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We consider a one-dimensional two-component atomic Fermi gas with contact interaction in the even-wave
channel (Yang-Gaudin model) and study the effect of an SU(2)-symmetry-breaking near-resonant odd-
wave interaction within one of the components. Starting from the microscopic Hamiltonian, we derive an
effective field theory for the spin degrees of freedom using the bosonization technique. It is shown that at a
critical value of the odd-wave interaction there is a first-order phase transition from a phase with zero total spin
and zero magnetization to the spin-segregated phase where the magnetization locally differs from zero.
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I. INTRODUCTION

Over the last decades there has been a tremendous progress
in the field of ultracold atomic quantum gases [1–3]. Unprece-
dented degree of precision, tunability, and control allows one
to study an immense diversity of physical systems that are of
great interest from the condensed matter physics perspective.
Ultracold gases of atomic fermions that are in two internal
states can be mapped onto spin- 1

2 fermions treating the inter-
nal energy states as pseudospin states. These gases serve as an
ideal platform for simulating a large variety of magnetically
ordered phases, in particular, an itinerant ferromagnetic state.

Itinerant ferromagnetism of spin- 1
2 fermions in condensed

matter systems is a long-standing problem [4–6]. It has also
been intensively studied in the context of ultracold quan-
tum gases (see Ref. [3] for a review). It is believed that
the Stoner criterion [7] (which requires a strong repulsion
between different spin components) alone will not lead to the
formation of an itinerant ferromagnetic state [8,9]. Despite a
vast amount of experimental [9–13] and theoretical [8,14–16]
studies on itinerant ferromagnetism, many aspects, such as
the character of the ferromagnetic phase transition, remain
disputable [3]. Recent experimental advances in time-resolved
spectroscopic techniques [12,13] provide new prospects for
studying itinerant ferromagnetism in ultracold quantum gases
and renew the interest to this intriguing topic.

In the one-dimensional (1D) case, it has been realized
long ago that the Stoner criterion is not valid. According
to the Lieb-Mattis theorem [17,18], in a one-dimensional
two-component Fermi gas with a contact repulsive interac-
tion between different spin species, the ferromagnetic state
has a higher energy for any finite repulsion strength. In the
limit of infinitely strong repulsion, all spin configurations
are degenerate [19,20]. Recently, it has been shown that the
itinerant ferromagnetic ground state can be realized in a 1D

two-component Fermi gas with an infinite [21] or a very
strong [22] contact interspecies repulsion and an odd-wave
attraction within one of the components. These proposals are
very promising as they require regimes of the interactions that
are reachable already with the present experimental facilities
[23]. However, the regime of finite and moderate repulsion
strength has not been investigated. It is the purpose of this
paper to fill in this gap.

We use bosonization and renormalization group (RG) tech-
niques to study an effective field theory for a one-dimensional
two-component Fermi gas with a contact repulsion between
different components and an odd-wave attractive interaction
within one of the components. The contact-repulsive interac-
tion is assumed to be in the weak or intermediate regime and
the odd-wave attraction in the near-resonant regime (precise
definitions will be given below). It is shown that at a critical
value of the odd-wave interaction, there is a first-order phase
transition from a phase with zero total spin and zero magne-
tization to the spin-segregated phase where the magnetization
locally differs from zero.

This paper is organized as follows. In Sec. II we specify the
microscopic model and describe the interactions between the
particles. In Sec. III we derive an effective field theory for the
spin degrees of freedom using the bosonization technique. The
resulting field theory is then studied using renormalization
group analysis in Sec. IV, and in Sec. V we derive the phase
transition criterion. Finally, in Sec. VI we conclude.

II. INTERACTION BETWEEN PARTICLES
AND HAMILTONIAN OF THE SYSTEM

We begin with a brief description of the model. Consider
a two-component one-dimensional atomic Fermi gas in free
space at zero temperature. The total Hamiltonian is H = H0 +
H↑↓ + H ′, which includes the free part H0 and two types of the
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interaction. The interaction between different (pseudo)spin
species H↑↓ is assumed to be contact and repulsive, and it
takes place in the even-wave scattering channel. The term
H ′ describes the intraspecies attractive interaction in the odd-
wave channel. Let us now discuss both interactions in detail.

A. Even-wave interaction

In the absence of the odd-wave interaction, the model
reduces to the well-known Yang-Gaudin model with Hamilto-
nian HYG = H0 + H↑↓, which explicitly reads as (we use units
in which h̄ = 1, unless specified otherwise)

HYG =
∫

dx

{
− 1

2m

∑
j=↑,↓

ψ
†
j ∂

2
x ψ j + gψ†

↑ψ
†
↓ψ↓ψ↑

}
. (1)

Here, ψ j is the field operator for a fermion in the (pseudo)spin
state j =↑,↓ and g is the even-wave interaction coupling
constant. The model is exactly solvable [24,25] and it is
well known that for any finite repulsion (g > 0) the ground
state has total spin S = 0. In the limit of infinite repulsion
strength g → +∞ all spin configurations are degenerate [19].
Thus, in agreement with the Lieb-Mattis theorem, the even-
wave contact repulsion alone cannot lead to the ground state
with nonzero total spin [17,18]. The situation changes if one
takes into account the interaction in the odd-wave scattering
channel. This interaction is momentum dependent and the
Lieb-Mattis theorem no longer applies.

B. Odd-wave interaction

For ultracold fermions the background odd-wave interac-
tion is rather weak since it is proportional to the square of
the relative momentum of colliding particles. Nevertheless,
the interaction strength can be enhanced using a Feshbach
resonance. Just like p-wave interaction in higher dimensions,
odd-wave interaction in one dimension takes place in the spin-
triplet state of colliding particles. However, under realistic
conditions, a Feshbach resonance is usually only present for
one of the states out of the triplet. For example, in the case
of 40K atoms there is a p-wave resonance at magnetic field
198.8 G [26,27], and it is present only between two atoms in
the |F = 9

2 , mF = − 7
2 〉 states. Therefore, in the presence of

the Feshbach resonance, the odd-wave interaction, typically,
is not SU(2) invariant.

The case of 1D spin-polarized fermions with resonant odd-
wave interaction has been studied previously by means of
the asymptotic Bethe ansatz [28]. This approach relies on the
knowledge of the two-body scattering phase shift (first derived
in Ref. [29]) and does not require an explicit form of the
Hamiltonian. In the two-component case that we are dealing
with, the asymptotic Bethe ansatz becomes cumbersome due
to the existence of both charge and spin excitations. For
this reason, we proceed differently and take into account
the resonant odd-wave interaction using the so-called two-
channel model that accurately captures microscopic physics
of the interaction. This model describes the Feshbach resonant
interaction as an interconversion between pairs of fermionic
atoms in the open channel and weakly bound bosonic dimers
in the closed channel [30–32].

Thus, keeping in mind the absence of SU(2) symmetry,
we now include an odd-wave interaction within one of the
components, say, between spin-↑ fermions. The correspond-
ing two-channel Hamiltonian in the momentum representation
reads as [33]

H ′ =
∑

q

(
q2

4m
+ ν

)
b†

qbq

+ λ√
L

∑
k1,k2

k1 − k2

2

[
b†

k1+k2
ak1,↑ak2,↑ + H.c.

]
. (2)

Here, â†
k,↑ is the fermionic creation operator of an (open chan-

nel) atom in the spin-↑ state with mass m and momentum k.
The bosonic operator b̂†

q creates an odd-wave (closed channel)
dimer of spin-↑ atoms with mass 2m and a center-of-mass
momentum q. We denote by λ the atom-dimer interconversion
strength and the bare detuning of a dimer by ν. The latter is
related to the dimer binding energy and can be tuned by an ex-
ternal magnetic field. The odd-wave interaction is momentum
dependent, and we introduce an ultraviolet momentum cutoff
�, above which the interconversion strength λ vanishes.

One can relate the bare parameters of the odd-wave inter-
action (λ and ν) to the physical scattering parameters by cal-
culating diagrammatically the two-body scattering amplitude
[33]

f (k) = −ik

−h̄2ν/mλ2 + 2�/π + (h̄4/m2λ2)k2 + ik
, (3)

where we restored h̄ for clarity. Comparing Eq. (3) with the
general form of the 1D odd-wave scattering amplitude at low
collisional energy, f (k) = −ik/[1/lp + ξpk2 + ik], where lp

is the 1D odd-wave scattering length and ξp is the 1D effective
range [29], we find

lp = −mλ2

h̄2

1

ν − 2mλ2�/π h̄2 , ξp = h̄4

m2λ2
. (4)

We see that the momentum cutoff � simply results in the
renormalization of the bare detuning ν, similarly to the case
of s-wave Feshbach resonant scattering in 3D [31,34].

Attractive odd-wave interaction corresponds to lp < 0. It
follows from Eq. (4) that in this case the bare detuning is
necessarily positive and satisfies the condition

ν >
2�

π

h̄2

mξp
. (5)

Let us estimate the right-hand side of inequality (5). In the
quasi-1D regime obtained by a tight harmonic confinement
in transverse directions with frequency ω⊥, the 1D effective
range can be written as ξp = α1a2

⊥/3, where a⊥ = √
h̄/mω⊥

is the oscillator length and α1 is the three-dimensional
(3D) effective range [29]. Equation (5) then becomes ν >

(6�/πα1)h̄ω⊥, where the right-hand side can now be easily
estimated. Indeed, the 1D regime requires that h̄ω⊥ 
 EF

and a⊥ 
 Re, where EF is the Fermi energy and Re is the
effective radius of the actual interaction potential between
atoms. The first condition gives 1/a⊥ 
 kF , and hence we
may put the momentum cutoff to be � ∼ 1/a⊥. Then, the
second condition implies that the ratio �/α1 � 1 since the 3D
effective range α1 is typically of the order of R−1

e . Therefore,
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for attractive interactions the lower bound of the bare detuning
ν is of the order of EF . As ν approaches this lower bound, one
enters the regime of resonant interactions, where |lp| is very
large. On the contrary, in the off-resonant regime, where |lp|
is small, the bare detuning is ν 
 EF . Then, from Eq. (4) we
have lp ≈ −mλ2/h̄2ν.

C. Effective odd-wave interaction

In this section we integrate out the closed-channel bosonic
dimers and obtain an effective action for the fermionic fields.
The Euclidean action corresponding to Hamiltonian (2) is

S′ =
∫

dτ dx

{
χ̄

(
∂τ − 1

4m
∂2

x +ν

)
χ+λ(χ̄O+Ōχ )

}
, (6)

where τ = it is the imaginary time, χ and χ̄ are bosonic
complex fields, and we defined

O(x, τ ) = ψ↑(i∂xψ↑) − (i∂xψ↑)ψ↑. (7)

Integrating out the bosonic fields we obtain an effective action
that contains only the fermionic fields:

S′
eff = λ2

∫
d1 d2 Ō(1)G(1 − 2)O(2), (8)

where 1 ≡ (x, τ ) and 2 ≡ (x′, τ ′). The bosonic propagator
G(x, τ ) satisfies the equation(

−∂τ + 1

4m
∂2

x − ν

)
G(x, τ ) = δ(x)δ(τ ) (9)

and at zero temperature it reads as

G(x, τ ) = −θ (τ )

√
m

πτ
exp

{
−mx2

τ
− ντ

}
. (10)

We see that, since ν is large and positive, the propagator is
strongly localized in the vicinity of x = τ = 0.

III. BOSONIZATION PROCEDURE

A. Notations

We now focus on the low-energy scattering near the Fermi
points. In this section we briefly discuss the notations that we
are going to use. The fermionic field is decomposed as

ψ j (x, τ ) ≈ eikF xR j (x, τ ) + e−ikF xL j (x, τ ), (11)

where j =↑,↓ is the spin index and kF = πn/2 is the single-
component Fermi momentum, with n being the total fermionic
density. For the slow fields Rj , Lj we employ the bosonization
identity in the following form:

Rj (x, τ ) = 1√
2πa

e−i
√

π{� j (x,τ )+� j (x,τ )},

Lj (x, τ ) = 1√
2πa

ei
√

π{� j (x,τ )−� j (x,τ )}, (12)

where a is the short-distance cutoff. In Eq. (12), � j is the
compact bosonic field and � j is the corresponding dual field.
The latter is defined as

� j (x, τ ) = −
∫ x

−∞
dy � j (y, τ ), (13)

where � j is the canonical momentum conjugated to the field
� j . Thus, one has the following equal-time commutation re-
lations [� j (x, τ ),−∂x′� j (x′, τ )] = iδ(x − x′). For later pur-
poses we also introduce a canonical momentum π j conjugated
to the dual field � j . It is defined as

� j (x, τ ) = −
∫ x

−∞
dy π j (y, τ ) (14)

and satisfies the commutation relations [� j (x, τ ),
−∂x′� j (x′, τ )] = iδ(x − x′). This will be useful once we
turn to bosonizing the odd-wave interaction, as the latter
acquires a very compact form in the dual representation.

B. Even-wave interaction

We now proceed with constructing a low-energy theory for
our model. The bosonized form of Eq. (1) is well known (see,
e.g., Refs. [35,36]):

HYG =
∑

α=ρ,σ

uα

2

∫
dx

{
Kα�′2

α + 1

Kα

�′2
α

}

+ 2g

(2πa)2

∫
dx cos

√
8π�σ + H(3), (15)

where the charge and spin bosonic fields are �ρ,σ = (�↑ ±
�↓)/

√
2 and similarly for �ρ,σ . In order to lighten our

notations, we denoted the spatial derivative by a prime. The
charge (spin) velocity is uρ(σ ), and Kρ(σ ) is the corresponding
Luttinger parameter. In the regime of weak (γ � 1) and
intermediate (γ � 1) repulsion strength, they are given by

uρ = vF

(
1 + 2γ

π2

)1/2

, Kρ =
(

1 + 2γ

π2

)−1/2

,

uσ = vF

(
1 − 2γ

π2

)1/2

, Kσ =
(

1 − 2γ

π2

)−1/2

, (16)

where γ = mg/n = πg/2vF is the dimensionless coupling
constant, with vF being the Fermi velocity. For repulsive
interactions, the cosine term in Eq. (15) is irrelevant in the
renormalization group sense and we omit it [37]. The term
H(3) comes from the spectrum nonlinearity in the vicinity of
the Fermi points and reads as [36,38]

H(3) = −�

6

∫
dx
{
�′3

ρ + 3�′
ρ

(
�′2

ρ + �′2
σ + �′2

σ

)
+ 6�′

ρ�
′
σ�′

σ

}
, (17)

where � =
√

π/2m2.
For later purposes we will need the Euclidean action writ-

ten in terms of the �ρ,σ fields only. Omitting the cosine term
in Eq. (15), we first write the dual field representation of the
Hamiltonian density:

HYG =
∑

j=ρ,σ

{
u j

2Kj
π2

j + u jKj

2
�′2

j

}

+ �

6

{
π3

ρ + 3πρ

(
�′2

ρ + �′2
σ + π2

σ

)+ 6 �′
ρ�

′
σπσ

}
.

(18)
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Then, the corresponding Euclidean Lagrangian is LYG =
HYG −∑

j=ρ,σ i�̇ jπ j , where the overdot denotes the
imaginary-time derivative, and πρ,σ = πρ,σ (�̇ρ, �̇σ ). The
latter relation is obtained from π j = ∂HYG/∂�̇ j , which
yields a set of nonlinear equations. Solving these equations
for π j in terms of �̇ j to second order in �, we obtain

LYG ≈
∑

j=ρ,σ

Kj

2

{
1

u j
�̇2

j + u j�
′2
j

}
+�Kρ

2uρ

i �̇ρ

{
�′2

σ −K2
σ

u2
σ

�̇2
σ

}

− �2Kρ

8uρ

{
�′4

σ + K4
σ

u4
σ

�̇4
σ

}
, (19)

where we kept only the most relevant terms.

C. Odd-wave interaction

We now turn to bosonizing the effective action for the
odd-wave interaction. Substituting Eq. (11) into Eq. (7) and
keeping only the dominant term, we obtain

O(x, τ ) ≈ 2kF R↑(x, τ )L↑(x, τ ) = kF

πa
e−i

√
4π�↑(x,τ ). (20)

Other terms contain spatial derivatives of R↑ and L↑. For
collisions taking place near the Fermi points, such terms are
suppressed since they are proportional to a small relative
momentum of colliding particles. This can be easily seen, e.g.,
by using the decomposition (11) in Eq. (2). Therefore, we omit
these terms and the effective action (8) takes the following
simple form:

S′
eff =

(
λkF

πa

)2 ∫
d1 d2G(1 − 2) ei

√
4π�↑(1)e−i

√
4π�↑(2).

(21)

We then take into account that vertex operators multiply
according to

eAeB = : eA+B : e〈AB+ A2+B2

2 〉0 , (22)

where : . . . : denotes normal ordering and 〈. . .〉0 is the Gaus-
sian average with respect to the bosonized Hamiltonian of free
fermions. For the �↑ fields one has

〈�↑(x, τ )�↑(0, 0)〉0 − 〈�2
↑(0, 0)〉0

= −1

4π
ln

x2 + v2
F τ 2 + a2

a2
. (23)

Note that we treat the even- and odd-wave interactions on
equal footing and consider both of them as perturbations on
top of free fermions. Therefore, in Eq. (23) the Luttinger
parameter is unity. Thus, the effective action (21) becomes

S′
eff =

(
λkF

π

)2 ∫
dT dR dt dr

G(r, t )

r2 + v2
Ft2 + a2

× : ei
√

4π[�↑(R+ r
2 ,T + t

2 )−�↑(R− r
2 ,T − t

2 )] : , (24)

where we switched to the coordinates r = x − x′, R = (x +
x′)/2, t = τ − τ ′, and T = (τ + τ ′)/2. Note that the cutoff
a was canceled. Due to the fact that G(r, t ) differs from zero
only for fairly small r and t [see Eq. (10)], we can expand the
argument of the normal-ordered exponent in Taylor series.

Let us now discuss some general properties of the action
(24). Expansion of the �↑ fields and that of the normal-
ordered exponent will produce a number of terms. To any
order, any given term will obviously be a monomial in the R
and T derivatives of �↑(R, T ). Its coefficient is a numerical
constant times a monomial in t and r. The latter contributes to
the integral over dr dt . Therefore, it is convenient to define

Is,p =
∫
R2

dr dt
rs t p G(r, t )

r2 + v2
Ft2 + a2

= −1 + (−1)s

√
π

vs−2
F(

mv2
F

)s+p−1

×
∫ +∞

0

dx dy xsyp− 1
2

x2 + y2 + a2
e− x2

y −ν̃y
, (25)

where s, p are non-negative integers (not equal to zero simul-
taneously), and ν̃ = ν/(mv2

F ) = 1/(ηκ ), with dimensionless
parameters

η = kF |lp| and κ = kF ξp. (26)

The integral in Eq. (25) can be calculated exactly. It converges
for ηκ < 1 and does not depend on the cutoff a. We leave the
details to Appendix A. At this point, it is only important to
observe that Is,p � 0 for any s and p. In other words, the
overall coefficient in the action (24) is negative. For later
convenience we define(

λkF

π

)2

Is,p ≡ − vs−1
F(

mv2
F

)s+p−2 αs,p,

where

αs,p = 1 + (−1)s

π5/2κ
Ĩs,p(ηκ ) � 0. (27)

In Eq. (27), Ĩs,p is the integral over dx dy from Eq. (25), and
we took into account that λ = 1/

√
m2ξp, according to Eq. (4).

For ηκ � 1, i.e., not too close to the resonance, we have

αs,p ≈ 1 + (−1)s

2π5/2
�

(
s + 1

2

)
�

(
s − 1

2

)
(ηκ )p+ s

2

κ
, (28)

for s �= 0. In the case s = 0, the corresponding expression for
αs,p is

α0,p ≈ 1

π3/2

(ηκ )p− 1
2

κ
. (29)

Written in terms of the spin and charge fields, the normal
ordered exponent in Eq. (24) becomes

: ei
√

2π
∑

j=ρ,σ [� j (R+ r
2 ,T + t

2 )−� j (R− r
2 ,T − t

2 )] : . (30)

It is now straightforward to write the contribution from the
odd-wave interaction to any desired order. Expanding the
fields and the exponentials, we keep only the most relevant
terms. These are the terms up to the second order in �ρ

(including terms like �̇ρ�
′2
σ ) and to the sixth order in �σ . For

the sake of readability in the main text we do not present them,
but their explicit form is given in Appendix B. There, we also
provide more detailed calculations for the next section, where
we obtain the total bosonized action.
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D. Total bosonized action

Combining Eqs. (19) and (B1)–(B3), we arrive at the
Euclidean action S = ∫

dx dτ L, where the total Lagrangian
is L = Lσ + L(0)

ρ + Lρσ with

Lσ = −iεσ �̇σ + Aσ
2

2
�̇2

σ + Bσ
2

2
�′2

σ + Aσ
3 i �̇3

σ − Aσ
4 �̇4

σ

− Bσ
4 �′4

σ − Aσ
5 i �̇5

σ + Aσ
6 �̇6

σ + Bσ
6 �′6

σ , (31)

L(0)
ρ = −iερ�̇ρ + Aρ

2

2
�̇2

ρ + Bρ
2

2
�′2

ρ , (32)

Lρσ = C �′
ρ�

′
σ + D �̇ρ�̇σ + i �̇ρ

(
E �′2

σ − F �̇2
σ

)
. (33)

The coefficients can be expressed in terms of uρ,σ , Kρ,σ , �,
and αs,p. For our purpose, their explicit form is unimportant,
but it can be found in Appendix C.

Linear terms in Eqs. (B2) and (B1) are allowed by symme-
try and deserve comments. These are the so-called topological
θ terms. It is well known that in a quantum problem such
terms can play an important role. However, we are deal-
ing with the zero-temperature case, in which the quantum
(1+1)-dimensional system under consideration is formally
equivalent to a two-dimensional classical field theory. For this
reason, we expect that in our case these topological terms do
not lead to any subtle effects. Therefore, in the charge sector
we take the linear term into account by simply shifting the
field as follows:

�ρ = �̃ρ + iβρτ, βρ = ερ/Aρ
2 . (34)

This shift does not influence the commutation relations and
the integration measure in the partition function. Its only effect
is to bring L(0)

ρ to the form (Aρ
2/2) ˙̃�2

ρ + (Bρ
2 /2)�̃′2

ρ . After that,
the charge fields can be integrated out using standard methods.
This results in the effective Lagrangian for the dual spin field
�σ . We then rewrite it in terms of the spin density �σ (for
details see Appendix C), and obtain the effective Lagrangian

L̃(�̇σ ,�′
σ ) = A

2
�̇2

σ + u2

2
�′2

σ +
6∑

n=3

un�
′n
σ , (35)

where for the coefficients to the leading order in ηκ � 1 one
has

A = 1

uσ Kσ

(
1 + y

2K2
σ

)
,

u2 = uσ

Kσ

(
1 − y

2

)
,

u3 =
√

π

32

(
uσ

Kσ

)3 (ηκ )5/2

mv3
F κ

,

u4 = − π

32m2

Kρ

uρ

(1 − 2y),

u5 = − 3π3/2

32
√

2

Kρ

uρ

(
uσ

Kσ

)2 (ηκ )5/2

m3v3
F κ

,

u6 = π2

128

1

m4

(
Kρ

uρ

)2 Kσ

uσ

(
1 − 7

2
y

)
. (36)

The dimensionless parameter y is defined as

y = Kσ

vF

uσ

√
ηκ

κ
=
√

η

κ

(
1 − 2γ

π2

)−1

. (37)

As can be seen from Eq. (36), for y < 2
7 ≈ 0.286 we have

u2 > 0, u4 < 0, and u6 > 0 [39]. From Eqs. (16) and (37) we
find that in order to be in this regime one should have

η <
4κ

49

(
1 − 2γ

π2

)2

. (38)

This condition can be easily satisfied. Thus, already at the
mean field level, the transition is of the first order.

IV. RENORMALIZATION GROUP ANALYSIS

Using Lagrangian (35), we write the Ginzburg-Landau
functional

S̃ =
∫

dτ dd x

{
A

2
�̇2

σ + u2

2
�′2

σ +
6∑

n=3

un�
′n
σ

}
, (39)

with the coefficients given by Eq. (36). For the RG analysis,
we have generalized the theory to the d-dimensional space.
In order to gain insight into the role of the nonlinear terms,
let us first look at their scaling behavior. By changing x = bx̃,
τ = bzτ̃ , and �σ (x, τ ) = bχ�̃σ (x̃, τ̃ ), we obtain

A(b) = b2χ+d−zA, u2(b) = b2χ+d+z−2u2,

un(b) = bnχ+d+z−nun, n = 3, . . . , 6. (40)

Out of these quantities one can construct the following di-
mensionless couplings that are independent of the arbitrary
rescaling exponents z and χ :

g3 = � u3(
π2A u5

2

)1/4 , g4 = �2 u4

π
(
A u3

2

)1/2 ,

g5 = �3 u5(
π2A3 u7

2

)1/4 , g6 = �4 u6

π A u2
2

. (41)

Then, using Eqs. (40) and putting b ≈ 1 + δl , one immedi-
ately finds that at the tree level the above nonlinear couplings
flow according to the RG equations

∂l g3 = − 1
2 (1 + d )g3, ∂l g4 = −(1 + d )g4,

∂l g5 = − 3
2 (1 + d )g3, ∂l g6 = −2(1 + d )g6. (42)

Let us note that at this level the combination g6/g2
4 =

πu2u6/u2
4 is invariant under the RG flow.

Using the momentum-shell RG approach in d = 1, we ob-
tain the following one-loop flow equations (for the derivation
see Appendix D):

∂lA = (2χ − z + 1)A,

∂l u2 = (2χ + z − 1)u2 + 12G1 u4 − 18G2 u2
3,

∂l u3 = (3χ + z − 2)u3 + 10G1 u5 − 36G2u3u4,

∂l u4 = (4χ + z − 3)u4 + 15G1 u6 − 36G2 u2
4 − 60G2 u3u5,

∂l u5 = (5χ + z − 4)u5 − 120G2 u4u5 − 90G2 u3u6,

∂l u6 = (6χ + z − 5)u6 − 100G2 u2
5 − 180G2 u4u6, (43)
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(a)

� �
�

�

(b)

� 0.3
� 3
0.2

�

�

�

�

FIG. 1. RG flow in the vicinity of the Gaussian fixed point. (a) RG flow in the intersection of the subspace {g1, g3} and the hyperplane
g4 = g5 = g6 = 0. The dot at the origin marks the Gaussian fixed point. Thin dashed lines indicate the eigenvectors of the linearized flow and
the red dotted line shows possible initial conditions g1(0) = 0, g3(0) > 0 [see Eq. (47)]. (b) RG flow of g4, g5, and g6 as given by Eq. (46)
(black dotted, dashed, and solid lines, correspondingly) and Eq. (50) (thin gray dotted, dashed, and solid lines, correspondingly) for typical
values of κ , γ , and η. The ratio �/mvF is 1.

where G1 = (�2/2π )(A u2)−1/2 and G2 = G1/(2u2). Impor-
tantly, RG procedure also generates a term u1�

′
σ , whose

coupling flows according to

∂l u1 = (χ + z)u1 + 3G1 u3. (44)

Note that the above equation is decoupled from the rest of the
RG equations (43). For the u1 term we define a corresponding
dimensionless coupling as

g1 = A1/4 u1√
π �u3/4

2

. (45)

Unlike all other dimensionless couplings, g1 is relevant. It
is more convenient to study the RG flow in terms of the
dimensionless couplings gn. Using Eqs. (41), (43), and (44),
one can show that the couplings obey the equations

∂l g1 = g1 + 3

2π
g3 − 9

2
g1g4 + 27

8
g1g2

3,

∂l g3 = −g3 + 5

π
g5 − 33

2
g3g4 + 45

8
g3

3,

∂l g4 = −2g4 + 15

2π
g6 − 15

π
g3g5 − 18g2

4 + 27

4
g4g2

3, (46)

∂l g5 = −3g5 − 45

2
g6g3 − 81

2
g4g5 + 63

8
g5g2

3,

∂l g6 = −4g6 − 25

π
g2

5 − 57g4g6 + 9g6g2
3,

with g1(0) = 0 and other initial conditions following from
Eq. (36):

g3(0) = 1

2K3/2
σ

�

mvF

(
uσ

vF

)2
η5/2κ3/2

(2 − y)5/4
(
2 + y/K2

σ

)1/4 ,

g4(0) = − �2

8m2

Kρ

uρ

K2
σ

uσ

(1 − 2y)

(2 − y)3/2
(
2 + y/K2

σ

)1/2 ,

g5(0) = − 3π

8

KρK1/2
σ uσ

uρ

�3

(mvF )3

(2 − y)−7/4η5/2κ3/2(
2 + y/K2

σ

)3/4 ,

g6(0) = π

32

(
�2KρK2

σ

m2uρuσ

)2 (2 − 7y)

(2 − y)2
(
2 + y/K2

σ

) . (47)

The harmonic coupling u2 then flows according to

∂l u2 = (
2χ + z − 1 + 6 g4 − 9

2 g2
3

)
u2. (48)

We thus see that the Gaussian fixed point is unstable and
for any nonzero values of g3(0) and g5(0) [i.e. for η �= 0,
see Eq. (47)], the system flows away in the direction of g1.
This happens despite the initial condition for g1 is strictly
zero. A detailed analysis shows that for all realistic initial
conditions, given by Eq. (47), the flow is such that g1 increases
towards positive values, whereas all other couplings tend
to zero. For a typical initial condition, this is illustrated in
Figs. 1 and 2.

Let us now analyze the system of RG equations in the
vicinity of the Gaussian fixed point [40]. Equations (46) can
be written in the matrix form as ∂lg = β(g). The Jacobian
matrix for the system linearized near the origin is

J = ∂ (β1, β3, . . . , β6)

∂ (g1, g3, . . . , g6)

∣∣∣∣
0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3
2π

−1 5
π

−2 15
2π

−3

−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)
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FIG. 2. A step-by-step RG flow in the intersection of the {g1, g3} subspace and the hyperplane defined by the values of g4(l ), g5(l ), and
g6(l ) at a given l . The large dot represents the corresponding state of the system. Panel (a) shows the initial state of the system, l = 0 and all
couplings gi having their initial values gi(0), as given by Eq. (47). Here, we take typical values κ = 3, γ = 0.3, η ≈ 0.2, and put �/mvF = 1
[the same as in Fig. 1(b)]. In the consequent panels (b)–(f) the RG time l increases, and the hyperplane {g4(l ), g5(l ), g6(l )} evolves according
to the RG equations (46). This explains the variation of the flow lines from one panel to another [most noticeable in (a)–d)]. The thick solid
line shows the path traveled by the system as it flows from the initial state at l = 0 to the current state. After l � 1, the couplings g4, g5, and g6

are essentially zero, and in panels (d)–(f) the flow lines in the {g1, g3} plane remain practically the same.

Then, the solution of the linearized system is g(l ) = elJg0. In
components it reads as

g1(l ) = 3

2π
g3(0) sinh l + 15

4π2
g5(0) e−l sinh2 l,

g3(l ) = g3(0) e−l + 5

π
g5(0) e−2l sinh l,

g4(l ) = g4(0) e−2l + 15

2π
g6(0) e−3l sinh l, (50)

g5(l ) = g5(0) e−3l ,

g6(l ) = g6(0) e−4l .

Therefore, the system experiences a runaway flow, as seen
in Fig. 2. This situation is typical for the first-order phase
transition [41,42].

V. PHASE TRANSITION CRITERION

In order to obtain the phase transition criterion, let us
consider the renormalized action that reads as

S =
∫

dx dτ

{
A

2
�̇2

σ + u2

2
�′2

σ + u4�
′4
σ + u6�

′6
σ

+ u1�
′
σ + u3�

′
σ

3 + u5�
′5
σ

}
, (51)

where the coefficients u j = u j (l ) are the solutions to RG
equations (43), and are related to the dimensionless couplings
g j via Eqs. (41) and (45).

Before we proceed, let us make an important remark.
One should keep in mind that in the context of ultracold
atomic gases, magnetization is nothing else than the differ-
ence between the number of atoms in the (pseudo)spin-↑
and -↓ states. This means that the population of each spin
species is conserved. Restricting ourselves to the case with
no population imbalance, the total magnetization is zero in all
phases:

∫
dx �′

σ (x) = 0. (52)

Therefore, the linear term in action (51) should be dis-
carded. Note that although condition (52) prohibits phases
with nonzero total magnetization, it still allows the existence
of spin configurations, where the magnetization is different
from zero locally. In other words, one can have a system of
domains.

At sufficiently large RG times l , in order to find the
phase transition, one may simply minimize the renormalized
Hamiltonian density [16]. The latter follows from Eq. (51) and
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reads as

H = u2

2
�′2

σ + u3�
′3
σ − |u4|�′4

σ + u5�
′5
σ + u6�

′6
σ , (53)

where we omitted the kinetic term �σ/2A. At l = 0 co-
efficients u3 and u5 are ∼(ηκ )5/2, and they are negligibly
small for ηκ � 1 [see Eq. (36)]. At larger l these coefficients
become even smaller. For this reason, we can neglect cubic
and quintic terms in the Hamiltonian (53). Thus, up to small
corrections, the phase transition criterion is

u2(l )u6(l )

u2
4(l )

≈ 1

2
. (54)

In the region, where u2u6/u2
4 < 1

2 , the system is in the phase
with zero magnetization 〈�′〉, whereas for u2u6/u2

4 > 1
2 the

ground state has 〈�′〉 �= 0.
Using Eq. (41) we express u4 and u6 in terms of the

dimensionless couplings g4 and g6, and Eq. (54) becomes
g6(l )/g2

4(l ) = π/2. Here, g4(l ) and g6(l ) are the solutions
of RG equations (46). In the vicinity of the Gaussian fixed
point, the RG flow is such that it is well described by the
linearized RG equations with the solutions (50), as can be seen
from Fig. 1(b). Thus, the phase transition criterion (54) can be
written as

g6(0)

g2
4(0)

1

1 − δ(l )
= π

2
, (55)

where the bare couplings g4(0) and g6(0) are given by
Eq. (47), and we introduced the quantity

δ(l ) = π�2

4(mvF )2

(2 − 7y) e−l sinh l

(2 − y)1/2
(
2 + y/K2

σ

)1/2
(1 − 2y)

. (56)

From Eqs. (55) and (56) we see that the distance to the phase
transition is controlled by the parameter y, given by Eq. (37).

At l = 0 the correction δ(l ) is zero and Eq. (55) reduces to

(1 − y/2)(1 − 7y/2)

(1 − 2y)2
= 1

16
, (57)

where we used Eq. (47) for g4(0) and g6(0). Equation (57)
is essentially the mean field phase transition criterion since
it involves only the bare couplings. The roots of Eq. (57)
are y = (5 ± √

15)/4. Taking the minus sign we have y∗ ≈
0.282. Thus, at the mean field level there is a first-order phase
transition at y∗ = 0.282, which can be the case at fairly weak
coupling.

At finite values of l and for y sufficiently close to y∗,
one has δ(l ) � 1. This is because �/mvF ∼ 1 and the l-
dependent factor in Eq. (56) is bounded by 1

2 . We then look
for the solution of Eq. (55) in the form y = y∗ + δy and obtain

δy ∼ 10−4(�/mvF )2e−l sinh l ∼ 10−4. (58)

We see that the correction δy to the mean field critical value
y∗ ≈ 0.282 is negligibly small. One may easily check that in
this case the correction δ(l ) is also negligible, being of the
order of 10−2.

Thus, the phase transition criterion is given by Eq. (57),
and the RG corrections can be neglected. The spontaneous
magnetization in this case is

M ≡ 〈�′
σ 〉 = ±

√
u2/|u4|. (59)

FIG. 3. Phase diagram as follows from Eq. (57). The thick solid
line shows the dimensionless ratio u2u6/u2

4 = g6(0)/(πg2
4(0)) versus

the dimensionless parameter y, given by Eq. (37). There is a critical
value y∗ ≈ 0.282, where g6(0)/(πg2

4(0)) = 1
2 and the phase transi-

tion occurs. For y < y∗, the system is in the paramagnetic phase and
the magnetization M is zero, as illustrated schematically on the inset
(A). For y > y∗, the system enters the phase with the nonzero (local)
magnetization M, as shown on the inset (B).

Importantly, there are two minima, and hence it is possible
to have an instantonlike field configuration that tunnels from
one minimum to another, creating a sequence of domains
(see, e.g., [43]).

As illustrated in Fig. 3, for y < y∗ ≈ 0.282 the system is in
the phase with M = 0, whereas for y > y∗ the phase with a
nonzero M has a lower energy.

VI. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we considered a zero-
temperature one-dimensional two-component Fermi gas with
a weak or intermediate contact-repulsive interaction in the
even-wave channel and an additional attractive odd-wave
interaction between particles in the spin-↑ state. Using
bosonization technique we derived an effective field theory for
the spin degrees of freedom, described by the Lagrangian (35).

In the regime of weak or intermediate even-wave repulsion
(γ � 1) and a near-resonant odd-wave attraction, we have
found a first-order phase transition to a state with a nonzero
local magnetization. The distance to the phase transition
is controlled by the dimensionless parameter y, given by
Eq. (37). The phase transition occurs at the critical value
y∗ ≈ 0.282. At smaller values the system is in the phase with
zero magnetization. At larger values, in the region y > y∗, the
system enters the phase with a nonzero local magnetization.

The phase with nonzero local magnetization deserves com-
ments. In the context of ultracold atoms, the spin-↑ and
spin-↓ states of a fermion are, actually, two distinct atomic
hyperfine states. Magnetization in this language is then simply
the difference between the populations of atoms in these
states. In the absence of inelastic collisions, this difference
remains constant. Thus, when going through the phase tran-
sition, magnetization can change only locally, whereas the
total magnetization remains zero. This is nothing else than
the development of domains. In each domain there are more
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atoms in one hyperfine state than in the other. Therefore,
locally, the magnetization is different from zero.
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APPENDIX A: THE INTEGRAL IN EQ. (25)

In this Appendix we calculate the integral of the form

Ĩs,p =
∫ +∞

0
dx

∫ +∞

0
dy e− x2

y −ν̃y xsyp− 1
2

(x2 + y2 + a2)K
(K > 0), (A1)

which is a slight generalization of the integral in Eq. (25). Using the well-known identity

1

(x2 + y2 + a2)K
= 1

�(K )

∫ +∞

0
dq qK−1e−(x2+y2+a2 ) q, (A2)

we write

Ĩs,p = 1

�(K )

∫ +∞

0
dq e−a2qqK−1

∫ +∞

0
dy yp− 1

2 e−ν̃y−qy2
∫ +∞

0
dx xs e−( 1

y +q)x2

. (A3)

The integral over dx gives

1

2
�

(
s + 1

2

)(
q + 1

y

)−(s+1)/2

. (A4)

Then, taking the limit a → 0 and making a change of variables z = qy we obtain

Ĩs,p = 1

2
�

(
s + 1

2

)∫ +∞

0
dy e−ν̃y y

s
2 +p−K 1

�(K )

∫ +∞

0
dz e−yz zK−1(1 + z)−(s+1)/2. (A5)

In the integral over dz one recognizes the integral representation of the Tricomi hypergeometric function. Its general form reads
as

U (α, β, y) = 1

�(α)

∫ +∞

0
dz e−yzzα−1(1 + z)β−α−1, (A6)

which is valid for Re y > 0 and Re α > 0. One has the following expression for U (α, β, y) in terms of the confluent
hypergeometric function 1F1(α, β, y):

U (α, β, y) = �(1 − β )

�(α − β + 1)
1F1(α, β, y) + �(β − 1)

�(α)
y1−β

1F1(α − β + 1, 2 − β, y). (A7)

In our case we have α = K and β = 1 + K − (s + 1)/2, which yields

1

�(K )

∫ +∞

0
dz e−yz zK−1(1 + z)−

s+1
2 = U

(
K, 1 + K− s + 1

2
, y

)
= �

(
s+1

2 − K
)

�
(

s+1
2

) 1F1

(
K, 1 + K− s + 1

2
, y

)

+ �
(
K − s+1

2

)
�(K )

y
s+1

2 −K
1F1

(
s + 1

2
, 1 + s + 1

2
− K, y

)
. (A8)

Then, Ĩs,p becomes

Ĩs,p = 1

2
�

(
s + 1

2
− K

)
J (1)

s,p + �
(

s+1
2

)
�
(
K − s+1

2

)
2�(K )

J (2)
s,p , (A9)

where we defined

J (1)
s,p =

∫ +∞

0
dy e−ν̃yy

s
2 +p−K

1F1

(
K, 1 + K − s + 1

2
, y

)
,

J (2)
s,p =

∫ +∞

0
dy e−ν̃yys+p+ 1

2 −2K
1F1

(
s + 1

2
, 1 − K + s + 1

2
, y

)
. (A10)
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The above integrals can be calculated in terms of the ordinary hypergeometric function 2F1 using [44]∫ +∞

0
dy e−λyyν

1F1(α, β, ky) = �(ν + 1)λ−ν−1
2F1(α, ν + 1, β, k/λ), (A11)

provided that Re ν > −1 and Re λ > |Re k|. In the case 0 < K � 1 both these conditions are satisfied for J (1)
s,p and J (2)

s,p with any
relevant combination of non-negative integers s and p. Therefore, we finally obtain

J (1)
s,p = �

(
s

2
+ p + 1 − K

)
ν̃−(p+ s

2 −K+1)
2F1

(
K,

s

2
+ p − K + 1, 1 + K − s + 1

2
,

1

ν̃

)
,

J (2)
s,p = �

(
s + p + 3

2
− 2K

)
ν̃−(p+s+ 3

2 −2K )
2F1

(
s + 1

2
, s + p + 3

2
− 2K, 1 − K + s + 1

2
,

1

ν̃

)
. (A12)

Putting K = 1 and ν̃ = 1/(ηκ ), we get

Ĩs,p = 1

2
�

(
s + 1

2
− 1

)
(ηκ )p+ s

2 �

(
p + s

2

)
2F1

(
1, p + s

2
;

1

2
(−s − 1) + 2; ηκ

)

+ 1

2
�

(
1 − s

2

)
�

(
s + 1

2

)
�

(
p + s − 1

2

)
(ηκ )p+s− 1

2 (1 − ηκ )−p− s
2 + 1

2 . (A13)

For ηκ � 1 it behaves as

Ĩs,p ≈
{

1
2�
(

s
2 + p

)
�
(

s−1
2

)
(ηκ )

s
2 +p, s �= 0

π
2 �
(
p − 1

2

)
(ηκ )p− 1

2 , s = 0
(A14)

which leads to Eqs. (27) and (28) in the main text.

APPENDIX B: BOSONIZED ODD-WAVE INTERACTION

In this Appendix we present the terms that we keep after expanding the �ρ,σ fields and the normal-ordered exponent in
Eq. (30). In the charge sector these are the terms up to the second order in the fields:

δL(ρ)
odd = −i

√
2πkF α0,1�̇ρ + πv−1

F α0,2�̇
2
ρ + πvF α2,0�

′2
ρ . (B1)

In the spin sector, up to the sixth order,

δL(σ )
odd = −i

√
2πkF α0,1�̇σ + πv−1

F α0,2�̇
2
σ + πvF α2,0�

′2
σ +

√
2π3/2

3mv3
F

α0,3 i �̇3
σ − π

4m2v3
F

α2,2�̇
′2
σ

− π2

6m2v5
F

α0,4�̇
4
σ − π2

6m2vF
α4,0�

′4
σ − π5/2

15
√

2m3v7
F

α0,5 i �̇5
σ + π3

90m4v9
F

α0,6�̇
6
σ + π3

90m4v3
F

α6,0�
′6
σ . (B2)

Finally, we also keep the following terms that couple spin and charge:

δL(ρσ )
odd = 2πvF α2,0�

′
ρ�

′
σ + 2π

vF
α0,2�̇ρ�̇σ +

√
2π3/2

mv3
F

α0,3i�̇ρ�̇
2
σ +

√
2π3/2

mvF
α2,1i�̇ρ�

′2
σ . (B3)

APPENDIX C: EFFECTIVE LAGRANGIAN FOR THE SPIN FIELDS

In this Appendix we integrate out the charge fields and obtain an effective Lagrangian for the spin degrees of freedom, given by
Eq. (35) in the main text.

1. Total bosonized Lagrangian

Combining Eqs. (B1)–(B3) with Eq. (19), we arrive to the total Lagrangian L = Lσ + L(0)
ρ + Lρσ given by Eqs. (31)–(33) in

the main text. The coefficients in the Lagrangian are given by

ερ = εσ =
√

2πkF α0,1 ≈ (
√

2/π )kF

√
η/κ, Aρ,σ

2 = Kρ,σ

uρ,σ

+ 2πα0,2

vF
, Aσ

3 =
√

2π3/2α0,3

3mv3
F

, Aσ
4 = �2

8

Kρ

uρ

K4
σ

u4
σ

+ π2α0,4

6m2v5
F

,

Aσ
5 = π5/2α0,5

15
√

2m3v7
F

, Aσ
6 = π3α0,6

90m4v9
F

, Bρ,σ
2 = uρ,σ Kρ,σ + 2πvF α2,0, Bσ

4 = �2

8

Kρ

uρ

+ π2α4,0

6m2vF
, Bσ

6 = π3α6,0

90m4v3
F

, (C1)

C = 2πvF α2,0, D = 2π

vF
α0,2, E = �

2

Kρ

uρ

+
√

2π3/2α2,1

mvF
, F = �

2

Kρ

uρ

K2
σ

u2
σ

−
√

2π3/2α0,3

mv3
F

.
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After the shift �ρ = �̃ρ + iβρτ , given by Eq. (34), the Lagrangian becomes

Lσ = iaσ
1 �̇σ + aσ

2

2
�̇2

σ + bσ
2

2
�′2

σ + aσ
3 i �̇3

σ − aσ
4 �̇4

σ − bσ
4 �′4

σ − aσ
5 i �̇5

σ + aσ
6 �̇6

σ + bσ
6 �′6

σ , (C2)

L(0)
ρ = Aρ

2

2
˙̃�2

ρ + Bρ
2

2
�̃′2

ρ , (C3)

Lρσ = C�̃′
ρ�

′
σ + D ˙̃�ρ�̇σ + i ˙̃�ρ

{
E�′2

σ − F�̇2
σ

}
, (C4)

where

aσ
1 = Dβρ − εσ = −Kρ

uρ

βρ, aσ
2 = Aσ

2 + 2Fβρ, aσ
3 = Aσ

3 , aσ
4 = Aσ

4 , aσ
5 = Aσ

5 , aσ
6 = Aσ

6 ,

bσ
2 = Bσ

2 − 2Eβρ, bσ
4 = Bσ

4 , bσ
6 = Bσ

6 . (C5)

Since primarily we are interested in the spin sector, we proceed with integrating out the charge fields.

2. Integration over the charge degrees of freedom

The partition function can be written as

Z =
∫

D�σ e− ∫ dx dτ Lσ

∫
D�̃ρ e− ∫ dx dτ L(0)

ρ −∫ dx dτLρσ , (C6)

where the Lagrangian is given by Eqs. (C2)–(C4). The integral over D�̃ρ is Gaussian and, formally, can be calculated exactly.
We first write the action corresponding to L0

ρ as

S(0)
ρ = 1

2

∫
dx dτ �̃ρ (x, τ )

{
−Bρ

2

(
∂2

x + Aρ
2

Bρ
2

∂2
τ

)}
�̃ρ (x, τ ) = 1

2

∫
d1 d2 �̃ρ (1)G−1

ρ (1 − 2)�̃ρ (2), (C7)

where d1 = dx1dτ1, d2 = dx2dτ2, and the Green’s function is

Gρ (x, τ ) = − 1

4π
√

Aρ
2 Bρ

2

ln
x2 + (

Bρ
2 /Aρ

2

)
τ 2 + a2

a2
. (C8)

The action corresponding to Lρσ , i.e., terms that couple spin and charge, we write as

Sρσ =
∫

dx dτ �̃ρ

[−C�′′
σ − D�̈σ − i ∂τ

(
E�′2

σ − F�̇2
σ

)] ≡
∫

dx dτ �̃ρJσ . (C9)

Then, the integral over D�̃ρ takes the standard form and yields∫
D�̃ρ exp

{
−1

2

∫
d1 d2 �̃ρ (1)G−1

ρ (1 − 2)�̃ρ (2) +
∫

d1 �̃ρ (1)Jσ (1)

}
∝ exp

{
1

2

∫
d1 d2Jσ (1)Gρ (1 − 2)Jσ (2)

}
.

(C10)
Thus, integration over the charge degrees of freedom provides the following correction to Sσ :

δS = −1

2

∫
d1 d2Jσ (1)Gρ (1 − 2)Jσ (2) →

4∑
j=1

δS j, (C11)

where we kept only the most relevant terms:

δS1 = −C2

2

∫
d1 d2 ∂2

x1
�σ (1)Gρ (1 − 2) ∂2

x2
�σ (2) = +C2

2

∫
d1 d2 ∂x1�σ (1)G′′

ρ (1 − 2) ∂x2�σ (2),

δS2 = −D2

2

∫
d1 d2 ∂2

τ1
�σ (1)Gρ (1 − 2) ∂2

τ2
�σ (2) = +D2

2

∫
d1 d2 ∂τ1�σ (1)G̈ρ (1 − 2) ∂τ2�σ (2),

δS3 = +E2

2

∫
d1 d2 ∂τ1 (∂x1�σ (1))2Gρ (1 − 2) ∂τ2 (∂x2�σ (2))2 = −E2

2

∫
d1 d2 (∂x1�σ (1))2G̈ρ (1 − 2) (∂x2�σ (2))2,

δS4 = +F 2

2

∫
d1 d2 ∂τ1 (∂τ1�σ (1))2Gρ (1 − 2) ∂τ2 (∂τ2�σ (2))2 = −F 2

2

∫
d1 d2 (∂τ1�σ (1))2G̈ρ (1 − 2) (∂τ2�σ (2))2. (C12)
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Using the results of Appendix C 3, for the above terms we obtain

δS1 = − C2

4Bρ
2

∫
dτ dx �′2

σ , δS2 = − D2

4Aρ
2

∫
dτ dx �̇2

σ ,

δS3 = + E2

4Aρ
2

∫
dτ dx �′4

σ , δS4 = + F 2

4Aρ
2

∫
dτ dx �̇4

σ . (C13)

Therefore, combining the above corrections with Eq. (C2), the dual filed representation of the effective Lagrangian for the
spin degrees of freedom becomes

L̃σ = ia1�̇σ + a2

2
�̇2

σ + b2

2
�′2

σ + i
a3

3
�̇3

σ − a4

4
�̇4

σ − b4

4
�′4

σ − i
a5

5
�̇5

σ + a6

6
�̇6

σ + b6

6
�′6

σ , (C14)

where we defined

a1 = aσ
1 , a2 = aσ

2 − D2

2Aρ
2

, b2 = bσ
2 − C2

2Bρ
2

, a3 = 3aσ
3 , a4 = 4aσ

4 − F 2

Aρ
2

,

b4 = 4bσ
4 − E2

Aρ
2

, a5 = 5aσ
5 , a6 = 6aσ

6 , b6 = 6bσ
6 . (C15)

Using Eqs. (C1) and (C5), one can see that all quadratic terms have strictly positive coefficients, whereas all quartic terms have
strictly negative coefficients.

3. Derivation of Eq. (C13)

Here, we show that∫
dτ1dτ2dx1dx2 f (x1, τ2)G′′

ρ (x1 − x2, τ1 − τ2) f (x2, τ2) ≈ − 1

2Bρ
2

∫
dτ dx f 2(x, τ ),

∫
dτ1dτ2dx1dx2 f (x1, τ2)G̈ρ (x1 − x2, τ1 − τ2) f (x2, τ2) ≈ − 1

2Aρ
2

∫
dτ dx f 2(x, τ ), (C16)

given that the Green’s function satisfies

(
∂2

x + (
Aρ

2/Bρ
2

)
∂2
τ

)
Gρ (x, τ ) = − 1

Bρ
2

δ2(x, τ ). (C17)

Going to the relative and the center-of-mass coordinates, we write the first integral as∫
dT dX dt dx ∂2

x Gρ (x, t ) f

(
X + x

2
, T + t

2

)
f

(
X − x

2
, T − t

2

)
≈
∫

dt dx G′′
ρ (x, t )

∫
dT dX f 2(X, T ). (C18)

Rescaling y = √
Bρ

2 /Aρ
2τ brings the equation for Gρ (x, y) to

�x,yGρ (x, y) = − 1√
Aρ

2 Bρ
2

δ2(x, y). (C19)

Since Gρ only depends on r =
√

x2 + y2, in polar coordinates we have(
∂2

r + 1

r
∂r

)
Gρ (r) = �rGρ (r) = − 1√

Aρ
2 Bρ

2

δ(r)

2πr
. (C20)

Then, taking into account that

∂2
x Gρ (x, y) = 1

2
�rGρ (r) + cos 2φ

2

(
∂2

r − 1

r
∂r

)
(C21)

and the second term vanishes after the integration over the polar angle φ, we write the integral
∫

dx dt G′′
ρ (x, t ) in polar

coordinates and get

∫
dt dx G′′

ρ (x, t ) = 2π

√
Aρ

2

Bρ
2

∫ +∞

0
r dr

1

2
�rGρ (r) = − 1

2Bρ
2

, (C22)

which yields the first result stated in the beginning of the Appendix. The proof for the second one is identical.
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4. Effective spin Lagrangian in the �σ representation

Let us now rewrite the Lagrangian L̃σ from Eq. (C14) in the � representation. We begin by writing the corresponding
Hamiltonian in the � representation (we omit the index σ since we do not have the charge fields anymore):

H(��,�′) = (L̃ + i�̇��)|�̇=�̇(�� ) , (C23)

where the expression for �̇ in terms of �� follows from

i�� = −∂L̃σ

∂�̇
= −ia1 − a2�̇ − ia3�̇

2 + a4�̇
3 + ia5�̇

4 − a6�̇
5. (C24)

Since �� = −�′, one can also rewrite the above relation as

�̇ = 1

a2
{ i (�′ − a1) − ia3�̇

2 + a4�̇
3 + ia5�̇

4 − a6�̇
5}. (C25)

Then, using Eqs. (C23) and (C24), and taking into account that �′ = −��, the � representation for the Hamiltonian can be
formally written as

H = b2

2
�2

� − b4

4
�4

� + b6

6
�6

� +
(

−a2

2
�̇2 − i

2a3

3
�̇3 + 3a4

4
�̇4 + i

4a5

5
�̇5 − 5a6

6
�̇6

)∣∣∣∣
�̇=�̇(�′ )

, (C26)

with �̇ being expressed via �′ using Eq. (C25). Now, solving Eq. (C25) for �̇ in terms of �′ by iterations, we get

�̇ = i

a2
�′ + i

a3

a3
2

�′2 − i
a2a4 − 2a2

3

a5
2

�′3 + i
5a3

3 − 5a2a4a3 + a2
2a5

a7
2

�′4

+ i
14a4

3 − 21a2a4a2
3 + 6a2

2a5a3 + a2
2

(
3a2

4 − a2a6
)

a9
2

�′5. (C27)

The potential part of Hamiltonian (C26) becomes

1

2a2
�′2 + a3

3a3
2

�′3 + 2a2
3 − a2a4

4a5
2

�′4 + 5a3
3 − 5a2a4a3 + a2

2a5

5a7
2

�′5 + 14a4
3 − 21a2a4a2

3 + 6a2
2a5a3 + 3a2

2a2
4 − a3

2a6

6a9
2

�′6. (C28)

The Lagrangian in the � representation is then

L̃(�̇,�′) = (H(��,�′) − i�̇��)|��=��(�̇) , (C29)

where �φ is relates to �̇ via

i�̇ = ∂H
∂��

= b2�� − b4�
3
� + b6�

5
�. (C30)

The latter can be written as

�� = 1

b2

(
i�̇ + b4�

3
� − b6�

5
�

)
. (C31)

Solving by iterations, we get

�� = i

b2
�̇

(
1 − b4

b3
2

�̇2 − b2b6 − 3b2
4

b6
2

�̇4

)
. (C32)

The kinetic part of Hamiltonian (C26) then gives

b2

2
�2

� − b4

4
�4

� + b6

6
�6

� = �̇2

2b2
− b4

4b4
2

�̇4 + 3b2
4 − b2b6

6b7
2

�̇6. (C33)

Thus, using Eq. (C29) we finally arrive at the Lagrangian given by (35) in the main text:

L̃(�̇,�′) = 1

2b2
�̇2 + 1

2a2
�′2 + a3

3a3
2

�′3 + 2a2
3 − a2a4

4a5
2

�′4

+ 5a3
3 − 5a2a4a3 + a2

2a5

5a7
2

�′5 + 14a4
3 − 21a2a4a2

3 + 6a2
2a5a3 + 3a2

2a2
4 − a3

2a6

6a9
2

�′6

≡ A

2
�̇2 + u2

2
�′2 +

6∑
n=3

un�
′n. (C34)
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APPENDIX D: MOMENTUM-SHELL RG

In this Appendix we present a detailed derivation of the RG equations within the momentum-shell approach. We begin by
considering the action in Eq. (39) of the main text:

S[�] = S0[�] + S1[�] =
∫

dx dτ

{
A

2
�̇2 + u2

2
�′2

}
+
∫

dx dτ

6∑
n=3

un�
′n (D1)

and expand the field into the slow and fast components as � = �< + �>. The slow component �< has momentum modes in the
interval 0 < |k| < �/b, whereas the fast component �> in the interval �/b < |k| < �, where � is the UV momentum cutoff and
b = exp(δl ) is the scaling factor. In the Gaussian part of the action, the slow and fast components decouple: S0[�] = S0< + S0>.
For the interaction part we have S1[�< + �>] = S1< + S̃[�<,�>], where

S̃[�<,�>] =
∫

dx dτ

6∑
n=3

un

n∑
p=1

(
n

p

)
�′n−p

< �′p
>. (D2)

Thus, the total action becomes S[�] = S< + S0> + S̃. Then, expanding the partition function to second order in S̃, we obtain

Z =
∫

D�<e−S<−〈S̃〉0>+ 1
2 〈S̃2〉c

0>, (D3)

where 〈S̃2〉c
0> = 〈S̃2〉0> − 〈S̃〉2

0> and 〈. . .〉0> is the average over the fast components �> with the Gaussian action S0>. In the
above expression we omitted the constant contribution lnZ0>.

1. First-order correction

For the first-order correction 〈S̃〉0> we need to calculate

6∑
n=3

n∑
p=1

un

(
n

p

)
�′n−p

< 〈�′p
>〉0>. (D4)

We immediately see that for n = 3, 4 we only need terms with p = 2, and for n = 5, 6 only terms with p = 2, 4. Other terms
either vanish upon averaging or give constant contribution independent of �′

<. Let us first consider p = 2 and calculate the
corresponding Green’s function G0> ≡ 〈�′2

>〉0>:

G0> =
∫ +∞

−∞

dω

2π

∫
>

dk

2π

k2

Aω2 + u2k2
. (D5)

In the above expression we used a shorthand notation∫
>

dk

2π
≡
∫

�/b<|k|<�

dk

2π
. (D6)

Integrating over dω and taking into account that b ≈ 1 + δl , we get

G0> = 1

2π

�2

(Au2)1/2
δl ≡ G1δl. (D7)

Consider now terms with p = 4. Using Wick’s theorem one has 〈�′4
>〉0> = 3G2

0>, which is ∼δl2. Such terms do not contribute
to the RG equations, derived in the limit δl → 0. Therefore, for the first-order correction 〈S̃〉0> we only need terms with p = 2:

〈S̃〉0> = G1δl
∫

dx dτ {3u3�
′
< + 6u4�

′2
< + 10u5�

′3
< + 15u6�

′4
<}. (D8)

Note that a new term ∼�′
< has been generated. However, including it into the action does not lead to any new terms coming

from 〈S̃〉0>, as can be easily seen from Eq. (D4). We will see later that this is also true for 〈S̃2〉c
0>.

2. Second-order correction

We now turn to the calculation of the second-order correction 〈S̃2〉c
0>. Explicitly, it reads as

〈S̃2〉c
0> =

∫
d1 d2

6∑
n,m=3

n∑
p=1

m∑
q=1

(
n

p

)(
m

q

)
unum�′n−p

< (1)�′m−q
< (2) 〈�′p

> (1)�′q
>(2)〉c

0>, (D9)
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where d1 d2 ≡ dx1dτ1dx2dτ2. Before doing any calculations, we note that applying Wick’s theorem to 〈�′p
> (1)�′q

>(2)〉c
0> will in

general produce a number of terms of the form∫
d1 d2 〈�′

>(1)�′
>(2)〉N

0> �′n−p
< (1) �′m−q

< (2), (D10)

where the exponent N depends on n, m, p, and q. Obviously, not all such terms will contribute to the RG equations since we are
only interested in those terms that are linear in δl . Therefore, in order to understand which terms we do need, let us first consider
the case of arbitrary N . We then write

〈�′
>(1)�′

>(2)〉N
0> =

N∏
j=1

∫
ω j ,k j

k2
j e

ik j x−iω jτ

Aω2
j + u2k2

j

, (D11)

where x = x1 − x2, τ = τ1 − τ2, and ∫
ω j ,k j

≡
∫ +∞

−∞

dω j

2π

∫
>

dk j

2π
. (D12)

Since the momentum integral is over an infinitesimally small region, we put k j ≈ � everywhere except for the exponent. A
straightforward integration yields

〈�′
>(1)�′

>(2)〉N
0> =

(
�

2π

)N 1

(Au2)N/2 exp

{
−� N

√
u2

A
|τ |
}(

sin �x − sin �
b x

x

)N

. (D13)

Then, using Picard representation of the delta function, limM→∞(M/2) exp(−M|τ |) = δ(τ ), we rewrite the above expression
as

〈�′
>(1)�′

>(2)〉N
0> = 1

Nπ

(
�

2π

)N−1 1

A(N−1)/2 u(N+1)/2
2

δ(τ1 − τ2)IN (x1 − x2), (D14)

where we defined

I (x) = sin �x − sin �(1 − δl )x

x
. (D15)

We now proceed by looking at the properties of IN (x). Consider an integral∫ ∞

−∞
dx

(
sin �x − sin �(1 − δl )x

x

)N

f (x) = �N−1
∫ ∞

−∞

dy

yN
(sin y − sin(1 − δl )y)N f

(
y

�

)

≈ f (0)�N−1 ×
{

0 , odd N
π CN δlN−1 , even N.

(D16)

In the above expression, CN is a numerical coefficient (0 < CN � 1) and in the limit of large � we approximated f (y/�) ≈ f (0).
We see that essentially IN (x) is a representation of the delta function. In Eq. (D14) we then put

IN (x1 − x2) ≈ πCN�N−1δlN−1δ(x1 − x2). (D17)

It follows immediately that for the calculation of 〈�′p
> (1)�′q

>(2)〉c
0> we only need p and q such that using Wick’s theorem we

get terms as in Eq. (D10), but with N = 2. All other N will give either zero or a contribution with higher powers of δl . The only
way to get N = 2 is by taking p = q = 2:

〈�′2
>(1)�′2

>(2)〉c
0> = 2 〈�′

>(1)�′
>(2)〉2

0> = 2
�2δl

4πA1/2u3/2
2

δ(x1 − x2)δ(τ1 − τ2), (D18)

where we used Eqs. (D14) and (D17), and took into account that C2 = 1. Thus, the second-order correction becomes

〈S̃2〉c
0> = 2G2δl

∫
dx dτ

6∑
n,m=3

(
n

2

)(
m

2

)
unum�′n+m−4

< (x, τ ), (D19)

where we defined

G2 ≡ �2

4π
(
A u3

2

)1/2 . (D20)

Let us now recall that at the level of the first-order correction the term ∼�′
< has been generated. We then mentioned that

including such term into the action does not generate any additional terms under RG, even at the second-order level. At this
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point it is easy to understand that this is indeed the case. Looking at Eq. (D9) we see that, e.g., for n = 1 there appear terms
containing

〈�′
>(1)�′q

>(2)〉c
0>. (D21)

Using Wick’s theorem, one can make only one contraction between points 1 and 2, obtaining a factor of 〈�′
>(1)�′

>(2)〉0>, which
vanishes after the integration over d2 due to Eq. (D16). For m = 1 the reasoning is identical.

Thus, all terms coming from the second-order correction are already present in Eq. (D19). Explicitly, they are given by

〈S̃2〉c
0> = 2G2δl

∫
dx dτ

{
9u2

3�
′2
< + 36u3u4�

′3
< + (

36u2
4 + 60u3u5

)
�′4

<

+ (120u4u5 + 90u3u6)�′5
< + (

100u2
5 + 180u4u6

)
�′6

<

}
, (D22)

where we did not include newly generated terms 300u5u6�
′7
< and 225u2

6�
′8
< since they are beyond the initial expansion order of

the GL functional (39).

3. Renormalized action and RG equations

We write the renormalized action as

S[�<] =
∫

dx dτ

{
A

2
�̇2

< + u2 + δu2δl

2
�′2

< + (u1 + δu1δl )�′
< +

6∑
n=3

(un + δunδl )�′n
<

}
, (D23)

where δuj follow from Eqs. (D8) and (D22):

δu1 = 3G1u3, δu2 = 12G1u4 − 18G2u2
3, δu3 = 10G1u5 − 36G2u3u4, δu4 = 15G1u6 − 36G2u2

4 − 60G2u3u5,

δu5 = −120G2u4u5 − 90G2u3u6, δu6 = −100G2u2
5 − 180G2u4u6. (D24)

The quantities G1 and G2 are defined in Eqs. (D7) and (D20), correspondingly. Making the rescaling x = bx̃, τ = bzτ̃ , and
�<(x, τ ) = bχ�̃<(x̃, τ̃ ) we obtain the RG equations:

A(b) = b2χ−z+1A, un(b) = bnχ+z−n+1(un + δunδl ), n = 1, . . . , 6. (D25)

Taking b ≈ 1 + δl , in the limit δl → 0 we obtain the RG equations in the differential form

∂lA = (2χ − z + 1)A, ∂l u1 = (χ + z)u1 + 3G1 u3, ∂l u2 = (2χ + z − 1)u2 + 12G1 u4 − 18G2 u2
3,

∂l u3 = (3χ + z − 2)u3 + 10G1 u5 − 36G2u3u4, ∂l u4 = (4χ + z − 3)u4 + 15G1 u6 − 36G2 u2
4 − 60G2 u3u5, (D26)

∂l u5 = (5χ + z − 4)u5 − 120G2 u4u5 − 90G2 u3u6, ∂l u6 = (6χ + z − 5)u6 − 100G2 u2
5 − 180G2 u4u6.
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