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Bistability of a nonlinear resonantly driven oscillator in the presence of external noise is analyzed using the
classical Fokker–Planck equation in the quasienergy space with account for tunneling effects and by quantum
master equation in quasienergy states representation. Two timescales responsible for different stages of this
bistable system relaxation have been obtained. We found that the slow relaxation rate caused by fluctuation-
induced transitions between different stable states can be enhanced by several orders of magnitude due to the
tunneling effects. It was also revealed that tunneling between nearly degenerate quasienergy states and resonant
multiphoton transitions between the genuine eigenstates of the nonlinear oscillator are just the similar effects.
It was demonstrated that the quasienergy states in the bistability region corresponding to higher amplitude are
squeezed. The degree of squeezing is determined by the ratio between nonlinearity and detuning, so that the
uncertainty of one quadrature can be considerably smaller than the quantum limit. We found that tunneling effects
can enhance the generation of output oscillator squeezed states. It was demonstrated that 1D Fokker–Planck
equation is a quasiclassical limit of a quantum master equation.
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I. INTRODUCTION

Complex systems with two or more stable states appear in
many fields of science from biology and chemistry to quantum
optics and electronics [1–4]. Ability to control and manipulate
these complex systems relies on one’s knowledge of their
stable states, the extent of their robustness with respect to
environmental fluctuations, and on ability to make specific
perturbations inducing transitions between these states.

First, one needs to understand the behavior of bistable sys-
tems interacting with the environment. Bistable systems in op-
tics and electronics are widely used as switching elements in
communications systems, basic elements of memory devices,
logic gates, optical turnstiles, etc. So, the investigation of
fluctuation-induced transitions between different stable states
is crucial to improve the stability of optical and electronic
devices and to control their switching rates.

Due to unprecedented miniaturization of optical and elec-
tronics devices quantum effects became very important for
their operation [5,6]. It is impossible to study bistability
without accounting for quantum effects. Thus it is necessary to
trace the correspondence between the classical and quantum
regimes of the system [7]. In the quantum regime, it is
important to understand whether quantum fluctuations impose
a fundamental limit on stability of optical and electronic
devices.

It is well established that in many nonlinear optical and
electronic interface systems there exist a set of quantum
states—squeezed states—which have less uncertainty in one
quadrature than a coherent state [8]. Generation of squeezed

states is a key for implementation of quantum information
protocols and for stability enhancement of quantum optics
devices [9]. Bistable quantum optics systems are promis-
ing candidates to realize the squeezed states. Recently the
squeezed exciton-polariton field has been observed in pillar-
shaped semiconductor microcavities in the bistable regime
near the critical point of the bistable curve [10].

A driven nonlinear oscillator interacting with a thermal
bath is the minimal model describing fluctuation-induced
transitions in bistable systems out of equilibrium. The dy-
namics of various microcavities coupled with nonlinear media
and coherently driven by an external field including exciton-
polaritons in semiconductor microresonators with external
pumping can exhibit a bistable behavior and can be described
by the model of a driven nonlinear oscillator. Recent exper-
iments demonstrated that as external coherent pumping is
increased the occupied exciton-polariton mode shows strong
sudden jumps from one state to another. Such behavior is
caused by the fluctuation-induced transitions between the
stationary states. These transitions could also lead to decrease
of the hysteresis area of an internal microcavity field under
the S-shaped response curve with respect to the external
pumping [11].

Another experimental realization which can be analyzed
using the nonlinear oscillator model is a mesoscopic Joseph-
son junction array resonator [12]. In such a device, the
anharmonicity can be of the same order as the linewidth,
and the dynamics of bistability has been experimentally
measured by observing the jumps between different sta-
ble states. It was shown experimentally that the switching
rate strongly depends on the pumping intensity. In addition,
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the model of a driven nonlinear oscillator is applicable to
highly excited molecular vibration modes in the presence of
anharmonicity.

The model of a driven nonlinear oscillator has been
extensively theoretically studied since 1980’s. However,
fluctuation-induced transitions between two stable states were
traditionally analyzed using the classical 1D Fokker–Planck
equation (FPE) in quasienergy space without accounting for
quantum tunneling [13–15].

The ultraquantum limit of dispersive bistability was ana-
lyzed by Drummond and Walls [16], where the kinetic equa-
tion for generalized Glauber function was solved analytically
for the case of zero bath temperature. The same model was
analyzed numerically using the technique of quantum master
equation [17].

Nevertheless, there has been no detailed analysis of kinet-
ics of the nonlinear driven oscillator allowing one to trace the
transition between the classical and quantum descriptions of
this system. Moreover, the structure of quasienergy states of a
driven quantum nonlinear oscillator and the influence of their
degeneracy [18] on kinetics still remains a relatively unex-
plored area of research. In order to understand rich physical
properties of bistable systems, one could start by considering
the minimal model of a driven nonlinear oscillator.

In present work, we derive the quasiclassical kinetic equa-
tions taking into account the tunneling effects. These equa-
tions are a quasiclassical limit of the quantum master equation
for the density matrix of a quantum driven nonlinear oscillator.
We show that in the quasiclassical limit, tunneling transitions
reduce the threshold value of intensity of the external field
responsible for switching between the most probable states
of the system. We also show that tunneling between trajecto-
ries in different regions of the phase space and multiphoton
resonant transitions between the states of the nonlinear oscil-
lator are the same effects. In the quantum case, we explore
the structure of eigenstates and show that the quasienergy
states corresponding to the higher amplitude stable state are
squeezed, and the uncertainty in one of the quadratures can be
much lower than the usual quantum limit.

II. CLASSICAL BISTABILITY

A. The basic model

We consider a model system consisting of a single oscil-
lator mode with Kerr-like nonlinearity excited by a resonant
field. Its key feature is the bistability in a certain range of
external pumping intensity: the presence of two different
classical stable states.

The effective Hamiltonian for such a model is [14,19,20]

Heff = −�|a|2 + α

2
|a|4 − f (a + a∗), (1)

where a and a∗ are slowly varying amplitudes of the inter-
nal oscillator field; � ≡ � − ω0 is the detuning between
the external field frequency � and the frequency of the
resonance ω0; α is the anharmonicity parameter; f is the
interaction strength with external field (proportional to its
amplitude). Such a model can arise for various systems in
the rotating–wave approximation such as microcavity with
a nonlinear medium coherently driven by an external field.

FIG. 1. (a) The contour lines of the classical Hamiltonian (2) for√
β/βcrit = 0.3. The separatrix (black solid line) divides the plane

into three regions: region 1 containing the stationary value with a
lower amplitude, region 2 containing the stationary value with a
higher amplitude, and the outer region 3. The unstable stationary
state S is the point of self-intersection of the separatrix. (b) The same
set of contour lines is shown together with the surface plot of the
Hamiltonian (2). It illustrates that the stationary states, 1, 2, and S
correspond, respectively, to the maximum, minimum, and the saddle
point of the Hamiltonian. For each trajectory in region 1, there exists
a trajectory in region 3 with the same quasienergy.

For example, this effective Hamiltonian can be derived for
the Janes–Cunnings model after adiabatically excluding the
atomic variables. It also describes the microcavity exciton-
polaritons driven by an external field as well as strongly
excited vibration modes of molecules in the presence of an
external resonant field. Here we use the normalized field
amplitude, A ≡ a

√
α/�, and a dimensionless time, τ = �t .

The only dimensionless parameter which governs the system
dynamics is β ≡ α f 2/�3. In dimensionless variables, the pa-
rameter β can be treated as the rephasing rate of the nonlinear
driven oscillator [21]. This parameter can also be identified
with the Dicke cooperation parameter determining the typical
rate of the intensity growth of a superradiance pulse. Note that
the original Dicke model deals with collective superradiance
of the system of quantum two-level emitters interacting with
the cavity field. However, as it was shown in Refs. [22,23],
a superradiance pulse can also arise in a classical system
of nonlinear oscillators coupled to the cavity field due to
rephasing processes.

In terms of new variables, the dimensionless Hamiltonian
is given by H = (α/�2)Heff :

H = −|A|2 + 1
2 |A|4 +

√
β(A + A∗), (2)

while the equation of motion reads

i
∂A

∂τ
= −A + A|A|2 +

√
β. (3)

The classical phase trajectories of the nonlinear oscillator
in the plane (A, A∗) are the contour lines of the classical
Hamiltonian function (1) [Fig. 1(a)]. Let us focus on the
structure of (1) as the function of two variables, Re A and
Im A.

At β = 0, the function has a shape of the Mexican hat
potential. It is radially symmetric, and its contour lines are
concentric circles. At nonzero β, 0 < β < βcrit = 4/27, the
hat is deformed, as shown in Fig. 1(b). Instead of infinitely
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FIG. 2. The S-shaped response curve of the normalized ampli-
tude to the external field. At β < βcrit ≡ 4/27 there are three sta-
tionary states. The dashed line corresponds to the unstable stationary
state.

many local minima, two extrema arise: a true local minimum
and a saddle point. The stationary values of a are given by
the stationary solutions of Eq. (3), which defines the S-shaped
response curve (Fig. 2) of the internal field amplitude to the
external field.

In the bistability region 0 < β < βcrit , there are two stable
stationary states 1, 2 and one unstable state S, which lies on
a self-intersecting trajectory called separatrix. It divides the
phase plane into three regions: the two inner regions 1 and
2 with the corresponding stable states inside them and the
outer region 3. The stable state in region 1 has a lower field
amplitude, while the stable state in region 2 has a higher field
amplitude.

B. Fokker–Planck equation in the presence of white noise

In any realistic system, noise and damping due to interac-
tions with the environment are always present. They result in
appearance of the damping term with dimensionless damping
constant ϑ ≡ γ /� and additional random field ξ in the right-
hand side of the equations of motion:

i
∂A

∂τ
= −A(1 + iϑ ) + A|A|2 +

√
β + ξ,

〈ξ (τ )ξ ∗(τ ′)〉 = Qδ(τ − τ ′), ϑ ≡ γ

�
. (4)

The effect of damping is that the field amplitude relaxes
to one of the stable stationary states. Noise has the oppo-
site effect. First, it results in small random deviations from
the stationary states. Second, it can induce transitions between
the stationary states. At weak noise intensity, these transitions
are exponentially rare.

In the case of the white noise (4), it is possible to derive the
FPE for the probability density [24].

∂P
∂t

= ∂

∂A

(
iP ∂H

∂A∗ + ϑAP + Q

2

∂P
∂A∗

)
+ c.c. (5)

Since the transitions between the stationary states are very
rare, the relaxation consists of two stages. At first, the relax-
ation to the quasistationary distribution occurs in each region
of the phase space at time scales determined by the inverse
damping constant. Then, at a much slower rate, the probability
distribution evolves to the true stationary distribution due to
noise-induced transitions between the stable states.

At small damping (ϑ � 1) and weak noise (ϑ/Q 	 1),
a significant simplification of the 2D FPE is possible. Weak
damping and noise give only a small correction to the motion
along the phase trajectories. So, it is natural to average the
distribution function in each region of the phase space along
the trajectory and define the approximate Pi(t, H (A, A∗)),
i = 1, 2, 3.

Different trajectories with the same quasienergies can exist
in regions 1 and 3 (Fig. 1) By averaging the full FPE, one gets
the 1D FPE in quasienergy space [15,19]:

∂Pi

∂t
= 1

Ti(E )

∂Ji

∂E
,

Ji(E ) = ϑKi(E )Pi + QDi(E )
∂Pi

∂E
. (6)

The expressions for Ki(E ), Di(E ), and Ti(E ) were derived in
Refs. [14,15,19,20] and are reproduced in Appendix. Ti(E )
is the period of motion along the trajectory with quasienergy
E in the region i, and Ki(E ) and Di(E ) are the drift and the
diffusion coefficients in quasienergy space in the region i.

This Fokker–Planck equation should be solved in every
region of the phase space. The full solution should be obtained
by applying the boundary conditions near the separatrix,
which include the continuity of the probability distribution
and the conservation of the flow:

P1(Esep) = P2(Esep) = P3(Esep),

J2(Esep) = J1(Esep) + J3(Esep). (7)

The stationary distribution can be obtained by setting the
flow Ji(E ) to zero, if the tunneling effects are neglected (the
discussion of the tunneling effects is given below).

C. Relative occupation of two stable states

The general formula for the stationary distribution function
follows immediately from (6):

Pst
i (E ) = CeSi−Si (E ), (8)

Si(E ) ≡ ϑ

Q

∫ E

Ei

Ki(E )

Di(E )
dE , Si ≡ Si(Esep). (9)

The distribution has maxima in the vicinity of states 1 and
2, i.e., at the corresponding quasienergies E1 and E2 [19,20].
Outside the neighborhood of E1 and E2, Pst

i (E ) is exponen-
tially small. Depending on whether S1 > S2 or S1 < S2, the
probability density is mostly concentrated around either state
1 or state 2.
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FIG. 3. Stationary distribution functions of a classical nonlinear
oscillator are shown for different values of β and Q/ϑ = 0.1. Each
distribution is single-valued at E2(β ) < E (β ) < Esep(β ) and E >

E1(β ) and double-valued at Esep(β ) < E (β ) < E1(β ), because in the
latter case, there exist trajectories from regions 1 and 3 with the same
quasienergy. The distributions have maxima at E = E1,2(β ), which
are shown by squares (E1) and stars (E2). The arrows show how
the distribution function changes with increasing β. At β ≈ β0, the
maxima have the same order, and at β < β0 (β > β0), the maximum
at E1(E2) dominates.

Numerical evaluation of S1 and S2 shows that S1 = S2 at√
β0/βcrit = 0.29. Therefore β0 corresponds to the threshold

pumping intensity: at β < β0, the oscillator mostly remains
in state 1 with a small amplitude, and at β > β0 it mostly
remains in state 2 with a large amplitude. Thus the choice
of the most probable state is defined by a single parameter
β, and the switching from one most probable state to another
occurs at the universal threshold value β = β0. The width of
the threshold region is determined by the characteristics of the
noise. When |β − β0| ∼ Q/ϑ , both states have comparable
probabilities.

D. Transition rates between different stable states

The relaxation of a nonlinear driven oscillator happens in
two stages. The first stage is the fast relaxation to the quasis-
tationary distribution which occurs independently in regions
1 and 2. After that, the slow relaxation to the real stationary
state occurs, which is governed by rare fluctuation-induced
transitions between the stable states.

Every solution of the FPE can be expressed as a sum over
eigenfunctions:

Pi(t, E ) =
∑

λ

Pλ
i (E )e−λt , (10)

where λ and Pλ are the solutions of the eigenvalue problem

−λPλ
i = 1

Ti(E )

∂

∂E

[
ϑKi(E ) + QDi(E )

∂

∂E

]
Pλ

i . (11)

The eigenvalues of the FPE provide an important information
about the kinetics of the system. As shown in Fig. 4, in the
bistability region the lowest nonzero eigenvalue is several
orders of magnitude smaller than the rest of eigenvalues. It

FIG. 4. The exact nonzero eigenvalues of the FPE at Q/ϑ = 0.05
(black diamonds) are compared with the asymptotic formula (13)
(red line). The lowest nonzero eigenvalue is well below γ and
all other eigenvalues, which have the order of γ . The asymptotic
formula fits well the true lowest eigenvalue when it is smaller than
ϑ , and is not too close to the edges of the bistability region.

determines the last stage of the relaxation process which was
described above.

At small Q/ϑ , the lowest eigenvalue λ is exponentially
small. Thus it is possible to use the perturbation theory for
Pλ

i [19]. In each region of the phase space, the distribution
function up to the first order in λ is given by

Pλ
i (E ) = Pst

i (E )

[
1 + 1

Q

∫ E

Esep

�i(E ′)dE ′

Di(E ′)Pst
i (E ′)

]
,

�i(E ) = −λ

∫ E

Ei

dE ′Ti(E
′)Pst (E ′), (12)

where Pst (E ) is the stationary distribution (8). Using the
continuity of the probability distribution and the conservation
of the flow, one gets the following expression for the lowest
eigenvalue λ:

λ = ϑ2

Q

K1(Esep)K2(Esep)

K2(Esep) − K1(Esep)

[
e−S2

D′
2(E2)

− e−S1

D′
1(E1)

]
(13)

It is clear that the analytical expression (13) fits well the
numerical results everywhere in the bistability region except
in the vicinity of its edges (Fig. 4).

The lowest eigenvalue nonmonotonically depends on the
value of β and achieves its minimum at β = β0. At β < β0

(β > β0), it corresponds to the escape rate λ21 (λ12) from
the higher (lower) amplitude state to the lower (higher) one,
which drops (rises) with the growing external field intensity.
At the threshold intensity, β0, λ12, and λ21 have the same
values.

E. A tunneling term in the Fokker–Planck equation

The trajectories in regions 1 and 3 can have the same
quasienergy. Thus there is a possibility of quantum tunnel-
ing between them. In the quasiclassical language, it can be
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described as the tunneling term in the FPE:

∂P(1,3)

∂t
= 1

T (E )

∂J(1,3)

∂E
+ λT (E )(P(3,1) − P(1,3)). (14)

Here, λT is the tunneling rate. It can be calculated in the
quasiclassical limit with the tunneling amplitude proportional
to e− �

h̄α
Stunn (E ) using the Fermi’s golden rule:

λT /ϑ ∼ e− 2�
h̄α

Stunn (E ). (15)

At small λT , the stationary solution PT
i (E ) can be obtained

by the perturbation approach similar to (12)

PT
(1,3)(E ) = Pst

(1,3)(E )

[
1 + 1

Q

∫ E

Esep

�̃(1,3)(E ′)dE ′

D(E ′)Pst
(1,3)

]
,

�̃(1,3)(E
′) =

∫ E ′

E(1,sep)

dE ′′T (E ′′)λT (E ′′)
(
Pst

(1,3) − Pst
(3,1)

)
. (16)

From this equation, we can determine the most probable
quasienergy states in regions 1 and 3 from which the tunneling
occurs. It is defined by the minimum of Stotal,

Stotal = 2�

h̄α
Stunn(E ) + ϑ

Q
Si(E ). (17)

For calculation of the quasiclassical tunneling exponent
Stunn it is necessary to rewrite the classical Hamiltonian (1)
in real variables p and q: A = q+ip√

2
:

H = −
(

q2 + p2

2

)
+ 1

2

(
q2 + p2

2

)2

−
√

2βq. (18)

The tunneling action is defined as an integral over the classi-
cally inaccessible area p2 < 0:

Stunn =
∫ qc

q1

|p1|dq +
∫ q2

qc

|p3|dq. (19)

The functions p1,3(q) for a specific quasienergy E are deter-
mined as the solutions of the equation H(p, q) = E :

p2
1,3 = 2 − q2 ± 2

√
1 + 2E − 2

√
2βq. (20)

The turning points q1, q2, and qc are defined by the conditions
p2

1(q1) = 0, p2
3(q2) = 0, and p2

1(qc) = p2
3(qc).

The resulting quasiclassical tunneling exponent has an
integral representation

Stunn =
∫ q2

q1

acosh

(
E + x2

2 − x4

8√
2βx

)
x dx. (21)

At small β/βcrit , it can be approximated as

Stunn = √
1 + 2E ln

1

β
+ O(1). (22)

Now, from the expression (17), we can estimate the
quasienergy state which is optimal for tunneling.

At ϑ/Q 	 �/h̄α, Stotal has a minimum near E ∼ E1,
Therefore tunneling transitions occurs directly between the
lower-amplitude stable state and the corresponding state from
region 3. On the contrary, at ϑ/Q � �/h̄α the ”total action”
Stotal has a minimum near E ∼ Esep. So, tunneling occurs

between the states with quasienergy close to Esep, and the
noise-induced transitions dominate.

We concentrate on the case ϑ/Q 	 �/h̄α. In this limit, the
leading term in the tunneling action at E = E1 is

Stunn(E1) = ln
1

β
+ O(1). (23)

The preexponential factor has the order of �. It can be
evaluated by matching the quasiclassical solutions near the
turning points.

Tunneling between the quasiclassical trajectories effec-
tively occurs when the quasienergies obtained from the Bohr–
Sommerfeld quantization rule become almost equal. In this
case, tunneling leads to an exponentially small splitting be-
tween them. As will be shown below, even at finite β, this
occurs when 2�/h̄α is exactly integer. In this case, the
tunneling rate between the classical trajectories in regions 1
and 3 with closest quasienergies is estimated as

λT ∝ �2

γ
β

2�
h̄α . (24)

When 2�/h̄α is not integer, and γ � �, one has

λT ∝ γ β
2�
h̄α . (25)

In both cases, the tunneling rate is proportional to β
2�
h̄α .

At integer 2�/h̄α = m, the tunneling rate can be treated as
the probability of m-photon resonant transition between the
real energy states of the nonlinear oscillator. So, the tunneling
processes in the presence of a resonant external field and
the multiphoton transitions between the energy states of a
nonlinear oscillator are the similar effects [25].

The same expression for the tunneling amplitude in the
lowest nonvanishing order can be also obtained in the frame-
work of the quantum-mechanical perturbation theory for mul-
tiphoton transitions [26]:

Ak,m−k = �

m

(
βm3

2

) m
2 −k √

(m − k)!

(m − 2k − 1)!2
√

k!
. (26)

For k = 0,

|A0,m|2 ∝ �2βm (27)

The state with k = 0 corresponds to the point 1 on the phase
portrait. So, for a driven bistable system, the probability of
m-photon transition calculated quantum-mechanically (26) is
the same as the tunneling probability between the degenerate
quasienergy states in the quasiclassical treatment. The same
nature of tunneling effects and multiphoton ionization of
atoms in a strong electromagnetic field was first demonstrated
by L. V. Keldysh [25].

The presence of tunneling modifies both the distribution
function and the relaxation rate. If λT is small, its effect can
be taken into account within the perturbation theory. The ratio
of probability densities of states 1 and 2 modifies as follows:

Pst
2 (E2)

Pst
1 (E1)

= eS2

(
e−S1 + λT (E1)Q

ϑ2

D′
1(E1)

K1(Esep)

)
. (28)

According to this formula, tunneling leads to a decreasing
probability to be in state 1. Tunneling also changes the total
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FIG. 5. The relaxation rate in units of ϑ without and with the
tunneling term. Here, Q = 0.015 and h̄α/� = 0.2

transition rate between the stable states:

λtotal = λnoise + λT (E1). (29)

Here, λnoise is defined by (13).
The behavior of the transition rate between the stable

states in the presence of tunneling is depicted in Fig. 5.
Tunneling transitions shift the threshold value of the external
field intensity towards lower values and increase the threshold
values of the transition rate.

III. BISTABILITY IN QUANTUM OSCILLATOR

A. Quantum quasienergy states and squeezing

The Hamiltonian for a quantum bistable oscillator in the
rotating-wave approximation is given by

Ĥ0 = − �â†â + α

2
â†â†ââ + f (â + â†),

[â, â†] = 1. (30)

The operators â and â† are the creation and annihilation oper-
ators of the internal oscillator field. In the quasiclassical limit,√

h̄â and
√

h̄â† correspond to the classical field amplitudes. In
the following, we set h̄ = 1.

The exact eigenstates of (30) should be obtained numeri-
cally by diagonalization of the Hamiltonian matrix. However,
qualitatively, the structure of eigenstates can be understood
using the classical analogy.

From the Bohr–Sommerfeld quantization rule, one con-
cludes that the eigenstates of the Hamiltonian correspond to
the discrete set of trajectories in the classical phase portrait
(Fig. 1). However, the real picture is a bit more complicated
because the quantum tunneling should also be taken into ac-
count. This is because the classical phase portrait has different
regions with the same quasienergy, i.e., regions I and III.
So, the real eigenstates may correspond not only to single
trajectories but also to superpositions of two trajectories with
the same quasienergy.

The possibility of quantum tunneling is closely connected
to the degeneracy of eigenstates in the Hamiltonian (30) at
f = 0. At f = 0, the Hamiltonian commutes with a†a, and

FIG. 6. Some eigenstates of the quantum Hamiltonian are shown
in the coherent basis. For each state |n〉, we show the quantity 〈z|n〉
in complex z plane (z = A

√
�/α). (a) The higher amplitude state for

�/α = 20.25 and
√

β/βcrit = 0.6. It is squeezed in the q direction.
(b) The lower amplitude state for the same parameters. (c) The
eigenstate which is a superposition of the lower amplitude state and
the trajectory from the classical region 3. It corresponds to �/α = 20
and

√
β/βcrit = 0.6.

the states with k excitation quanta are the eigenstates of the
Hamiltonian. Their quasienergy is

ε
(0)
k = −�k + αk(k − 1)

2
. (31)

For integer 2�/α, the states with k and m − k excitation
quanta become degenerate. At small but nonzero f , these
states can mix: the true eigenstates are the superpositions of
|k〉 and |m − k〉. In the quasiclassical language, this corre-
sponds to tunneling between degenerate classical trajectories.
Numerical diagonalization shows that such mixing occurs
only when 2�/α is very close to an integer.

To provide some illustration to this qualitative picture,
we calculated the eigenstates of the Hamiltonian (30) in the
coherent basis:

ψn(z) ≡ 〈n|z〉, (32)

where |z〉 is a normalized coherent state. The function ψn(z)
corresponding to the n–th eigenstate has a maximum near the
contour line of the classical Hamiltonian H (a, a∗) = En. This
means that the quantum state |n〉 corresponds to the classical
motion along the trajectory H (a, a∗) = En.

An important property of the quasienergy states is that the
states corresponding to the higher amplitude stable point are
squeezed. This can be shown by the mean-field expansion:

â = 〈a〉2 + â′.
(33)

The mean value of â is defined from the equation
∂H
∂a (〈a〉2, 〈a∗〉2) = 0, which corresponds to the classical stable
states i. For small β, the mean-field value in the higher
amplitude stable state 2 is 〈a〉2 ≈ √

�/α(1 + √
β/2).

The quadratic part of the Hamiltonian takes the form

Ĥ = H (〈a〉2, 〈a∗〉2) − (� − 2α|〈a〉2|2)â′†â′

+ α

2
〈a〉2

2â′†â′† + α

2
〈a†〉2

2â′â′. (34)

We diagonalize this Hamiltonian using the Bogolyubov trans-
formation:

â′ = b̂ cosh θ − b̂† sinh θ, tanh 2θ = α|〈a〉2|2
2α|〈a〉2|2 − �

.

(35)
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Let us consider the uncertainties in two quadratures q̂ and
p̂, â = q̂+i p̂√

2
. Squeezing is more pronounced in the higher

amplitude stable states 〈a〉2.

〈q2〉 − 〈q〉2
2 = e−2θ

2
= 1

2

√
α|〈a〉2|2 − �

3α|〈a〉2|2 − �
,

〈p2〉 − 〈p〉2
2 = e2θ

2
= 1

2

√
3α|〈a〉2|2 − �

α|〈a〉2|2 − �
. (36)

The quadratic approximation is correct when
√

β is larger
than α/�. When α/� � 1, this is fulfilled almost in the entire
region of bistability, and the relations (36) are valid.

The minimum possible uncertainty of q̂ is at β ∼ (α/�)2,
where it can be estimated as

〈q2〉 − 〈q〉2
2 ∼

√
α

�
. (37)

Thus the uncertainty in q̂ quadrature can be far beyond the
quantum limit.

As we have shown in the previous section (28), the tunnel-
ing effects increase the occupation of the stable state 2 with
a higher amplitude and therefore enhance the generation of
squeezed states.

B. Quantum kinetic equation

Let us assume that the system is weakly interacting with
the environment:

Hfull = H0 + ξ̂ †â + ξ̂ â† + Hbath. (38)

We assume that the correlation functions of damping opera-
tors are delta-correlated:

〈ξ̂ (t )ξ̂ †(t ′)〉 = γ (N + 1)δ(t − t ′),

〈ξ̂ †(t )ξ̂ (t ′)〉 = γ Nδ(t − t ′), (39)

where N is the number of noise quanta. With such assump-
tions, the density matrix evolution can be described by the
master equation [16,17,27–29]:

∂tρ = i[ρ, H] + γ

2
(2âρâ† − ρâ†â − â†âρ + 2N[[â, ρ], â†]).

(40)

If γ is small compared to �, the density matrix is almost
diagonal in the basis of eigenstates |n〉, and the master equa-
tion reduces to the rate equation for probabilities Pn to be in
the nth eigenstate:

dPn

dt
=

∑
n′

wnn′Pn′ − wn′nPn,

wnn′ = γ [(N + 1)|〈n|â|n′〉|2 + N |〈n′|â|n〉|2]. (41)

This equation is a quantum analog of (6). The evolution of the
density matrix has the same features as the evolution of the
distribution function for a classical oscillator with bistability.
At infinite time, the density matrix evolves to the stationary
distribution. The relaxation to Pst

n consists of two stages. The
first stage corresponds to the relaxation to the quasistationary
distribution. Its typical time is γ −1. The second stage is
the relaxation to the true stationary state. This stage is very

slow and happens due to transitions between the classical
stationary states. These transitions can be induced by quantum
fluctuations as well as by thermal noise.

Formally, the general solution of (41) reads

Pn(t ) = Pst
n +

∑
λ>0

CkPλ
n e−λt . (42)

The lowest nonzero eigenvalue is much smaller than all other
eigenvalues. Therefore, at large t , only the term with the
lowest nonzero λ should be retained in Eq. (42). The density
matrix relaxes to the true stationary distribution with the rate
λmin, which can be interpreted as the rate of fluctuation-
induced transitions between the stable states.

C. The quasiclassical limit

One can show that the continuous limit of (41) is the (6).
As it was mentioned above, every eigenstate corresponds to a
trajectory on the classical phase portrait, and the hybridization
of the trajectories from regions 1 and 3 can be neglected unless
2�/α is very close to an integer. Thus, in the quasiclassical
limit, the distribution function Pn weakly depends on n in each
of the regions of the phase space. Moreover, the transition
rates wn,n′ ≡ w̃n̄,k , n̄ = n+n′

2 , k = n′ − n decrease fast with an
increasing value of |k| and weakly depend on n̄, which is close
to n. In this case, it is possible to perform a gradient expansion
of Pn, wnn′ in (41):

Pn+k = Pn + ∂Pn

∂n
k + 1

2

∂2Pn

∂n2
k2 + . . . , (43)

wn,n+k = w̃n,k + ∂w̃n,k

∂ n̄

(
k

2

)
+ 1

2

∂2w̃n,k

∂ n̄2

(
k

2

)2

+ . . . (44)

In (44), we took into account that wn,n+k = w̃n+ k
2 ,k = w̃n̄,k ,

n̄ = n + k
2 . Keeping the terms up to the second order in k, one

obtains the differential equation for Pn:

∂Pn

∂t
= ∂

∂n

[
A(n)Pn + B(n)

∂Pn

∂n

]
, (45)

where the coefficients A(n) and B(n) are given by the expres-
sions (41) for probabilities wnn′ :

A(n) = −
∑

k

w̃n,kk = iγ T̃ (εn)

2π
〈n|â ∂t â

†|n〉, (46)

B(n) = 1

2

∑
k

w̃n,kk2 = γ

(
N + 1

2

)
T̃ (εn)2

4π2
〈n|∂t â∂t â

†|n〉.
(47)

Here, T̃ (εn) is the period of the classical motion with
quasienergy εn.

In the quasiclassical limit, the averages over the quan-
tum quasienergy states transform to time–averages over the
classical trajectories. Thus, in the quasiclassical limit, A(n)
and B(n) are expressed as line integrals over the classical
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trajectories:

A(n) = iγ

4π

∮
C(εn )

a da∗ − a∗da,

B(n) = iγ T̃ (εn)

8π2

(
N + 1

2

) ∮
C(εn )

∂H

∂a
da − ∂H

∂a∗ da∗. (48)

After a change of variables �
α

T (E )dE = 2πdn, t� = τ , and
γ /� = ϑ , the equation transforms to the classical FPE (6).
The coefficient A(n) transforms to ϑK (E ) and B(n) trans-
forms to QT (E )D(E ), where

Q = ϑα

�

(
N + 1

2

)
, (49)

E = αε/�2 is the dimensionless quasienergy, and T (E ) =
�T̃ (E�2/α) is the dimensionless period as in (6).

D. Results and discussion

Qualitatively, the behavior of Pst
n in the diagonal approxi-

mation resembles the behavior of Pst
i (E ) of a classical oscil-

lator, as Pst
i (E ) is the classical limit of Pst

n (here, i indicates
the classical region of the phase space). As Pst

i (E ), it consists
of two sharp peaks which can be attributed to the classical
stable states 1 and 2. Below (above) the threshold value of the
external field, the state 1 (2) dominates.

We directly compared the distributions obtained from the
classical FPE and from the quantum master equation. In the
classical limit, Pst

n equals (2πα/�)Pst
i (En), En = αεn/�

2,
where Pst

i (E ) is the classical distribution function for a dimen-
sionless Hamiltonian (2) with number of noise quanta defined
by (49). The index i corresponding to the classical region
of the phase space is uniquely defined for each eigenstate
unless 2�/α is an integer. In the latter case, the classical FPE
should be derived from the quantum master equation more
carefully. It can be obtained only after choosing the proper
basic quasienergy states. One should deal with the quantum
states corresponding to the trajectories in the regions of phase
space 1 and 3, but not with their superposition.

For the classical case, it was shown that the change of the
most probable stable state takes place at

√
β ≡

√
α f 2/�3 ≈

0.29. From Fig. 7, it is clear that for a rather high number of
noise quanta N 	 α/� and for a large noninteger 2�/α 	 1
the probability distribution for a quantum oscillator obtained
from the master equation (41) coincides with the classical
distribution over quasienergies. For a small number of noise
quanta, the situation is more complicated even for large �/α.
Even though at large �/α, the quasiclassical approximation
for matrix elements of â is valid, the quantum distribu-
tion function doesn’t coincide with the classical one due to
quantum fluctuations and tunneling effects. For a quantum
oscillator described by the rate equation (41), β0 is no more
the universal threshold parameter. Not only the parameter β

matters, but also �/α and N matter as well. The threshold
value βq in the quantum limit can exceed the classical value
for a noninteger 2�/α, and it is below the classical value at
integer 2�/α. At a small number of noise quanta, when N �
α/�, the quantum effects including the tunneling processes
govern the transitions between different stable states. In this

FIG. 7. (a) The quantum analog of classical distribution function
for �/α = 9.8,

√
β/βcrit = 0.3, and N = 0.1, 1. Solid (dashed) line

represents the classical distribution for N = 1(0.1), triangles (cir-
cles) represent the quantum distribution for N = 1(0.1). For N = 1,
the quantum distribution fits well the corresponding classical distri-
bution. For N = 0.1, the quantum and classical distribution differ
significantly. (b) The distribution functions at N = 1 and different
closely spaced values of �/α. At �/α = 9.99 (red triangles), the
distribution is close to the classical distribution (black dashed line).
At �/α = 9.9999 (blue stars), the population in the lower amplitude
state is significantly smaller than the prediction of the classical FPE.

case, the distribution function and the relaxation rate strongly
depend on the value of �/α.

When �/α becomes close to an integer, the quantum distri-
bution even at N > α/�, �/α 	 1 doesn’t coincide with the
classical one due to tunneling effects. This is demonstrated in
Figs. 7(b) and 8(b). Tunneling between the classical regions
1 and 3 leads to a decreasing threshold intensity βq and an
increasing relaxation rate, as was mentioned in Sec. II E.

Moreover, as shown in Fig. 8, the value of N also influ-
ences the threshold external field intensity and the threshold
relaxation rate. As N is decreased, the threshold external field
intensity rises and reaches

√
β/βcrit ≈ 0.5 at N = 0. Such

behavior does not appear in the quasiclassical FPE solutions.
To clarify the influence of the fluctuation-induced transi-

tions on statistical properties of the internal oscillator field,

043802-8



EFFECTS OF TUNNELING AND MULTIPHOTON … PHYSICAL REVIEW A 99, 043802 (2019)

FIG. 8. (a) The lowest eigenvalue of the rate equation for
N = 0, 0.3, 1, and �/α = 9.9. The black dotted line (green dashed
line, red solid line) corresponds to N = 0 (N = 0.3, N = 1). (b) The
lowest eigenvalue of the rate equation for N = 0 plotted as a function
of �/α, β.

one should calculate the second-order correlation function
g2(0):

g2(0) ≡ 〈â†â†ââ〉
〈â†â〉2

. (50)

When one of the stable states dominates, g(2)(0) ∼ 1. In a
narrow region of fluctuation-induced transitions g(2)(0) is sig-
nificantly larger. For several values of N , we have calculated
g2(0) as a function of two parameters:

√
β and �/α.

For each �/α, the correlation function has similar depen-
dence on

√
β: there is a sharp peak at some value of

√
β/βcrit

between 0 and 1, which indicates the change of the most
probable state. However, the peak is not placed at

√
β/βcrit ≈

0.29 as the classical FPE predicts. Its position is an oscillating

FIG. 9. The correlation function g2(0) at different values of N
plotted as a function of �/α, β. (a) N = 0 (b) 0.01 (c) 0.05, and
(d) 0.1.

function of �/α with sharp minima when 2�/α is an integer,
which corresponds to enhanced tunneling between degenerate
quasienergy states. The amplitude of oscillations decreases as
2�/α increases, when one approaches the quasiclassical limit.
This fact points to the quantum nature of these oscillations.

IV. CONCLUSIONS

We have derived the quasiclassical kinetic equations for the
probability distribution over quasienergy states of a nonlinear
driven oscillator, taking into account the tunneling effects. The
stationary distribution for a wide range of system parameters
and the typical relaxation rate have been determined. It was
shown that the relaxation consists of two stages. At first, the
relaxation to the quasistationary distribution occurs in each
region of the phase space at time scales determined by the
inverse damping constant. Then, at exponentially large times,
the probability distribution evolves to the true stationary
one. The relaxation to the true stationary state happens due
to fluctuation-induced transitions between the quasiclassical
stable states. In the classical limit, if tunneling is neglected,
there exists a universal threshold value of the field intensity
responsible for switching between the most probable stable
states of the system. Taking into account the tunneling effects
renders this value nonuniversal. The tunneling transitions lead
to a decrease of the threshold value of external field intensity
and to an up to one order of magnitude increase of the
fluctuation-induced transition rate between the stable states in
the threshold area.

For a driven quantum nonlinear oscillator, we demon-
strated that the quasienergy state corresponding to the clas-
sical higher amplitude stable state is squeezed. The degree of
squeezing is determined by the ratio of nonlinearity and de-
tuning, and the uncertainty of one of the oscillator quadratures
can be much lower than the usual quantum limit. As tunneling
transitions increase the occupation of the higher amplitude
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stable state, the generation of squeezed states can be enhanced
in the presence of tunneling effects.

Also we demonstrated that the quasienergy states become
superpositions of trajectories from different regions of the
phase space. This happens whenever the detuning is an integer
or half-integer multiple of the nonlinear shift per quantum.
This happens due to a multi–photon resonance between the
real eigenstates of the nonlinear oscillator. It was shown
that such resonance can be described in terms of tunneling
between the quasienergy states in different regions of the
classical phase space.

The kinetics of the quantum oscillator was investigated us-
ing the quantum master equation. It was shown that in the limit
of large detuning-nonlinearity ratio, large number of thermal
photons and in the absence of multiquantum resonance, the
classical FPE in the quasienergy space is a continuous limit of
the quantum master equation. Importantly, a large value of the
detuning-nonlinearity ratio is not sufficient for the validity of
the classical FPE, because at a weak noise the quantum effects
become especially pronounced. The relaxation rate and the
threshold intensity of the external field are both very sensitive
to the detuning-nonlinearity ratio. At an integer or half-integer
detuning-nonlinearity ratio, the relaxation rate can increase
up to several orders of magnitude and the threshold value
of the external field intensity shifts towards lower values. In
this case, tunneling between degenerate quasienergy states
and the multiphoton resonant transitions between the original
states of the nonlinear oscillator can be treated as the same
effect. Finally, it was shown that the second-order correlation
function of the internal field strongly rises near the threshold
pumping intensity, which indicates super-Poissonian statistics
of the internal oscillator field.
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APPENDIX: THE COEFFICIENTS OF THE CLASSICAL
FOKKER–PLANCK EQUATION

The coefficients of the classical FPE are defined as follows:

K (E ) = i

2

∮
a da∗ − a∗ da,

D(E ) = i

2

∮
∂H

∂a
da − ∂H

∂a∗ da∗,

T (E ) =
∫

da∗da δ(E − H (a∗, a)). (A1)

For them, we obtained the following integral representations:

T (E ) =
∫

dt√
2 f 2t − (

E + t
2 − t2

8

)2
, (A2)

Ki(E ) =
∫

3t2/16 − t/4 + E/2√
2 f 2t − (

E + t
2 − t2

8

)2
dt, (A3)

Di(E ) =
∫

t3/16 − t2/8 + Et/2 + f 2 − E√
2 f 2t − (

E + t
2 − t2

8

)2
dt . (A4)

The limits of the integration are the roots or the equation

2 f 2t −
(

E + t

2
− t2

8

)2

= 0,

For energies E2 < E < Esep corresponding to the classical
region 2, this equation has only two real roots. For energies
Esep < E < E1 corresponding to regions 1 and 3, there are
four real roots. t1 < t2 < t3 < t4. To obtain T1, K1, and D1, the
limits of integration should be t1, t2, and for T3, K3, D3, they
should be t3, t4. Finally, for E > E1, which corresponds only
to region 3, there are two real roots once again.
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