additional cavities is to modulate
the optical spectrum and suppress the unwanted counter-
rotating processes. The underlying mechanism is a quantum
interference effect analogous to EIT in atomic physics, and
can lead to strong mechanical squeezing (beyond 3 dB).
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APPENDIX A: LINEARIZATION OF THE HAMILTONIAN

We discuss here the derivation of the linearized Hamilto-
nian Eq. (3). By introducing the displacement transformations
mentioned in the main text, â = α + d̂, â1,2 = α1,2 + d̂1,2,
and b̂ = β + d̂m, the Langevin equations from the original
Hamiltonian Eq. (1) are as follows:

˙̂dm = − i�d̂m − γ

2
d̂m − ig(α∗d̂ + αd̂†) − igd̂†d̂ − √

γ d̂m,in,

˙̂d = − i[ωc + g(β + β∗)]d̂ − κc

2
d̂ − igα(d̂m + d̂†

m )

− igd̂ (d̂†
m + d̂m ) − iJ1d̂1 − iJ2d̂2 − √

κcd̂c,in,

˙̂di = − iωid̂i − κi

2
d̂i − iJid̂ − √

κid̂i,in, (A1)

where the coherent amplitudes satisfy

β̇ = − i�β − γ

2
β − ig|α|2,

α̇ = − iωcα − κc

2
α − iJ1α1 − iJ2α2 − igα(β + β∗)

− i(α+e−iω+t + α−e−iω−t ),

α̇i = − iωiαi − κi

2
αi − iJiα, (A2)

In Eq. (A1), d̂i,in are white noise operators with cor-
relation functions 〈d̂i,in(t )d̂†

i,in(t ′)〉 = δ(t − t ′) for the cav-

ity modes (i = c, 1, 2), and 〈d̂†
m,in(t ′)d̂m,in(t )〉 = nthδ(t − t ′),

〈d̂m,in(t )d̂†
m,in(t ′)〉 = (nth + 1)δ(t − t ′) for the mechanical

bath, where nth is the thermal phonon number. All other noise
correlation functions are zero.

By neglecting in Eq. (A1), the small nonlinear terms and
frequency shift of the main cavity δωc = g(β + β∗), the ap-
proximate Langevin equations define the following linearized
Hamiltonian:

ĤL = ωcd̂†d̂ + �d̂†
md̂m + g(α∗d̂ + αd̂†)(d̂†

m + d̂m )

+
∑
i=1,2

(ωid̂
†
i d̂i + Ji(d̂

†d̂i + d̂ d̂†
i )) + Ĥenv, (A3)

which is still written in the original frame. To obtain Eq. (3),
we should consider the explicit time dependence of α. To
lowest order in g, Eq. (A2) gives

α � ᾱ+e−iω+t + ᾱ−e−iω−t , (A4)

where

ᾱ± = α±

ω± − ωc + i κc
2 − ∑

i=1,2
J2

i

ω±−ωi+i κi
2

. (A5)

By defining the the many-photon couplings G± = gᾱ±, which
for definiteness we assume are real (by a proper choice of
the drive phases), and transforming Eq. (A3) to an interaction
picture with respect to ωc(d̂†d̂ + d̂†

1 d̂1 + d̂†
2 d̂2) + �d̂†

md̂m, we
finally obtain Eq. (3) of the main text.

For completeness, we also give below the leading-order
solutions for the classical amplitudes of the auxiliary cavities
and mechanical mode:

αi � Ji

(
ᾱ+e−iω+t

ω+ − ωi + i κi
2

+ ᾱ−e−iω−t

ω− − ωi + i κi
2

)
, (A6)

β � −g
ᾱ2

+ + ᾱ2
−

� − i γ

2

+ gᾱ+ᾱ−

(
e−2i�t

� + i γ

2

− e2i�t

3� − i γ

2

)
, (A7)

where the latter result is obtained by inserting Eq. (A4) in the
equation for β̇ and using ω± = ωc ± �. The time-dependent
contribution is due to the oscillation of the cavity intensity
induced by the beat note between the two drives.

It is also worth mentioning that the above approximations
require a sufficiently small drive strength, as can be seen
by considering the corrections to the leading-order solution.
Approximating the nonlinear term −igα(β + β∗) in Eq. (A2)
through Eqs. (A4) and (A7), it is easily seen that addi-
tional Fourier components at ωc ± 3� appear in the solution
of α, besides corrections at the original drive frequencies
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ωc ± �. To estimate the size of these corrections, we rely on
Eq. (A5) and κi < � < κc (the first inequality is necessary
to achieve squeezing beyond 3 dB, see Sec. VI) to estimate
ᾱ± ∼ α±/ max[κc, J2

1,2/�]. Together with β ∼ gᾱ2
±/�, this

gives

gα(β + β∗) ∼
{

G2
±

max
[
�κc, J2

1,2

]
}

α±. (A8)

Since α± is the amplitude of the original drive, the factor in
the curly brackets should be much smaller than one for our
treatment to be valid:

G± � max[
√

�κc, J1,2]. (A9)

In practice, the condition Eq. (A9) is not very restrictive. In
the main text, we generally assume G− � � in giving explicit
numerical results (note that � < κc, due to the unresolved-
sideband regime). Furthermore, the optimal point of Eq. (35)
is in a regime of large J , with J2 = √

Cth�κc 
 �κc. In this
case, Eq. (A9) is much less restrictive than G− � √

�κc.

APPENDIX B: MAXIMALLY SQUEEZED QUADRATURE

We consider the variance of X̂θ = X̂1 cos θ + X̂2 sin θ ,
where X̂1 = (d̂m + d̂†

m )/
√

2 and X̂2 = i(d̂†
m − d̂m )/

√
2, over

a general squeezed vacuum state, given by |r, β〉 =
exp[r(eiβ d̂2

m − e−iβ d̂†2
m )/2]|0〉:〈

�X̂ 2
θ

〉 = (
sinh2 r − cos β cosh2 r sinh2 r + 1

2

)
cos2 θ

+ (
sinh2 r + cos β cosh2 r sinh2 r + 1

2

)
sin2 θ

− sin 2θ sin β cosh r sinh r. (B1)

In our case, since the Bogoliubov mode Eq. (4) has real
coefficients, we should set β = 0. Then, Eq. (B1) simplifies
to 〈

�X̂ 2
θ

〉 = 1
2 (e−2r cos2 θ + e2r sin2 θ ), (B2)

showing that the maximally squeezed quadrature is obviously
X̂1 (i.e., θ = 0).

APPENDIX C: EFFECTIVE MASTER EQUATION

We start by transforming the linearized Hamiltonian
Eq. (3) to an interaction picture with respect to the optical
modes:

ĤI = d̂†(t )(G+d̂†
m + G−d̂m ) + H.c.

+ d̂†(t )(G+d̂me−2i�t + G−d̂†
me2i�t ) + H.c. (C1)

Here d̂ (t ) = eiĤBOt d̂e−iĤBOt , where ĤBO is defined in Eq. (17).
We then apply the usual Born-Markov approximations to
derive an effective master equation for the reduced mechanical
density operator ρ̂(t ) = TrB[ρ̂tot (t)]:

d ρ̂(t )

dt
= −

∫ ∞

0
TrB[Ĥ I (t ), [Ĥ I (t −s), ρ̂(t ) ⊗ ρ̂B]]ds. (C2)

Notice that in the above equations we only include the optical
cavities as an environment of the mechanical mode. For now,
we have omitted the thermal bath, which is uncorrelated with

the structured optical bath. Its effect will be included at the
end. Explicitly evaluating Eq. (C2) through Eq. (C1) gives

d ρ̂(t )

dt
= γ−[d̂mρ̂(t ), d̂†

m] + γ+[d̂†
mρ̂(t ), d̂m]

+ γS ([d̂mρ̂(t ), d̂m] + [d̂†
mρ̂(t ), d̂†

m]) + H.c., (C3)

with the coefficients

γ± =
∫ ∞

0
ds[(G2

+ei�s + G2
−e−i�s)〈d̂ (s)d̂†(0)〉

+ (G2
+e−i�s + G2

−ei�s)〈d̂†(s)d̂ (0)〉]e∓i�s,

γS = G+G−
∫ ∞

0
ds(〈d̂†(s)d̂ (0)〉 + 〈d̂ (s)d̂†(0)〉), (C4)

Notice that, in obtaining Eq. (C3), we have neglected terms
with an explicitly time dependence of the type exp[i�t].
These rapidly oscillating terms have a small effect, since
the typical timescale of the intrinsic evolution τS ∼ 1/� is
much shorter than the timescale τR ∼ 1/γ over which ρ̂(t )
varies appreciably. Finally, by defining �i = 2Re[γi] and
ϒi = Im[γi] (with i = ±, S), the master equation becomes
more compact:

d ρ̂

dt
= − i[ĤLS, ρ̂] + �−D(d̂m )ρ̂ + �+D(d̂†

m )ρ̂

+ �S (DS (d̂m )ρ̂ + DS (d̂†
m )ρ̂), (C5)

with

ĤLS = ϒ−d̂†
md̂m + ϒ+d̂md̂†

m + ϒS
(
d̂2

m + d̂†2
m

)
(C6)

and

�+ = G2
+Sop(0) + G2

−Sop(−2�) + γ nth, (C7)

�− = G2
−Sop(0) + G2

+Sop(2�) + γ (1 + nth ), (C8)

�S = G+G−Sop(0). (C9)

Here we have also included the mechanical thermal bath,
by adding the appropriate heating and cooling rates to �±.
Neglecting the small effect of the Lamb shift, we obtain
Eq. (6) of the main text.

APPENDIX D: LINDBLAD FORM
OF THE MASTER EQUATION

To write Eq. (6) explicitly in Lindblad form, we introduce
a Bogoliubov mode B̂′,

d̂m = uB̂′ + vB̂′†, (D1)

where u and v are supposed to be real (u2 − v2 = 1). Then,
Eq. (6) can be rewritten as follows:

d ρ̂(t )

dt
= (v2�− + u2�+ + 2uv�S )D(B̂′†)ρ̂ + (u2�− + v2�+

+ 2uv�S )D(B̂′)ρ̂ + (uv(�− + �+)

+ (u2 + v2)�S )(DS (B̂′)ρ̂ + DS (B̂′†)ρ̂). (D2)
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FIG. 7. Four general possibilities of mechanical variance 〈�X̂ 2
1 〉

vs ε±. (−C/D, B/D) represents pole of four hyperbolic functions in
general and its value can be obtained from Eq. (16). (a) Mechanical
variance 〈�X̂ 2

1 〉 as a function of ε− with ε+ fixed. In (b),(c),(d),
ε− is fixed as ε+ varies. See the main text for a detailed expla-
nation of the four cases. Although ε± are positive quantities, to
illustrate the functional dependence of Eq. (16) we extended panels
(b) and (c) to ε+ < 0.

The last line is zero for the following choice of u and v:

u = �s

b

√
2b

a − b
, v = −

√
a − b

2b
, (D3)

where the definitions of a and b are given after Eq. (12). These
results are in agreement with the main text and the rates in
the first and second lines of Eq. (D2) are the �B′

± , given after
Eq. (12).

APPENDIX E: DEPENDENCE OF SQUEEZING
ON ε± AND Ce

The parameters ε±, representing the strength of the
counter-rotating terms, play an important role in the genera-
tion of squeezing. Supposing that the other parameters ζ , Ce,
and nth are held constant, Eq. (16) is of the simple form
(A + Bx)/(C + Dx) (where x = ε− or ε+) and leads to the
four cases illustrated in Fig. 7. From Figs. 7(a) and 7(c),
two necessary conditions for squeezing will be derived; see
Eqs. (E1) and (E4).

Figure 7(a) occurs by fixing ε+ and considering x = ε− as
a variable. The asymptotic value is B/D = −1/2 and it is easy
to see from Eq. (16) that the pole is at −C/D > 0. Since the

physically meaningful region is on the left side of the pole, it is
indeed true that the variance is monotonically increasing with
ε−. Mechanical squeezing is not possible unless the variance
is smaller than 1/2 at ε− = 0, which leads to the following
constraint on the thermal occupation:

nth <
Ce(1 − e−2ζ )

2 cosh2 ζ
, (E1)

Figures 7(b), 7(c) and 7(d) correspond to x = ε+ as a
variable while fixing ε−. The asymptotic value is B/D = 1/2,
and the position of the pole is given by

C

D
= 1 + (1/Ce − ε−) cosh2 ζ

sinh2 ζ
. (E2)

Figures 7(b) and 7(c) assume C/D > 0, i.e., ε− <

1/ cosh2 ζ + 1/Ce. At ε+ = 0, the variance is

A

C
= 1

2

e−2ζ + [ε− + (1 + 2nth)/Ce] cosh2 ζ

1 + (1/Ce − ε−) cosh2 ζ
, (E3)

which is positive since C/D > 0. Then there are two cases:
0 < A/C < 1/2 is plotted in Fig. 7(b), where the variance
monotonically increases with ε+ and the largest squeezing is
achieved at ε+ = 0; A/C > 1/2 is plotted in Fig. 7(c), where
decreasing ε+ leads to a larger variance. This dependence
is opposite to what one would expect, however; here 〈�X̂ 2

1 〉
is always larger than 1/2. Thus, the latter regime is not
interesting for squeezing zero-point motion.

Following this discussion, we get another necessary condi-
tion for squeezing:

ε− <
1 − e−2ζ

2 cosh2 ζ
− nth

Ce
, (E4)

which can be simply obtained from Eq. (E3) by setting A/C <

1/2. Furthermore, the right-hand side of Eq. (E4) should be
larger than zero (since ε− is always positive), which allows us
to recover the bound on nth given in Eq. (E1).

The last case to consider is C/D < 0, which leads to
Fig. 7(d). Comparing Eqs. (E2) and (E3), one can see that A/C
is negative. Therefore, Eq. (16) implies either an unphysical
negative value (on the left of the pole) or no squeezing at all
(on the right side).

In summary, we find that, in all cases where squeezing is
possible, the variance is reduced by decreasing ε±. Following
a similar proof, we can show that, when the other parameters
are fixed, increasing Ce always reduces the variance.
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