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Transport tuning of photonic topological edge states by optical cavities
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Crystal-symmetry-protected photonic topological edge states (PTESs) based on air rods in conventional
dielectric materials are designed as photonic topological waveguides (PTWs) coupled with side optical cavities.
We demonstrate that the cavity coupled with the PTW can change the reflection-free transport of the PTESs,
where the cavities with single modes and twofold degenerate modes are taken as examples. The single-mode
cavities are able to perfectly reflect the PTESs at their resonant frequencies, forming a dip in the transmission
spectra. The dip full width at half depth depends on the coupling strength between the cavity and PTW and thus
on the cavity geometry and distance relative to the PTW. The cavities with twofold degenerate modes lead to a
more complex PTES transport whose transmission spectra can be in the Fano form. These effects well agree with
the one-dimensional PTW-cavity transport theory we build, in which the coupling of the PTW with a cavity is
taken as δ or non-δ type. Such PTWs coupled with side cavities, combining topological properties and convenient
tunability, provide wide diversities for topological photonic devices.
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I. INTRODUCTION

Discovery of electronic topological systems has revolution-
ized fundamental cognition of phase transitions in condensed
matter physics [1–12]. The fascinating topological phases
have been extended to the fields of electromagnetic waves,
in which the optical analogs of quantum Hall (QH) and
quantum spin Hall (QSH) effects can be observed [13–31].
The QH photonic topological insulators (PTIs) were theoret-
ically designed [13,14] and soon afterwards experimentally
implemented [16]; they consisted of gyromagnetic materials
with an applied magnetic field to break the time-reversal
symmetry (TRS). Oppositely, for the QSH PTIs, the key
point is to achieve the Kramer’s degeneracy by a kind of
pseudo-TRS. Different from the spin- 1

2 electronic systems,
real TRS in photonic systems cannot ensure the Kramer’s
degeneracy, for which additional symmetry is required. For
example, pseudospin states can be implemented by utilizing
clockwise and anticlockwise modes in the coupling rings
[28], hybridization of transverse electric and magnetic waves
[17–22,32], or degeneracy of Bloch modes due to crystal
symmetry [24–27,33–42]. All these systems possess topolog-
ically protected edge states which are robust against defects to
support reflection-free transport of photons.

As is well known, waveguides are very important devices
in photonics, along which photons are transported to carry
information. Cavities coupled with waveguides are usually
designed to control the transport of light, forming traps,
filters, and switches [43–51]. The emergence of PTIs pro-
vides just the right chances to realize reflection-free photonic
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topological waveguides (PTWs) using photonic topological
edge states (PTESs). Previous studies about PTIs mainly
focused on how to achieve the topological photonic systems
and how to demonstrate the robustness of the PTESs. What
will happen if the PTWs are coupled with optical defects
(for example, a cavity)? It is still a fascinating subject to
uncover, though researchers have realized that optical de-
fects can flip the photonic pseudospin [52]. We in this work
demonstrate that the generally believed reflection-free PTESs
can be changed by coupled cavities as their eigenfrequencies
lie within the PTI gap. A realistic aspect is revealed to turn
on and off the transport of the PTESs. The transmission
spectra have abundant line shapes near the resonant frequency
of the cavity, which agrees well with the one-dimensional
PTW-cavity transport theory that we build. The bend-immune
PTESs, combining the cavities that can flip the pseudospin
of the PTESs, provide wide diversities for photonic systems,
such as topological optical switches, filters, and logic gates.

This work is organized as follows. In Sec. II, we first design
a crystal-symmetry-protected (CSP) PTI based on air-hole
lattice in a silicon substrate and then show the PTESs are
backscattering immune for bent edges. In Sec. III, two types
of optical cavities are used to tune the transport of the PTESs.
At last, a conclusion is summarized in Sec. IV.

II. CRYSTAL-SYMMETRY-PROTECTED PTIs

Recently, a scheme using dielectric materials was proposed
to achieve CSP PTIs [24], which have been realized on
various platforms [24–27,33–42], for example, microwaves
[41], infrared range [33,40,42], and visible range. We first
design a CSP PTI and then study how to tune the transport of
its PTESs with cavities, and we only consider the transverse
magnetic (TM) waves whose electric and magnetic fields
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FIG. 1. Unit cell of air-rod triangle lattices with lattice constant
√

3a and air rod radius r = 0.35a (a), and those with the radius of centric
rod being shrunk to 0.25a (b) and expanded to 0.45a (c). (d)–(f) Band structures of the photonic crystals, corresponding to panels (a)–(c). The
inset in panel (d) shows the BZs for the primitive and enlarged cells. (g)–(j) Electric field distributions of the modes px , py, dxy, and dx2−y2 .
(k) Photonic band structure of the bulk states (black lines) and edge states [red (gray) lines] between the PTI and the trivial photonic insulator.
(l) Transmission spectra of the pseudospin-up edge states for interfaces with different bending angles, of which electric field distributions for
straight-line and Z-line (bending angle is π/3) edges at the frequency marked by the blue circle in panel (k) are shown in panels (m) and (n),
respectively. Green dashed lines in panels (m) and ( n) represent the interfaces between the PTI (below) and trivial photonic insulator (above).
For panels (k)–(n), the radii of the small and large air rods are 0.35a and 0.45a for the PTI, while they are 0.32a and 0.42a for the trivial
photonic insulator, and they have the same lattice constant of

√
3a. These values guarantee the match between the bulk band gaps for the PTI

and the trivial photonic crystal. Through the work, a and c/a, with c being the speed of light in vacuum, are taken as the units of the length
and frequency, respectively.

are out of and in the xy plane, respectively. The bands and
transport properties of the TM waves are solved within the
finite element method (FEM) by the code of COMSOL multi-
physics. Our designed CSP PTI originates from a primitive
triangular lattice of air rods on a common dielectric substrate.
Without loss of generality, we take silicon as an example, with
the relative dielectric constant εr = 11.7 [53]. The air-rod
lattices are practical in experiments with advanced micro- and
nanofabrication technologies [54], showing advantage over
the gyromagnetic and bianisotropy materials in the optical
frequency region. The primitive lattice constant, a, is the
distance between the centers of two neighbor air rods and
the air-rod radius is r = 0.35a [see Fig. 1(a)]. Note that
the units of the length and frequency throughout this work
are, respectively, taken as a and c/a, where c is the speed
of light in vacuum. Then the primitive cell [pink dashed
parallelogram] is enlarged to three times larger [hexagon in
Fig. 1(b)], forming the present cells with the lattice constant√

3a. Accordingly, the Dirac cones at the high-symmetry
points K and K ′ of the primitive Brillouin zone (BZ) are
folded to the � point of the present BZ, resulting in fourfold
degenerate states at the � point [see Fig. 1(d) and its inset].
This fourfold degeneracy can be broken by decreasing or
increasing the radius of the centric air rod [see Figs. 1(b) and
1(c)]. Because all the structures in Figs. 1(a)–1(c) keep the C6v

symmetry which has two two-dimensional (2D) irreducible
representations of E1 and E2, the fourfold degeneracy splits
into two twofold degeneracies, as shown in Figs. 1(e) and
1(f). Analogous to electronic systems, two bases of E1 (E2)
are px and py (dxy and dx2−y2 ) orbitals, whose electric field
distributions are shown in Figs. 1(g)–1(j). Orbital projection
results of the bands are similar to those in Ref. [24]. For
the case with the decreasing centric rod [see Fig. 1(b)] the

frequencies of the px and py orbitals are lower than those of
the dxy and dx2−y2 orbitals [see Fig. 1(e)] without band inver-
sion, being a trivial photonic insulator. While for the case with
the increasing centric rod [see Fig. 1(c)] the frequencies of the
px and py orbitals are higher than those of the dxy and dx2−y2

orbitals [see Fig. 1(f)], which implies a band inversion and
hence a nontrivial PTI. The principle of this nontrivial topol-
ogy connects with that of Z2 electronic topological insulators
protected by TRS. Here, the 2D irreducible representations of
E1 and E2 provide opportunities to construct a pseudo-TRS
and hence Kramer’s doubly degenerate states. Recombination
of the four orbitals provides pseudospin states of the system
[24–27,34–39], namely,

p± = (px ± ipy)/
√

2, d± = (dx2−y2 ± idxy)/
√

2, (1)

where p+ (d+) and p− (d−) are the pseudospin-up and -down
states of the p (d) band, respectively. According to Ref. [24],
the pseudo-TRS operator, T, can be expressed as T = UK,
where U = −σy (σy is the Pauli matrix operated on bases p±
or d±) and K is the complex conjugate operator. It is direct to
check T2 = −1 on the bases of p± or d±. This pseudo-TRS
in the present photonic system guarantees the nontrivial Z2

topology of the structure in Fig. 1(c).
Figure 1(k) shows the bands of the helical edge states

localized at the interface between the PTI and the trivial
photonic insulator as the red (gray) lines. When excited by
a pseudospin-polarized source, the PTES propagates only
in one direction and has negligible backreflection along the
bending PTW. Figures 1(m) and 1(n) show the rightward-
moving electric field excited by a pseudospin-up source at the
frequency of 0.23c/a [blue circle in Fig. 1(k)] for two kinds
of PTWs, one of which is straight and the other is Z-type
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with a π/3 bending angle. The transmission spectra calculated
by the scattering matrix method [55] [see Appendix A] are
shown in Fig. 1(l) where another Z-type edge with bending
angle 2π/3 is also given. All the transmissivities approach
100% within the band gap of the PTI, indicating the nontrivial
topology of the photonic crystals. There is a tiny gap at the
cross point of the two-branch edge bands [too tiny to be
visible in Fig. 1(k)], whose value can be tuned by changing
the geometry of the edge interface [24–27,34,34–39], being
about 0.000 21c/a in our structure. The tiny gap essentially
originates from the breaking of the C6v symmetry at the inter-
face. In certain cases, it can disappear if the mirror and chiral
symmetries are both satisfied simultaneously [56]. The C6v

symmetry is responsible for the emergence of the pseudospin
states in Eq. (1), as well as the pseudo-TRS T ; therefore any
breaking of the C6v symmetry may destroy the topological
properties of the systems. Moreover, certain defects breaking
the C6v symmetry would change the system’s topological
properties, including the reflection-free transport of the PTES.

III. TUNING PTES TRANSPORT

In order to tune the transport of the PTESs, two types of
single-mode optical cavities are considered, namely, �- and
�-type cavities, as shown in Fig. 2 where all cavities are
achieved by deleting two bigger air rods and one smaller
air rod. There are six layers for Figs. 2(a) and 2(c) and
eight layers for Figs. 2(b) and 2(d) between the cavities and
interface. The electric field distributions in the insets display
the cavity modes whose eigenfrequencies are ∼0.23045c/a.
Since the transmissivity can decrease to zero as the incident
wave frequency is around the cavity eigenfrequency (see
Fig. 2), the nontrivial topology of the edge states is broken,
which is attributed to the breaking of the C6v symmetry around
the cavity position. The pseudospin-up and -down PTESs are
mixed (see Fig. 3). Note that a magnetic defect can destroy
backscattering-immune helical edge states in electronic QSH
effects, but generally it cannot suppress the conductance to
zero [57,58]. Therefore, the transport control of the PTESs in
the present system is superior to the magnetic defects in elec-
tronic QSH effects. Because the electromagnetic wave with
the frequency away from the cavity eigenfrequency cannot
resonantly couple to the cavity mode, the transmissivity is
also able to approach 100%, indicating that the breaking of
the topology of the PTESs only appears around the cavity
eigenfrequency.

The transmission spectra in Fig. 2 depend on the cavity
shape and distance to the PTW. To understand this, we build
the PTW-cavity transport theory [see Appendix B], which
gives the transmission coefficient as follows [59–61],

t = 1 − iV 2
R /vg

(ω − ωc) + iV 2
R +V 2

L
2vg

, (2)

where ω is the frequency of the incident wave with the
group velocity vg. ωc measures the eigenfrequency of the
cavity mode whose couplings with the rightward and left-
ward moving PTESs are described by the δ functions of
VRδ(x) and VLδ(x), respectively. For the cases in Fig. 2 we
have vg = 0.02711c and VR = VL. The relation of VR = VL

FIG. 2. Transmission spectra of the topological edges that are
coupled with side single-mode cavities for four different cases:
(a), (b) �-type cavities and (c), (d) �-type cavities. All cavities are
achieved by deleting two bigger air rods and one smaller air rod.
Notations of 6L and 8L show the distances between the cavities and
edges; i.e., there are six and eight layers, respectively. The circular
dots are calculated by the COMSOL code based on the FEM, while
solid red lines are the fitted curves whose fitting precisions are
described by the adjusted R-square.

dates from the structure symmetry which leads to that the
cavity modes hold the same weights for the pseudospin-up
and -down states. Considering this relation, Eq. (2) gives
the zero transmission when ε = ωc, implying that the cav-
ity flips the pseudospin of the incident edge state. In or-
der to get the coupling between the cavity modes and PT-
ESs, we fit the transmission spectra with Eq. (2) [see the
solid red curves in Fig. 2]. For convenience we denote J =
V 2

R /vg (=V 2
L /vg). The fitted values of (ωc, J ) with units

of c/a are (0.23044, 5.73 × 10−6), (0.23047, 3.18 × 10−6),
(0.23043, 3.65 × 10−5), and (0.23046, 1.50 × 10−5) from
Figs. 2(a) to 2(d), for which the fitting precisions are measured
by the R-square, R2. Since R2 ∼ 1, it proves to be reasonable
to assume the δ coupling between the cavity modes and
PTESs. In detail, R2 is a little less for Figs. 2(a) and 2(c)
compared with the other two cases, indicating that the non-δ-
coupling effects appear between the PTW and the cavity [60].
For example, the solid red line is a little higher and lower than
the circular dots on the left and right sides of the transmission
dip in Fig. 2(c). The different width and slightly different
position of the dips in Figs. 2(a) and 2(c) [Figs. 2(b) and 2(d)]

043801-3



JI, LIU, ZHANG, ZOU, AND YAO PHYSICAL REVIEW A 99, 043801 (2019)

FIG. 3. Band structures for the super cells with different cavities,
corresponding to Figs. 2(a) to 2(d), respectively. The periodic direc-
tion of the super cells, along the interface between the two photonic
crystals, has the period of 30a, while the total length normal to the
interface is cut to be 26

√
3a. The cavity mode can break the linear

dispersion of the PTESs at its eigenfrequency. In other words, the
dispersions of the PTESs with different pseudospins are connected
by the cavity levels, which is the reason why the cavity mode can flip
the pseudospin of the PTESs.

are due to the different distributions of the cavity modes
toward the PTW. As the distance between the cavity and the
PTW increases, the overlap between the cavity modes and
the PTESs decreases and so does the coupling J [comparing
Figs. 2(a) and 2(b) or Figs. 2(c) and 2(d)]. Therefore, well-
designed optical cavities can tune the transport of the PTESs.

Compared with single-mode (nondegenerate) cavities in
Fig. 2, the cavities with degenerate modes (i.e., degenerate
cavities) can induce more diversities for the transmission
spectra of the PTESs [see Figs. 4(a) and 4(b) where the
hexagon cavities contain twofold degenerate modes and are
topological trivial]. Their parities are even and odd [see their
electric field distributions in Figs. 4(c) and 4(d)]. Because
the triangle cavities in Fig. 2 are achieved by deleting two
bigger air rods and one smaller air rod, they only have the
mirror symmetry with respect to the vertical line through their
center. As a result, their levels are commonly nondegenerate.
However, the symmetry of the hexagonal cavities in Fig. 3
is described by the point group of C6v (the fixed point is
the cavity center) which has two-dimensional representation.
Therefore, the levels of the hexagonal cavities can be double
degenerate.

Since the cavities used are much larger than a, the cou-
plings of their degenerate modes with the PTWs should be
the non-δ type, being even (odd) for even (odd) modes [60].
Accordingly, we develop the one-dimensional PTW-cavity
transport theory to account for the effect of the degenerate
cavity with non-δ coupling. It leads to more complexity with
respect to that for the nondegenerate cavities with δ coupling

Odd Mode Even Mode
(c) (d)

FIG. 4. (a), (b) Transmission spectra of the topological edges
that are coupled with side twofold degenerate cavities. Notations
of 6L and 8L show the distances between the cavities and edges;
i.e., there are six and eight layers, respectively. The circular dots are
calculated by the COMSOL code, while the solid red lines are the fitted
curves whose fitting precisions are described by the R-square. (c),
(d) Electric field distributions of odd and even modes in the twofold
degenerate cavity, respectively.

(see Appendices B and C). We take the following coupling
functions,

Ve(x) = V e
0

(
πw2

e

4

)− 1
4

e−2x2/w2
e , (3)

Vo(x) = V o
0

(
πw2

o

4

)− 1
4
√

8x

wo
e−2x2/w2

o , (4)

where V e
0 and we (V o

0 and wo) denote the coupling strength
and width of the even (odd) modes, respectively. Since
V (x) is determined by the cavity mode, its square has been
normalized to V 2

0 [60]. These two non-δ functions can well
describe the coupling between the cavity and the PTW; we
refer the reader to the solid red fitted curves in Fig. 4 [both
have R2 = 0.998]. Each of the degenerate modes has the same
coupling strength with the rightward- or leftward-moving
PTESs, similar to the nondegenerate cavity. According to the
theory in Appendix C, the fitted values of (ωc,V e

0 ,V o
0 ,we,wo)

are (0.22916c/a, 7.01 × 10−4c/a, 8.82 × 10−4c/a, 2.50a,

0.94a) for Fig. 4(a) and (0.22919c/a, 3.92 × 10−4c/a,
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FIG. 5. Top panel: Same transmission curve as that in Fig. 4(a).
Contour maps (a)–(h): Electric field distributions corresponding to
the red (gray) dots of panels (a)–(h) in the top panel, respectively.
Note that the photonic structure is the same as that used for Fig. 4(a).

6.29 × 10−4c/a, 2.78a, 1.07a) for Fig. 4(b). As the distance
of the cavity relative to the PTW increases, the coupling
strength decreases for both modes, while the widths show a
very small changing, because the distribution shapes of the
modes do not change much along the PTW except for
the strength. The distribution of the odd (even) mode along
the vertical (horizonal) direction wider than that of the even
(odd) one is responsible for V o

0 > V e
0 (we > wo) [see the

mode distributions in Figs. 4(c) and 4(d)]. The transmission
spectra appear as a continuous transmission dip interrupted by
a single mode, resulting in a Fano line shape [see Figs. 4(a)
and 4(b)]. According to the variation of the cavity field
distribution along the transmission curves [see Fig. 5], the dip
is mainly from the odd mode while the Fano line shape is from
the even mode, which is due to V o

0 > V e
0 . In Fig. 6, we also

give a case that a small hexagon cavity with two degenerate
modes can lead to a spectrum with better Fano line shape,

FIG. 6. Electric field distributions of (a) odd and (b) even modes
in another twofold degenerate hexagon cavity. (c) Transmission
spectrum for which the distance of the cavity relative to the PTW
is nine layers. In panel (c), the circular dots are calculated from
the FEM, while the solid red line is the fitted one by the one-
dimensional photonic transport theory for the twofold degenerate
cavities built up in the above section. The fitting precision of the
solid red line is described by the R-square, and the fitting param-
eters (ωc,V e

0 ,V o
0 , we, wo) are (0.23482c/a, 4.27 × 10−4c/a, 1.52 ×

10−4c/a, 3.02a, 18.07a), respectively. Note that the transmission
spectrum shows a Fano line shape, indicating that it is possible to
achieve many different transmission line shapes for the PTESs by
using side cavities.

agreeing well with the one-dimensional PTW-cavity transport
theory too.

For a realistic system, since the rods of finite length may
introduce longitudinally dependent states in the topological
band gap, short rods are preferred [24,40–42]. When the
length of the rods are set to 0.5a, the conclusions of Figs. 2
and 4 do not change, which is confirmed by Figs. 7 and 8.
They, respectively, show that the bands and transmission are

FIG. 7. Band structures for the lattices with rods of infinite length
(black solid lines) and finite length (circular red dots). Black lines in
panels (a)–(c) are the same as those lines in Figs. 1(d)–1(f). For all
circular red dots the length of the rods is 0.5a. The lattice structures
in panels (a)–(c) are the same as those in Figs. 1(a)–1(c), respectively.
The bands given by the black lines and circular red dots are consistent
with each other.
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FIG. 8. Left panel: Transmission spectra of the topological edge
coupled with a side single-mode cavity for the lattices with rods of
infinite length (black solid lines) and of finite length (circular red
dots). For all circular red dots the length of the rods is 0.5a. The
transmission spectra given by the black line and the circular red dots
are consistent with each other. Right panel: Draft structure for the
transmission spectra in the left panel.

consistent for the two cases, i.e., finite-length rods (0.5a) and
infinite-length rods. If nonlinear optical materials are intro-
duced into the cavities, more adjustability can be achieved
for the transport of the PTESs, such as topological all-optical
switches [48,62–64]. One of its merits is the significant drop
for signal loss when the switch is on, and another is the perfect
reflection when the switch is off. Photonic crystal cavities
allow a high field enhancement (beneficial for shifting the
resonant frequency of the cavity) and therefore this topologi-
cal all-optical switch is possible. A similar discussion is also
suitable for other topological optical devices, such as filters
and logical gates.

IV. CONCLUSION

In conclusion, we studied the transport of the topological
edge states in the crystalline-symmetry-protected photonic
topological insulators. Since the photonic topological insu-
lators are designed by air rods in conventional dielectric
materials, it is practical and convenient to achieve them in
experiments. The transport property of the PTESs is inves-
tigated under two kinds of defects. For the interface with
different bending angles, the transmission spectra show that
the edge state is robust, while for the cavity defects breaking
the crystal symmetry, the cavity modes can strongly couple
with the edge states near the resonant frequency of the cavity,
resulting in a pseudospin flipping and consequent reflection
of the topological edge states. This phenomenon is explained
by the one-dimensional PTW-cavity transport theory that we
build. The propagation of the PTESs can be easily tuned
by the geometry and distance of the cavity relative to the
interface, and therefore, it is convenient to achieve many types
of transmission line shapes, holding potential applications in
integrated optics. If a nonlinear cavity is considered, one can
expect more adjustability for the transport of the topological
edge states, for example, topological all-optical switches,
filters, and logic gates.
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APPENDIX A: SCATTERING MATRIX METHOD

Throughout the work, we use the scattering matrix method
to calculate the transport of topological edge states coupled
with optical defects. This method has been used to calculate
the topological valley transport of sound in sonic crystals [55].
The defects in the scattering matrix method are taken as the
black box [see Fig. 9(a)] which connects the left and right
channels. The fields on two spatially equivalent points in each
channel can provide the rightward- and leftward-moving (i.e.,
pseudospin up and down) field components. In Fig. 9, the
rightward- and leftward-moving fields of E+

L and E−
L (E+

R and
E−

R ) can be found by EL1 and EL2 (ER1 and ER2), namely,

EL1 = E+
L + E−

L , (A1)

EL2 = E+
L eikd + E−

L e−ikd , (A2)

ER1 = E+
R + E−

R , (A3)

ER2 = E+
R eikd + E−

R e−ikd , (A4)

where k is the Bloch wave vector and d is the integral multiple
of the lattice period along the waveguide. On the other hand,
the scattering waves of E−

L and E+
R can be expressed by the

incident waves of E+
L and E−

R with the scattering matrix of S:

[
E−

L

E+
R

]
= S

[
E+

L
E−

R

]
, (A5)

where

S =
[

r t
t − r∗t

t∗

]
. (A6)

Here, r and t are the reflection and transmission coefficients
of the pseudospin states, respectively. Note that the matrix
S expression in Eq. (A6) requires the energy conservation
(S†S = I) and time-reversal symmetry (S∗S = I), both of
which are satisfied by our photonic systems.

ER
+EL

+

ER
-EL

- SPTW
Left Right

Black box
EL1 EL2 ER1 ER2

(a) (b)

Left Right

FIG. 9. Scattering model for one-dimensional PTWs. The black
box in panel (a) is the scattering region which could be Z-type edges,
cavities, or other optical defects, described by the scattering matrix
S in panel (b). The pseudospin-up and -down fields on the left (right)
side, E+

L and E−
L (E+

R and E−
R ), can be abstracted from those fields

on the left (right) two spatially equivalent points, EL1 and EL2 (ER1

and ER2).
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APPENDIX B: TRANSPORT THEORY
FOR SINGLE MODE CAVITY

In this section, we give the derivation of Eq. (3) in the main
text to aide in understanding the influence of the side cavity
on the transmission of the photonic topological waveguides
(PTWs). The coupled architecture of a one-dimensional PTW
with the side cavity can be described by the following Hamil-
tonian [59],

H = HW + HC + HI , (B1)

where HW and HC are the Hamiltonians of the waveguide and
the cavity, respectively, and HI represents their coupling. They
can be written as

HW =
∫

dxL̂†(x)

(
ωc − vgkc + ivg

∂

∂x

)
L̂(x)

+
∫

dxR̂†(x)

(
ωc − vgkc − ivg

∂

∂x

)
R̂(x), (B2)

HC = ωcĉ†ĉ, (B3)

HI =
∫

dxVRδ(x)[c†R̂(x) + R̂†(x)ĉ]

+
∫

dxVLδ(x)[c†L̂(x) + L̂†(x)ĉ], (B4)

where R̂†(x) and L̂†(x) [R̂(x) and L̂(x)] are the photon
field creation [annihilation] operators of the rightward- and
leftward-moving waveguide modes, corresponding to the
pseudospin-up and -down photonic topological edge states
(PTESs), respectively. ĉ† is the creation operator of the cavity
mode with an eigenfrequency of ωc. Near ωc the dispersions
of the rightward- and leftward-moving PTESs are linear with
respect to the wave vector k, i.e., ω± = ωc − vgkc ± vgk,
where vg is the group velocity and kc is determined by
ω+|k=kc = ωc. Since the distribution of the considered cavity
modes along the PTW is smaller than the wavelength of the
incident light, we assume a δ-type coupling between the cavity
and the PTW. The δ functions of VRδ(x) and VLδ(x) describe
the coupling of the cavity mode with the pseudospin-up and
-down PTESs, respectively. Generally, we have VR = VL due
to the structure symmetry; that is, the cavity modes hold the
same weights for the pseudospin-up and -down states.

The system eigenstate is in the following form,

|	〉 =
∫

dxR(x)R̂†(x)|∅〉 +
∫

dxL(x)L̂†(x)|∅〉 + Cc†|∅〉,
(B5)

where |∅〉 represents the vacuum state, with zero photons in
the cavity and the waveguide. C is the excitation amplitude
of the optical cavity. R(x) and L(x) are the photon wave
functions of the pseudospin-up states and -down states, re-
spectively. Substituting Eqs. (B1) and (B5) into the steady-
state Schrödinger equation

H |	〉 = ω|	〉, (B6)

we can get the coupled equations for R(x), L(x), and C as
follows:

−ivg
∂

∂x
R(x) + VRδ(x)C = (ω − ωc + vgkc)R(x), (B7a)

ivg
∂

∂x
L(x) + VLδ(x)C = (ω − ωc + vgkc)L(x), (B7b)

VRR(0) + VLL(0) = (ω − ωc)C. (B7c)

Adopting the following wave functions for the pseudospin-up
and -down states,

R(x) = eikxθ (−x) + teikxθ (x), L(x) = re−ikxθ (−x), (B8)

one can find the transmission coefficient t , namely,

t = 1 − iV 2
R /vg

(ω − ωc) + iV 2
R +V 2

L
2vg

. (B9)

This is Eq. (3) in the main text.

APPENDIX C: TRANSPORT THEORY FOR TWOFOLD
DEGENERATE CAVITIES

In the present section, we show the photonic transport
theory for a PTW coupled with a twofold degenerate cavity.
This photonic topological system can be described by the
following Hamiltonian,

H = HW + HC + HIo + HIe, (C1)

where

HW =
∫

dxL̂†(x)

(
ωc − vgkc + ivg

∂

∂x

)
L̂(x)

+
∫

dxR̂†(x)

(
ωc − vgkc − ivg

∂

∂x

)
R̂(x), (C2)

HC = ωc(ĉ†
oĉo + ĉ†

e ĉe), (C3)

HIo =
∫

dxVRo(x)[c†
oR̂(x) + R̂†(x)ĉo]

+
∫

dxVLo(x)[c†
oL̂(x) + L̂†(x)ĉo], (C4)

HIe =
∫

dxVRe(x)[c†
e R̂(x) + R̂†(x)ĉe]

+
∫

dxVLe(x)[c†
e L̂(x) + L̂†(x)ĉe]. (C5)

ĉ†
o and ĉ†

e (ĉo and ĉe) are the creation (annihilation) operators
of the twofold degenerate modes with odd and even parities,
respectively, whose eigenfrequencies both are ωc. Note that
the considered twofold degenerate cavities in the present
work are much larger than a. Therefore, we use the non-δ
functions of VRo(x) and VLo(x) [VRe(x) and VLe(x)] to describe
the coupling between the PTW and the odd [even] cavity
mode. Since the cavity modes determine the parities of the
coupling functions, VRo(x) and VLo(x) should be odd functions,
while VRe(x) and VLe(x) are even ones [60]. We also have
VRo(x) = VLo(x) and VRe(x) = VLe(x) due to the structure
symmetry. The meanings of all other symbols are the same

043801-7



JI, LIU, ZHANG, ZOU, AND YAO PHYSICAL REVIEW A 99, 043801 (2019)

as those in Eqs. (B1)–(B4). Similar to Eq. (B5), the wave
function in the present system is

|	〉 =
∫

dxR(x)R̂†(x)|∅〉 +
∫

dxL(x)L̂†(x)|∅〉

+ Coc†
o|∅〉 + Cec†

e |∅〉, (C6)

where Co and Ce are the excitation amplitudes of the odd and
even cavity modes, respectively. Substituting Eqs. (C6) and
(C1) into Eq. (B6), we get the following equation set,

−ivg
∂

∂x
R(x) + VRe(x)Ce + VRo(x)Co = (ω − ωc + vgkc)R(x),

(C7a)

ivg
∂

∂x
L(x) + VLo(x)Co + VLe(x)Ce = (ω − ωc + vgkc)L(x),

(C7b)∫
dx[R(x)VRo(x) + VLo(x)L(x)] = (ω − ωc)Co, (C7c)

∫
dx[R(x)VRe(x) + VLe(x)L(x)] = (ω − ωc)Ce, (C7d)

for R(x), L(x), Co, and Ce.
In order to find the transmission coefficient, one can make

the following transforms,

R(x) = ξR(x)eikx, L(x) = ξL(x)e−ikx, (C8)

for R(x) and L(x). The corresponding boundary conditions
for ξR(x) and ξL(x) are

ξR(−∞) = 1, ξR(∞) = t, ξL(−∞) = r,

ξL(∞) = 0, (C9)

where t and r are the transmission and reflection co-
efficients, respectively. Considering VRo(x) = VLo(x) and

VRe(x) = VLe(x), we denote them as Vo(x) and Ve(x). Using
Eqs. (C8) and (C9), the equation set (C7) changes into

(
ω − ωc − �oo

k

)
Co − �oe

k Ce − V o
k r = V o

−k, (C10a)(
ω − ωc − �ee

k

)
Ce − �eo

k Co − V e
k r = V e

−k, (C10b)

iv−1
g

[
V o

−kCo + V e
−kCe

] + r = 0, (C10c)

iv−1
g

[
V e

k Ce + V o
k Co

] + t = 1. (C10d)

Here,

V m
k =

∫ ∞

−∞
dx′Vm(x′)e−ikx′

, (C11a)

�mn
k = 2

vg

∫ ∞

0
dxQmn(x) sin(kx), (C11b)

Qmn(x) =
∫ ∞

−∞
dx′[Vm(x′)Vn(x′ − x)], (C11c)

where m and n are in {o, e}. Equation (C10) is the linear
equation set of Co, Ce, r, and t , where all parameters are
given by Eq. (C11). Therefore, one can find the transmission
coefficient from Eq. (C10), once the coupling functions of
V o(x) and V e(x) are provided. In the present work, they are
assumed to be [60]

Ve(x) = V e
0 ×

(
1

4
πw2

e

)−1/4

e−2x2/w2
e , (C12a)

Vo(x) = V o
0 ×

(
1

4
πw2

o

)−1/4√
8

x

wo
e−2x2/w2

o , (C12b)

where V e
0 and we (V o

0 and wo) denote the coupling strength
and the width of the even (odd) modes, respectively. These
parameters are determined by fitting the transmission calcu-
lated from the FEM with |t |2 obtained from Eq. (C10). The
expression of |t |2 is not shown here, for its length is too long.
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