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In this article we study quantum phases and the phase diagram of a Fermi-Hubbard model under periodic
driving that has been realized in recent cold-atom experiments, in particular, when the driving frequency is nearly
resonant with the interaction energy. Due to the driving, the effective Hamiltonian contains a correlated hopping
term where the density occupation strongly modifies the hopping strength. Focusing on half filling, in addition
to the charge- and spin-density wave phases, large regions of ferromagnetic phase and phase separation are
discovered in the weakly interacting regime. The mechanism of this ferromagnetism is attributed to the correlated
hopping, because the hopping strength within a ferromagnetic domain is normalized to a larger value than the
hopping strength across the domain. Thus, the kinetic energy drives the system into a ferromagnetic phase. We
note that this is a different mechanism, in contrast to the well-known Stoner mechanism for ferromagnetism
where the ferromagnetism is driven by interaction energy.
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Recently, tremendous experimental progress has been
made on quantum simulation of the Fermi-Hubbard model
[1–17], including the observation of equilibrium properties
such as short-range antiferromagnetic correlations [7–9], hid-
den antiferromagnetic correlations [10], incommensurate spin
correlations [11], canted antiferromagnetic correlations [12],
and pairing correlations [13]. In particular, antiferromag-
netic quasi-long-range order has been successfully observed
through entropy engineering [14]. Recent advances also in-
clude nonequilibrium behaviors such as the measurement of
optical conductivity [15] and the spin- and charge-transport
coefficients [16,17].

Studying the Fermi-Hubbard model with cold atoms also
allows us to open up a new avenue beyond the traditional
condensed-matter paradigm. One example is the periodically
driven Fermi-Hubbard model [18,19]. Since the typical pa-
rameters of a Hubbard model are the hopping strength J and
the on-site interaction U , both of which are of the order of
electronvolt in strongly correlated solid-state materials, it is
therefore hard to drive a solid-state material with frequency
resonant with any of these two energy scales. However, in
a cold-atom realization of the Fermi-Hubbard model, the
typical energy scales for these two parameters are both of
the order of hundreds to thousands of Hertz, and it is quite
easy to drive the optical lattices with such a frequency. When
the driving frequency is nearly resonant with the interaction
parameter U , the driving can strongly modify the Fermi-
Hubbard model, as observed in recent experiments [20,21].
Hence, it is very promising to study novel physics induced by
periodic driving that cannot be accessed in a static system.
The goal of this paper is therefore to predict the quan-
tum phases and phase diagram of the nearly resonant-driven
Fermi-Hubbard model that is newly realized in cold-atom
experiments.

Model. We consider a two-dimensional square lattice (see
Fig. 1) periodically modulated along the x̂ and ŷ directions
with a frequency ω and an amplitude A whose single-particle

Hamiltonian can be written as

Ĥ0(t ) = p2

2m
+ V̂ [x + A cos(ωt ), y + A cos(ωt )], (1)

where m is the mass of an atom. We can now preform a unitary
transformation [22]

Û (t ) = exp[ip · r0(t )/h̄], (2)

where r0(t ) = −A cos(ωt )(1, 1) are two-dimensional vectors.
This unitary transformation transfers position r0(t ) into the
comoving frame with an extra time-dependent gauge field
introduced. The resulting Hamiltonian is written as

Ĥ0(t ) = (p − A(t))2

2m
+ V̂ (r), (3)

with A(t ) = mr′
0(t ). The Hamiltonian Eq. (3) is equivalent to

Eq. (1) but more convenient for the later purpose.
Utilizing the Peierls substitution, the single-band Hamilto-

nian in a second quantized form can be written as

Ĥ (t ) = − J
∑
〈i, j〉

σ=↑, ↓

eidij·A(t )/h̄ĉ†
iσ ĉ jσ

+ U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (4)

where ĉiσ (ĉ†
iσ ) is the fermionic annihilation (creation) opera-

tor on site i with spin σ, n̂iσ is the density operator on site i
with spin σ, 〈. . .〉 denotes the nearest-neighboring sites, and
dij = di − dj, with di being the position of the ith lattice site.
Throughout this work we focus on the half-filling case and the
chemical potential is set to zero.

When the modulation frequency ω is the largest energy
scale of the problem, that is to say, it is much larger than both
the interaction parameter U and the hopping J , one can do
a high-frequency expansion and truncate to the lowest order
to obtain an effective time-independent Hamiltonian [23,24].

2469-9926/2019/99(4)/043629(8) 043629-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.043629&domain=pdf&date_stamp=2019-04-29
https://doi.org/10.1103/PhysRevA.99.043629


NING SUN, PENGFEI ZHANG, AND HUI ZHAI PHYSICAL REVIEW A 99, 043629 (2019)

J

U

Shaking: A, ω
Sh

ak
in

g:
A

,ω

FIG. 1. A schematic of the Fermi-Hubbard model on a two-
dimensional square lattice. Arrows indicate the direction of shaking.
Balls with different colors and arrows indicate fermions with differ-
ent spins.

The effective Hamiltonian takes the same form as a normal
Hubbard model, with the only modification that the tunneling
coefficient being renormalized by the oscillating gauge field
is J̃ = JB0(A), where we use Bl to denote the lth Bessel
function and A = mAωd/h̄ the normalized shaking amplitude.
d is the distance of two Wannier wave packets in the nearest-
neighboring lattice sites.

However, this expansion fails when the modulation fre-
quency ω, or lth multiple of it, is comparable to one of the
energy scales of the problem, say, the interaction strength U ,
for which case we call it the lth resonance. In this case, since
U is no longer very small compared with ω while U − l h̄ω

is a much smaller energy scale, we apply another unitary
transformation,

R̂(t ) = exp

⎛
⎝i

∑
j

lωt n̂ j↑n̂ j↓

⎞
⎠, (5)

that alters the interaction strength to an effective one Ũ =
U − l h̄ω. Now Ũ ∼ J � U ∼ l h̄ω. Moreover, since R̂(t )
does not commute with the Hamiltonian, it introduces an addi-
tional density dependence to the hopping term and effectively
alters the gauge field into a spin- and density-dependent one
as follows:

Ãi j,σ (t ) = A(t ) − lωt

d2
dij[(1 − n̂iσ̄ )n̂ jσ̄ − (1 − n̂ jσ̄ )n̂iσ̄ ]. (6)

Now the high-frequency expansion can be safely done, and
to the lowest order it again results in a time-independent
effective Hamiltonian written as

Ĥeff =
∑

〈i, j〉,σ
−Ĵ〈i j〉

eff,σ ĉ†
iσ ĉ jσ + Ũ

∑
i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
.

(7)

Here Ĵ〈i j〉
eff,σ is introduced as

Ĵ〈i j〉
eff,σ = J0âi jσ̄ + J1b̂i jσ̄ , (8)

where σ̄ denotes the complement of σ, J0 = JB0(A), J1 =
JBl (ηi jA) [ηi j = ±1 for (ix, iy) = ( jx ± 1, jy) or (ix, iy =
jx, jy ± 1)], and

âi jσ = (1 − n̂iσ )(1 − n̂ jσ ) + n̂iσ n̂ jσ , (9)

b̂i jσ = (−1)l (1 − n̂iσ )n̂ jσ + n̂iσ (1 − n̂ jσ ). (10)

In the above, the site dependence of J1 is made implicit. Note,
however, that for even l the Bessel function Bl is an even
function, in which case ηi j can be simply dropped and J1

becomes a constant. In contrast to the off-resonance case,
now the hopping strength depends on the site occupation of
fermions. As we will show below, this correlated hopping
plays a key role in the emergent new mechanism for the
ferromagnetism phase.

Symmetry. Before we delve into solving this effective
Hamiltonian, let us first comment on the symmetry of this
problem. Note that the original Hubbard model possesses a
SO(4) symmetry [25], which is composed of a spin SU(2),
generated by Ŝz = (1/2)

∑
i ĉ†

i↑ĉi↑ − ĉi↓ĉi↓, Ŝ+ = ∑
i ĉ†

i↑ĉi↓,

and Ŝ− = Ŝ†
+, and a charge SU(2), generated by L̂z =

−(1/2)
∑

i ĉ†
i↑ĉi↑ + ĉ†

i↓ĉi↓ + Ns/2, L̂+ = ∑
i(−1)iĉi↑ĉi↓, and

L̂− = L̂†
+. Ns is the total number of sites. The spin SU(2)

ensures that the direction of the spin-density-wave (SDW)
order parameter can be taken along any direction, and the
charge SU(2) ensures the degeneracy of a charge-density-
wave (CDW) order and the fermion pairing order (P).

Considering the time-dependent Hamiltonian Eq. (4), it is
straightforward to show that the spin SU(2) symmetry stays,
yet the charge SU(2) symmetry no longer holds since L±
do not commute with the kinetic term. However, considering
the time-independent effective Hamiltonian Eq. (7), one can
show that the charge SU(2) symmetry is recovered for the
even-l case although not for the odd-l case [26]. Hereafter
we focus only on the even-l case, which possesses the same
SO(4) symmetry. In addition, it also possesses the particle-
hole symmetry at half filling.

Phase diagram. We present our results on the phase di-
agram derived from a standard mean-field treatment on this
effective Hamiltonian Eq. (7), which is known to be qualita-
tively reliable for a normal Hubbard model on a square lattice
at half filling (the dot-dashed green line on Fig. 2) because
the ordering occurs with an infinitesimal weak interaction
parameter due to the nesting effect [26,27]. Thanks to the
SO(4) symmetry, we can choose SDW along ẑ direction (i.e.,
si = 〈n̂i↑ − n̂i↓〉) and CDW (i.e., ci = 〈n̂i↑ + n̂i↓〉 − 1) as the
order parameters in our mean-field theory. A higher-order
effect will break the degeneracy between CDW and P, but it is
beyond the scope of current work.

The phase diagram is shown in Fig. 2, which is controlled
by two parameters of J1/J0 and Ũ/|J0|. As a benchmark of
our calculation, first of all, when J1/J0 = 1, because of âi jσ +
b̂i jσ = Î , the kinetic energy term becomes −J0

∑
〈i j〉,σ ĉ†

iσ ĉ jσ

and the Hamiltonian recovers the usual Hubbard model. In
this case (labeled by 2 and the underlying dot-dashed green
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FIG. 2. Phase diagram for the effective Hamiltonian Eq. (7) of
a nearly resonant-driven Fermi-Hubbard model with even l at half
filling. The phase diagram is controlled by two dimensionless param-
eters, J1/J0 and Ũ/|J0|. “CDW” and “SDW” denote charge- and spin-
density wave order. “P” denotes fermion pairing order. “FM” denotes
ferromagnetism. “PS” denotes phase separation into high- and low-
density regimes. Solid lines are a first-order phase transition, and the
dashed lines denote the second-order phase transition. Dashed arrows
mark the lines along which the order parameters are plotted in Fig. 3.

line in Fig. 2), the result for the normal Hubbard model
is retrieved where we obtain a CDW order of (π, π ) with
attractive interaction (Ũ < 0) and a SDW order of (π, π ) with
repulsive interaction (Ũ > 0). Explicitly, the order parameters
are chosen as si = (−1)ix+iy s and ci = (−1)ix+iy c, and s(c)
gradually vanishes as Ũ approaches zero from the positive
(negative) side. As a result, a second-order phase transition
occurs at Ũ = 0 (gray dot in Fig. 2). This can be seen from
the order parameters plotted as a function of Ũ/|J0|, shown as
cyan (lower) curves in Fig. 3.

Since both CDW and SDW are ordered phases, it should be
either a first-order transition or a phase coexistence regime in
between for more generic situations. As marked by the solid
vertical lines in Fig. 2, it is a first-order transition on the phase
boundary at large |J1/J0|. The magnitude of order parameters
is shown with red (middle) lines in Fig. 3 (labeled by 1 in
Fig. 2) that jump from a finite value to zero at Ũ → 0. In
between, a CDW and SDW coexistence regime shows up at
a certain range of J1/J0, as displayed by the yellow region in
Fig. 2, whose order parameters are shown with blue (upper)
lines in Fig. 3 for a representative case (labeled by 3 in Fig. 2).

The most notable feature in Fig. 2 is the middle green and
dark-gray region. In this region a mean-field ansatz of CDW
or SDW orders with ordering vector at (π, π ) may not yield
any ordered solution. However, when we consider the case of
enlarged 2 × 2, 3 × 3, up to L × L domains, and within each
domain the CDW and SDW order parameters are uniformly
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� � � �

� � � �
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Solid: SDW
Dashed: CDW

FIG. 3. The CDW order parameter c (dashed lines) and the SDW
order parameter s (solid lines) as a function of Ũ/|J0| for three
representative cases labeled 1–3 in Fig. 2, with J1/J0 = 1.5 (middle
line, M), 1.0 (lower line, L), and −2.0 (upper line, U), respectively.

chosen as c and s while in its neighboring domain they are
taken as −c and −s, the mean-field ansatz does yield ordered
solutions. It can be seen from Fig. 4 that the mean-field
ground-state energy decreases monotonically as L increases,
indicating that the ground state will form large domains with
opposite order-parameter values. Moreover, minimizing the
ground-state energy yields c = 0 and s 
= 0 at positive Ũ and
c 
= 0 and s = 0 at negative Ũ . Hence, the system with pos-
itive Ũ possesses spin order, and the increase of the domain
size indicates the decrease of the spin-ordering wave vector.
Eventually, the wave vector decreases toward zero, and the
ground state becomes a ferromagnetic state. In other words,
as the domain size becomes larger and larger, the system is
essentially made of ferromagnetic domains. For negative Ũ
the system tends toward phase separation, with high density
in one domain and low density in its neighboring domains.

It should be emphasized that both the ferromagnetism and
the phase separation regime can occur at small Ũ . In fact,
this is purely due to the correlated hopping effect in the

FIG. 4. The mean-field ground-state energy (εg) as a function of
the domain size L for a representative case J1 = 0, Ũ/|J0| = −0.2.
The insets show the configuration for 2 × 2, 3 × 3, and 4 × 4 blocks
where the CDW and SDW order parameters are uniformly distributed
within a domain and take opposite values between neighboring
domains. For comparison, the solid line is the mean-field energy
when order parameters are all zero.
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FIG. 5. The mean-field energy with Ũ = 0 (a) as a function of
total density n with sz = 0 fixed and (b) as a function of sz with n =
1 fixed. Solid line is for the PS/FM case (J1/J0 = −0.8), and the
dashed line is for the coexistence case (J1/J0 = −1.8).

effective Hamiltonian Eq. (7), which originates essentially
from the nearly resonant driving. Considering the mean-field
configurations as shown in the insets of Fig. 4, let us look
at the mean-field value of the effective hopping strength
〈Ĵ〈i j〉

eff,σ 〉, which quantifies how the particle occupation affects

the hopping strength. We define J intra
eff,σ as 〈Ĵ〈i j〉

eff,σ 〉, with i and j

in the same domain, and J inter
eff,σ as 〈Ĵ〈i j〉

eff,σ 〉, with i and j across
two neighboring domains. It is straightforward to write J intra

eff,σ

and J inter
eff,σ , respectively, as

J intra
eff,σ = 1

2 (J0[1 + (c ∓ s)2] + J1[1 − (c ∓ s)2]), (11)

J inter
eff,σ = 1

2 (J0[1 − (c ∓ s)2] + J1[1 + (c ∓ s)2]), (12)

where ∓ corresponds to different spin components. One can
show that when |J1| < |J0|, |J inter

eff,σ | is always smaller than
|J intra

eff,σ |. Hence, the size of the domain tends to increase such
that there are more intradomain links than interdomain links,
and therefore the effective bandwidth becomes larger. For
a given filling, a larger bandwidth leads to more kinetic
energy gain. |J1| < |J0| is precisely the regime where we find
ferromagnetism or phase separation in the phase diagram of
Fig. 3 with arbitrary weak interaction. This regime can be
easily accessed when A is small by exploring a small shaking
amplitude.

An alternative way to understand the emergence of this
ferromagnetism is to consider a uniform system with Ũ = 0.
Substituting Ĵ〈i j〉

eff,σ by its mean-field value, it is straightforward
to compute the kinetic energy of this uniform system that
depends on ni↑ and ni↓, where n↑ = (n + sz )/2 and n↓ =
(n − sz )/2. We plot the kinetic energy as a function of n
with sz = 0 in Fig. 5(a) and as a function of sz with n = 1
in Fig. 5(b) for two representative cases of J1/J0 = −0.8 and
−1.8. One can see from Fig. 5(a) that for J1/J0 = −0.8, there
are two local minima, with one at n > 1 and the other at
n < 1, who are located symmetrically on two sides of n = 1,
while for J1/J0 = −1.8 there is only one minimum located
at n = 1. Similarly, in Fig. 5(b) for J1/J0 = −0.8 there are
two local minima with one at positive sz and the other at
negative sz, symmetrically distributed around sz = 0, and for
J1/J0 = −1.8 there is only one minimum at sz = 0. Thus,
when the system is constrained with the average n = 1 and
sz = 0, for the case with J1/J0 = −0.8, it will actually phase

separate into domains with either different n or different sz,
corresponding to either phase separation or ferromagnetism,
respectively. The choice is made by the sign of Ũ when a small
but finite Ũ perturbation is turned on.

Conclusion and discussion. In contrast to the well-known
Stoner mechanism for ferromagnetism driven by the interac-
tion energy, the most significant finding of this work is to
provide an alternative mechanism for the onset of ferromag-
netism which roots in the cooperation between the spin order
and the correlated hopping. This is also different from the
ferromagnetism due to the superexchange processes discussed
in the experiment of Ref. [20] which requires Ũ to be negative.

We also note that in previous literature, there are a number
of works which have studied the same or similar density-
assisted hopping models in one dimension [28–36]. However,
none of these papers discovers the ferromagnetic state pre-
dicted here. In [28], their method works only for sufficiently
large Ũ . In [29–31], the authors find that the ground state at
half filling can be explained by phase separation for charge,
but the ferromagnetism is not discussed. In [32], the quantum
Monte Carlo they used does not converge for small J1. The
works using the bosonization method assume a uniform back-
ground, for which they overlook the possibility of ferromag-
netism [33–35]. An exact diagonalization calculation with a
small number of sites also may not be able to capture such
physics [36].

Finally, we shall comment on the experimental observation
of this ferromagnetism. First of all, the ETH group has real-
ized a resonantly shaking honeycomb lattice with cold Fermi
gases where the heating takes over only after a relatively long
time scale [20,37]. Second, it requires a moderate interaction
parameter U , because, on one hand, U is comparable with h̄ω

and has to be much larger than the bandwidth ∼J , and on the
other hand, U has to be smaller than the band gap in order
to allow the single-band model to be valid, i.e., h̄ω ∼ U <

h̄2

md2 . This leads to A = mωAd/h̄ < A/d . For small shaking
amplitude A/d < 1, we then have small A where J0 > J1 > 0.
In such a parameter regime, we should be able to observe the
ferromagnetism. Third, because this ferromagnetism is driven
by the kinetic energy, one expects that this ferromagnetism
can be observed when temperature is of the order of the band-
width, which can be accessed now by cold-atom experiments
where T/TF ∼ 0.1 [20]. Finally, the quantum gas microscope
techniques can be used to detect real-space ferromagnetic
domains. Hence, it is quite promising to expect experimental
verification of the theoretic expectations discussed here in the
very near future.

Acknowledgments. This work is supported by MOST under
Grant No. 2016YFA0301600 and the NSFC through Grant
No. 11734010.

APPENDIX A: SYMMETRY

In this section we discuss the symmetry of the reso-
nantly driven Fermi-Hubbard model. The symmetry is of vital
significance, since it greatly simplifies the formulation of the
mean-field description.
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SO(4) symmetry. A usual bipartite Fermi-Hubbard model,
written as Ĥ = −J

∑
〈i, j〉,σ ĉ†

iσ ĉ jσ + Ũ
∑

i(n̂i↑ − 1/2)(n̂i↓ −
1/2), possesses SO(4) symmetry [25]. The SO(4) symme-
try is resolved into two SU(2) symmetries—the spin SU(2)
and the charge SU(2). The generators of spin SU(2) are
given by

Ŝz = 1

2

∑
i

ĉ†
i↑ĉi↑ − ĉi↓ĉi↓, Ŝ+ =

∑
i

ĉ†
i↑ĉi↓ (A1)

and

Ŝ− = Ŝ†
+, Ŝx = Ŝ+ + Ŝ−

2
, Ŝy = Ŝ+ − Ŝ−

2i
, (A2)

which satisfy the commutation relation of the SU(2) alge-
bra. Due to the contraction between spin indices, the very
beginning time-dependent Hamiltonian Ĥ (t ) [Eq. (4) in the
main text] is invariant under these SU(2) symmetry operations
and also the unitary transformations R̂(t ) [Eqs. (5) and (6)
in the main text]. Since the time average does not alter this
attribute, one arrives at the conclusion that the effective static
Hamiltonian Ĥeff in Eq. (7) of the main text also possesses this
spin SU(2) symmetry, no matter whether l is even or odd. This
can also be verified directly by checking [Ĥeff, Ŝα] = 0 for
any α = x, y, z. The spin-rotational symmetry hence allows
us to automatically get a spin-balanced system without any
additional magnetic field.

However, regarding the charge SU(2) symmetry, the time-
dependent Hamiltonian lacks it for the appearance of the
time-dependent on-site energy term [the last term in Eq. (4)
of the main text]. As a result we do not expect the SO(4)
symmetry in general. Nevertheless, it emerges in the effective
Hamiltonian with l even. We introduce the charge SU(2) as
follows [25]:

L̂z = −1

2

∑
i

ĉ†
i↑ĉi↑ + ĉ†

i↓ĉi↓ + 1

2
N, (A3)

L̂+ =
∑

i

(−1)iĉi↑ĉi↓ =
∑

i

exp(iQ · xi )ĉi↑ĉi↓, (A4)

where Q = (π, π ), N is the total number of lattice sites
hereafter, and

L̂− = L̂†
+, L̂x = L̂+ + L̂−

2
, L̂y = L̂− − L̂−

2i
. (A5)

{L̂z, L̂x, L̂y} forms an SU(2) algebra. It can be verified straight-
forwardly that the effective Hamiltonian Ĥeff with l even
commutes with all these generators. This fact can also be seen
from the following transformation:

P̂ : ĉi↑ → (−1)iĉ†
i↑,

which maps Ĥeff with l even for interaction +Ũ to the same
class but of effective interaction −Ũ , exchanging the role
played by {Li} and {Si}. As a result, the spin SU(2) invariance
for a model with −Ũ indicates the charge SU(2) symmetry
for +Ũ and vice versa. In addition, this transformation also
implies the phase diagram should be symmetric under +Ũ ↔
−Ũ together with the interchange of charge and spin order.
However, in the l odd cases, this mapping fails because of the
additional minus sign in b̂i jσ .

Particle-hole symmetry. The half-filled effective Hamilto-
nian Ĥeff holds particle-hole symmetry no matter whether l
is even or odd. (i) When l is even, define particle-hole trans-
formation Ĉ : ĉiσ → (−1)iĉ†

iσ . The Hamiltonian is invariant
under Ĉ. [Ĉ, Ĥeff] = 0. (ii) When l is odd, we further define
the bipartite transformation Ŝ, which switches the A/B sublat-
tices. Then the Hamiltonian is invariant under the combination
of Ĉ and Ŝ: [ĈŜ, Ĥeff] = 0. This symmetry allow us to fix
chemical potential to μ = 0 during the mean-field calculation
at a half-filling situation.

APPENDIX B: MEAN-FIELD TREATMENT

In this section we establish the mean-field theory adopted
in this work. As explained in the main text, assuming no
canted order, we can consider only the charge-density-wave
(CDW) order and spin-density-wave (SDW) order in the
z direction because of the SO(4) symmetry. We focus on
the half-filled spin-balanced system, in which case the total
charge density and total magnetic momentum is given by

〈n̂〉 = 1, 〈Ŝ〉 = 0. (B1)

Path-integral approach. Here we provide a derivation of
the mean-field Hamiltonian Eq. (B14) via a path-integral
approach. In the path-integral language, the real-time partition
function of the system is given by

Z =
∫

DψDψ̄ exp

(
i
∫

dtL

)
(B2)

L =
∑
i,σ

iψ̄iσ ∂tψiσ +
∑

〈i, j〉,σ

[
J0ai jσ̄ (ψ̄ψ ) + J1bl

i jσ̄ (ψ̄ψ )
]

× ψ̄iσ ψ jσ − Ũ
∑

i

ψ̄i↑ψi↑ψ̄i↓ψi↓ . (B3)

Here ψ corresponds to the fermionic field operators, and ai jσ̄

and bl
i jσ̄ are given by replacing the operators in âi jσ̄ and

b̂l
i jσ̄ with fields. Since the effective Hamiltonian [Eq. (7) in

the main text] contains six-fermion terms, the traditional de-
coupling based on Hubbard-Stratonovich transformation does
not apply directly. However, an alternative way of decoupling
based on the similar spirit of Hubbard-Stratonovich transfor-
mation should be adopted here. Specifically, by inserting a δ

function, we directly introduce the auxiliary bosonic field:

Z =
∫

DψDψ̄Dn
∏
iσ

δ(ni,σ − ψ̄i,σ ψi,σ ) exp

(
i
∫

dtL

)

(B4)

L =
∑
i,σ

iψ̄iσ ∂tψiσ +
∑

〈i, j〉,σ

[
J0ai jσ̄ (n) + J1bl

i jσ̄ (n)
]
ψ̄iσ ψ jσ

− Ũ
∑

i

ni↑ni↓ . (B5)

Thanks to the δ function inserted, one could replace all ψ†ψ

by n in the action. As an equivalence check, if we integrate
out n fields first, we get our original action back. Now we
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FIG. 6. Schematic of the two cases: (left panel) case 1, (right panel) typical examples of case 2 when L = 2 and L = 3, respectively, as
labeled. Lattice sites of the same color have the same local particle density ci and local spin density si.

introduce another field η to absorb the δ function into an
integral:

Z =
∫

DψDψ̄DnDη exp

(
i
∫

dtL

)
(B6)

L =
∑
i,σ

iψ̄iσ ∂tψiσ +
∑

〈i, j〉,σ

[
J0ai jσ̄ (n) + J1bl

i jσ̄ (n)
]
ψ̄iσ ψ jσ

− Ũ
∑

i

ni↑ni↓ −
∑

iσ

ηiσ (ni,σ − ψ̄i,σ ψi,σ ). (B7)

As a result, the fermion becomes quadratic. In general, one
can integrate out all the fermions to get an effective action of
wholly bosonic degrees of freedom, whereas the mean-field
approximation says that all the bosonic fields will be replaced
by their saddle-point solutions.

Mean-field Hamiltonian. By doing a Legendre transforma-
tion and replacing the fermion bilinears with its expectation
values, we obtain the mean-field Hamiltonian

Ĥ =
∑

〈i, j〉,σ
−[

J0ai jσ̄ (n) + J1bl
i jσ̄ (n)

]
ψ̂

†
iσ ψ̂ jσ

+ Ũ
∑

i

ni↑ni↓ +
∑

iσ

ηiσ (ni,σ − ψ̂
†
i,σ ψ̂i,σ ), (B8)

where the following replacement is carried out:

âi jσ = (1 − n̂iσ )(1 − n̂ jσ ) + n̂iσ n̂ jσ ,

→ (1 − niσ )(1 − n jσ ) + niσ n jσ , (B9)

b̂i jσ = (−1)l (1 − n̂iσ )n̂ jσ + n̂iσ (1 − n̂ jσ )

→ (−1)l (1 − niσ )n jσ + niσ (1 − n jσ ). (B10)

For the half-filled spin-balanced situation, we focus on
the following two cases here: Notice that in a half-filled
spin-balanced system, the local particle density can be ex-
pressed in terms of local charge density and local spin
density as

ni↑ = 1
2 (1 + ci + si ), ni↓ = 1

2 (1 + ci − si ), (B11)

where
∑

i ci = 0 and
∑

i si = 0. The two cases are then
(1) ci = (−1)ix+iy c, si = (−1)ix+iy s
(2) ci = (−1)ix/L�+iy/L�c, si = (−1)ix/L�+iy/L�s

where c and s are CDW and SDW order parameters intro-
duced, and x� denotes the ceiling function of x. Substituting
these two expressions into the original mean-field Hamilto-
nian, Eq. (B8) will yield the mean-field Hamiltonian in each
case.

Case 1. The first case is actually the (π, π ) order, where
the lattice is naturally divided into A/B sublattices and the
unit cell of the lattice consists of two sites, with one from A
and the other from B. The schematic is shown in Fig. 6 (left).

To be specific, we show here the work flow in the first case.
By substitution,

nA ≡ 〈n̂i∈A〉 = 1 + c, sA ≡ 〈
Ŝz

i∈A

〉 = s/2, (B12)

nB ≡ 〈n̂i∈B〉 = 1 − c, sB ≡ 〈
Ŝz

i∈B

〉 = −s/2, (B13)

and the mean-field Hamiltonian is explicitly written as

Ĥmf =
∑

〈i, j〉,σ
{−J0[(1 − nAσ̄ )(1 − nBσ̄ ) + nAσ̄ nBσ̄ ]

− J1[(1 − nAσ̄ )nBσ̄ + nAσ̄ (1 − nBσ̄ )]}ĉA†
iσ ĉB

jσ + H.c.

+ ŨN

2
(nA↑nA↓ + nB↑nB↓)

+ ηc

[
c − (n̂A↑ + n̂A↓) − (n̂B↑ + n̂B↓)

2

]

+ ηs

[
s − (n̂A↑ − n̂A↓) − (n̂B↑ − n̂B↓)

2

]
, (B14)

where ĉA
iσ (ĉB

iσ ) are the annihilation operators of site i and spin
σ on the A(B) sublattice, n̂μσ = 1

N/2

∑
i∈μ n̂iσ , μ = A or B,

and nμσ = 〈n̂μσ 〉. Here ηc and ηs are Lagrangian multipliers
of the CDW and SDW orders, respectively, which are also
variational parameters to optimize the ground-state energy of
Ĥmf to get a mean-field solution.
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After some substitution and simplification, the mean-field
Hamiltonian in momentum space is written as

Ĥmf =
∑
kσ

−Pσ (c, s)Q(k)ĉA†
kσ ĉB

kσ + H.c. + ŨN

2
(1 + c2 − s2)

+ ηc

[
c − (n̂A↑ + n̂A↓) − (n̂B↑ + n̂B↓)

2

]

+ ηs

[
s − (n̂A↑ − n̂A↓) − (n̂B↑ − n̂B↓)

2

]
, (B15)

where ĉA
kσ (ĉB

kσ ) are the annihilation operators on the A(B) sub-
lattice of quasimomentum k and spin σ, Q(k) = ∑

i exp(ik ·
di ), {di} are the lattice vectors, and

P↑(c, s) = J0

2
[1 − (c − s)2] + J1

2
[1 + (c − s)2], (B16)

P↓(c, s) = J0

2
[1 − (c + s)2] + J1

2
[1 + (c + s)2]. (B17)

The summation of k in Eq. (B15) is over the first Brillouin
zone. Minimizing the energy for all parameters {c, s, ηc, ηs}

yields a set of mean-field equations that is solved by numerical
iteration in this work.

Case 2. The second case actually includes a series of
circumstances of L being 2, 3, 4, . . . ,∞. Typical examples of
L = 2 and L = 3 are shown in the right panel of Fig. 6. In
this case, for each independent L, doing a similar substitution
as above and solving the optimization problem in a numerical
way returns us to a set of self-consistent mean-field solutions
in each L. The ground state should be the one with the lowest
ground-state energy.

Figures 2, 3, 4, and 5 in the main text are based on the
mean-field numerics of the above two cases.

Check the formulation for J0 = J1. Finally, we explain why
our mean-field theory reduces to a traditional one appearing
in common textbooks, e.g., [38]. In fact, the Pσ in this case is
just a constant with no c and s dependence. Thus the variation
of c and s yields

ηc = −ŨNc, ηs = ŨNs. (B18)

Using this relation, we see that the mean-field Hamiltonian
reduces to a familiar one that appears in textbooks [38].
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