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Spin-imbalance-induced transverse magnetization in the Hofstadter-Hubbard model
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The fermionic, time-reversal-invariant Hofstadter-Hubbard model with a population difference between the
two spin states is investigated. In the strongly interacting regime, where the system can be described by
an effective spin model, we find an exotic spin structure by means of classical Monte Carlo calculations.
Remarkably, this spin structure exhibits a transverse net magnetization perpendicular to the magnetization
induced by the population imbalance. It is thus inherently different from canted antiferromagnetism. We further
investigate effects of quantum fluctuations within the dynamical mean-field approximation and obtain a rich
phase diagram including ferromagnetic, antiferromagnetic, ferrimagnetic, and transverse magnetization phases.
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I. INTRODUCTION

Artificial gauge fields are at the heart of ongoing research
in the field of cold atomic gases [1–5] as they act as a base
for intriguing quantum matter such as topological insulators
and exotic quantum magnetism. The latter requires strong
interactions between the particles, which makes it challenging
to investigate theoretically as well as experimentally [6,7].
However, recent experiments with ultracold atomic gases have
shown magnetic correlations in the driven optical lattice [8],
spin frustration [9], and antiferromagnetism (AFM) below
the superexchange temperature [10] and shed light on the
capability of cold atoms to create exotic states of quantum
magnetism. It is thus interesting to reach for new phases in
this context.

Besides the Haldane model, the Harper-Hofstadter model
is one of the most commonly used theoretical systems to
study artificial gauge fields. The Hofstadter model in its
time-reversal invariant version [11] has been realized in ex-
periments with ultracold bosons [12]. Theoretically it has
been intensively studied for the interacting case and shows
various insulating phases [13] as well as exotic magnetism
induced by artificial gauge fields for the spin-1/2 [14,15]
and also the spin-1 [16] case. Similar theoretical stud-
ies were performed for the Haldane-Hubbard model [17].
Spin-imbalanced fermions, on the other hand, show versa-
tile features ranging from canted AFM [18] to phase sep-
aration in traps [19,20] and in the dimensional crossover
[21].

In Fig. 1, we schematically depict the extensions of artifi-
cial gauge fields and spin imbalance to the normal Hubbard
model. Its ground states differ strongly depending on whether
an artificial flux α or a Zeeman field B for spin imbalance
is applied. Figure 1(a) shows the standard Hubbard model.
Its Hamiltonian possesses the symmetry L × SU(2), where
L represents all the lattice symmetries of the system. The
SU(2) symmetry arises from rotational spin symmetry. After
symmetry breaking, denoted by a black arrow, the AFM
ground state has the reduced lattice symmetry L̃ and a re-
duced spin symmetry U(1). Long-range AFM correlations
have been measured in a quantum gas experiment [10]. By

applying a finite spin-dependent artificial flux, one obtains the
time-reversal invariant Hofstadter-Hubbard model shown in
Fig. 1(b), which was subject of intensive theoretical studies
[13–15,22,23]. Here, the lattice symmetry Lα is reduced in
comparison to L since the size of the unit cell is now a
mulitple of 1/α. The ground state was found to be an AFM
with the staggered magnetization pointing in the z direction.
Experiments come closer to measuring magnetic correlations
in systems with artificial gauge fields as shown in Ref. [8]. The
spin-imbalanced Hubbard model shown in Fig. 1(c) yields
canted AFM, which has also been observed [18]. We note
that the systems in Figs. 1(b) and 1(c) possess very different
ground states. In this work, we investigate the ground state
of the spin-imbalanced Hofstadter-Hubbard model depicted in
Fig. 1(d). It appears that the interplay of spin imbalance and
artificial gauge field induces a geometric frustration within the
lattice similar to the Villain model [24], which is also known
as fully frustrated XY model. This ground state, in contrast
to AFM or canted AFM, then exhibits a finite transverse
magnetization. The spin-imbalanced Hofstadter model has
been studied recently in the noninteracting limit [25] as well
as for attractive interactions [26].

II. HOFSTADTER-HUBBARD MODEL

The Hamiltonian of the fermionic time-reversal-invariant
Hofstadter-Hubbard model reads

Ĥ = − t
∑

j

[ĉ†
j+x̂ ĉ j + ĉ†

j+ŷeiθ ĉ j + H.c.]

+ U
∑

j

n̂ j,↑n̂ j,↓.
(1)

Here, ĉ†
j = (ĉ†

j,↑, ĉ†
j,↓) is the fermionic creation operator, j =

(x, y) is the lattice site vector, x̂ = (1, 0) and ŷ = (1, 0) are
step vectors in the respective direction with the lattice constant
set to unity, t = 1 is the hopping energy, and U is the interac-
tion strength. When hopping in the y direction, the particle
will pick up a phase θ = 2παxσ z, where α is the plaquette
flux, σ k is the kth Pauli matrix with k = x, y, z, and n̂ j,σ =
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FIG. 1. Table of extensions to the Fermi-Hubbard model and its
ground states, considering artificial flux α and Zeeman field B. We
represent lattice symmetries in purple and spin symmetries in yellow:
(a) the standard Hubbard model, (b) the Hofstadter-Hubbard model,
(c) the spin-imbalanced Hubbard model, and (d) the spin-imbalanced
Hofstadter-Hubbard model including a schematic phase diagram.
The first-order phase transition is represented as a red line and the
critical end point as a red star.

ĉ†
j,σ ĉ j,σ is the density operator of the spin-σ fermions. For

strong interactions, the charge degrees of freedom freeze-out
and the Hamiltonian (1) can be mapped onto an effective spin
model [14,15]:

Ĥspin = J
∑

j

{
Ŝx

j+x̂ Ŝx
j + Ŝy

j+x̂ Ŝy
j + Ŝz

j+x̂ Ŝz
j

}

+ J
∑

j

{
cos(4παx)

[
Ŝx

j+ŷŜx
j + Ŝy

j+ŷŜy
j

]

+ sin(4παx)
[
Ŝy

j+ŷŜx
j − Ŝx

j+ŷŜy
j

] + Ŝz
j+ŷŜz

j

}
, (2)

where J = t2/U is the superexchange interaction energy and
Ŝi

j = ĉ†
jσ

iĉ j is the spin operator. Note that for α = 1/2 this
Hamiltonian simplifies to the two-dimensional Heisenberg
Hamiltonian. In this work, we will focus on the case α = 1/4.
Other fluxes require larger unit cells and are not consid-
ered here. In the following, we consider the spin-imbalanced
Hofstadter-Hubbard model.

III. CLASSICAL MONTE CARLO RESULTS

There are two ways to introduce a population spin im-
balance and thus break the time-reversal invariance: either
introducing a Zeeman field term −B

∑
j Ŝz

j or allowing only

states of the proper fixed magnetization Sz = (1/Ns)
∑

j〈Ŝz
j〉,

where Ns is the number of lattice sites. Assuming a product
state in real space of the many-body system, the spin operators
Ŝi

j in Eq. (2) can be replaced by their respective expectation
values Si

j = 〈Ŝi
j〉, such that |Sj | = 1. This corresponds to a

classical approximation of the quantum spin model Eq. (2).
We determine the ground state of this approximated model
using a classical annealing Monte Carlo (CMC) algorithm. In
order to fix the magnetization Sz exactly, we constrain the

FIG. 2. Classical Monte Carlo results: (a) Ground-state energy E
of different unit cells of size Nx × Ny for α = 1/4 and (b) spin struc-
ture for Sz = 1/3. Red arrows show spin orientations in the Sx-Sy

plane, and the color map represents the Sz components. The labeling
of the unit cell is shown in the right lower corner. (c) Schematic of
the preferred magnetic coupling between the spin projections onto
the Sx-Sy plane of the sites in the unit cell. (d) Sz components of the
two sublattices A and B and transverse magnetization Sr .
(e) Angles between the spin projections of neighboring sites onto
the Sx-Sy plane.

algorithm to states with the desired magnetization Sz. This
is guaranteed by applying the following constraint during the
CMC procedure similar to Ref. [27]: Starting with a random
initial state with the correct Sz, a site j is randomly picked and
its spin S j is randomly flipped. A second site j′ is randomly
picked and the z component Sz

j′ is adjusted such that the
correct magnetization Sz is recovered if possible; otherwise,
it is a null move. The remaining Sx

j′ and Sy
j′ components of the

spin at site j′ are chosen randomly, obeying the normalization
|Sj′ | = 1. Note that this CMC procedure acts on three degrees
of freedom instead of two in the normal, unconstrained CMC
procedure.

The Hamiltonian (2) exhibits Heisenberg-type interactions
in the x direction and x-dependent spin interactions in the y
direction with a period of n/2α where n is some integer. In the
case α = 1/4, we find that the symmetry of the Hamiltonian
requires the unit cell to have at least Nx = 2 sites in the x
direction. A priori, we cannot make similar considerations for
the number of sites Ny in the y direction since the symmetry
will be spontaneously broken. In Fig. 2(a), we show the
ground-state energy per site for different sizes of the unit cell
(Nx, Ny ) obtained from constrained CMC runs for α = 1/4
and Sz = 1/3. We only show the lowest energy out of 100
of the respective CMC results. We observe that multiples
of the 2 × 2-unit cell yield the same energy, which is lower
compared to unit cells which are not multiples of 2 × 2. We
conclude that 2 × 2 is the correct size of the unit cell.
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In Fig. 2(b), we show a spin configuration obtained from
constrained CMC runs for Sz = 1/3 and provide a labeling of
the unit cell, where the letters (A,B) represents the magnitude
of the Sz component and the prime denotes different spin
orientations in the Sx-Sy plane. In Fig. 2(d), we show the two
Sz components of the two sublattices A and B, Sz

A and Sz
B,

respectively, as function of the total magnetization in the z
direction Sz. They sum up to Sz = Sz

A + Sz
B for every value

of Sz. For Sz = 0, we find Sz
A = −1 and Sz

B = 1, respectively,
corresponding to the AFM phase. For Sz = 1, we find Sz

A =
Sz

B = 1, corresponding to the ferromagnetic (FM) phase. For
finite magnetization Sz � 0.4, their magnitude reduces, forc-
ing the spins into the Sx-Sy plane due to |S j | = 1. We observe
that the spin components in the Sx-Sy plane do not cancel out
as they do for instance in the canted antiferromagnetic phase
[20]. This leads to a finite total magnetization in the Sx-Sy

plane,

Sr = 1

NxNy

√√√√√
⎛
⎝∑

j

Sx
j

⎞
⎠

2

+
⎛
⎝∑

j

Sy
j

⎞
⎠

2

, (3)

shown as magenta line in Fig. 2(d), which we call the trans-
verse magnetization phase (TM) as the system responds to
longitudinal magnetization Sz with a transverse magnetization
Sr which can even exceed the magnitude of Sz for Sz � 0.2.
At Sz ≈ 0.4, we observe a phase transition at which both Sz

components become polarized Sz
A = Sz

B. Here, the transverse
magnetization remains finite, but has to vanish at full polar-
ization Sz = 1. The regime of high magnetization Sz > 0.7 is
not well accessible with constrained CMC, since the number
of null moves increases drastically. The projections of the
spin vectors of site j and site j′ onto the Sx-Sy plane form
the angle θ j j′ . In Fig. 2(e), we show these angles of all sites
within the unit cell. At Sz = 0, these angles are ill defined
due to AFM order in the Sz direction. For small values of
Sz � 0.1, the fluctuations of the angles is high, since the Sx-Sy

contribution to the energy is small, leading to fluctuations in
the CMC procedure. For all remaining values of Sz, we find
convergence for odd x to an angle θA′,B = −π/4 along the y
direction, and for even x, we find an angle θA,B′ = 3π/4 along
the y direction. Along the x direction, we find solely the angles
θA,B = θA′,B′ = 3π/4. Note the sign convention of the angles,
since all four angles have to add up to 2πn.

The values of the angles in Fig. 2(e) can be explained from
the Hamiltonian (2) and are schematically shown in Fig. 2(c).
For α = 1/4, the sine function vanishes and the coupling
along the y direction is FM for x being odd and AFM for x
being even. A similar model of frustrated spins on a square
lattice was first proposed in Ref. [24]. It is known as the fully
frustrated XY model and is of interest, especially because
its two phase transitions are a chiral Ising-type transition
and a Berizinskii-Kosterlitz-Thouless transition [28–33]. The
present system can be mapped to the fully frustrated XY
model by flipping the sign of the spin-exchange interaction en-
ergies; i.e., AFM bonds become FM bonds and vice versa. It is
also important to recall that the present system, in contrast to
the fully frustrated XY model, consists of three-dimensional
spins. The parallels can thus only be drawn for a finite Zeeman
field B such that the spins acquire in-plane components. We

FIG. 3. (a) Comparison between CMC and DMFT calculations
for interaction strength U = 22. The shaded region is inaccessible
for DMFT. (b) Sz as function of the applied Zeeman field B from
DMFT calculations for different interaction strengths. The black star
denotes the critical end point at which the first-order phase transition
from FiM to TM vanishes.

think that the more general case of the uniformly frustrated
XY model [34] can be achieved through different values of α

which reflects the deep connection between the frustrated XY
model and the spin-imbalanced Hofstadter-Hubbard model.

IV. DYNAMICAL MEAN-FIELD RESULTS

The above considerations have been made in the regime
of large interactions, such that only terms quadratic in the
hopping energy contribute. We now want to investigate
the effect of finite interactions, i.e., quantum fluctuations of
the charge degrees of freedom are now present. To this end, we
make use of real-space DMFT with an exact diagonalization
impurity solver with three bath sites and at finite inverse tem-
perature β = 20. DMFT is formulated in the grand-canonical
ensemble such that fixing a constant filling can become com-
putationally costly, especially with additional spin imbalance.
From the CMC results, we find that fixing an exact imbalance
Sz is not necessary to observe the TM. Thus, we perform
DMFT calculations with fixed Zeeman field B. The half-filling
condition is satisfied by μσ = U/2 due to the particle-hole
symmetry of the Hamiltonian (1). This is also true for the
spin-imbalanced case μσ = U/2 ± B. As initial guess for the
self-energy � j,αβ in the Hartree-Fock approximation �HF

j,αβ =
〈c†

j,αc j,β〉, we use the spin state from the CMC calculations for
Sz = 1/3, which is shown in Fig. 2(b).

In Fig. 3(a), we compare DMFT results for interaction
strength U = 22 with CMC results from Fig. 2(c). We observe
that for the regime Sz � 0.4 the agreement between the two
methods is perfect, which corresponds to the phase of finite
TM and full polarization of the Sz components. Also, the
case Sz = 0 yields the AFM result for both theories. However,
we find deviations in the regime 0 < Sz � 0.4. Here, the
CMC results show the TM with an underlying checkerboard
structure of the Sz components as, e.g., shown in Fig. 2(b).
In contrast, DMFT results do not exhibit finite Sr in that
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FIG. 4. Order parameters of the spin-imbalanced Hofstadter-
Hubbard model obtained from DMFT calculations: (a) ferro-
magnetic, (b) transverse magnetization, (c) antiferromagnetic, and
(d) ferrimagnetic.

regime. For Sz � 0.1 in DMFT, Sz
B remains constantly 1,

while Sz
A linearly increases with increasing Sz from −1 with a

slope of 2. This corresponds to a ferrimagnetic phase (FiM).
Furthermore the shaded regime 0.1 � Sz � 0.4 seems to be
inaccessible for DMFT. This is studied in more detail in
Fig. 3(b), which shows DMFT results of Sz as a function of B
for different interaction strengths U . For U = 18, 22, 30, we
observe a first-order phase transition at B ≈ 0.1, 0.125, 0.15
between the FiM and the TM phase. With increasing interac-
tion strength, the first-order jump shrinks and finally closes at
the critical end point represented by a black star in Fig. 3(b).
The system then features a crossover from the AFM to the
FM phase for very strong interactions U � 40. In this regime,
the superexchange interaction becomes comparable to the
Zeeman field J = t2/U ∼ B. For infinite Hubbard interaction
strength U , the superexchange is completely suppressed at
finite values of B and the only remaining term in the Hamilto-
nian is −B

∑
j Sz

j . The value of Sz can then be computed from
the Boltzmann distribution as

Sz = 1

1 + exp (−2βB)
− 1

1 + exp (2βB)
, (4)

which is shown as a black line in Fig. 3(b). We observe
that this line is indeed approached by the DMFT results with
increasing interaction strength.

In Fig. 4(a), we show the phase diagrams of the spin-
imbalanced Hofstadter-Hubbard model in the U -B-parameter
space, obtained from the order parameters for FM (Sz

A +
Sz

B)/2, TM Sr defined in Eq. (3), AFM (Sz
A − Sz

B)/2, and FiM
|SA| − |SB|. The latter is a measure of the difference in length
of the spins of the two sublattices A and B.

For experimental probing of the spin structure, we propose
measurements with a quantum gas microscope similar to that
in Ref. [10]. Here, the Sz

j component of a spin at lattice

site j can be measured by selective removal of one spin
state before imaging via Stern-Gerlach. Other components
can be measured by first applying a global spin rotation
[18]. Since there is still rotational symmetry of the system
around the Sz direction, this should be broken beforehand
by applying a small transverse field in the Sx direction.
A mapping to a ferromagnetic order through coherent spin
manipulation similar to Ref. [35] could also be candidate for
a measurement. Since fermionic superexchange temperatures
are low and challenging to achieve experimentally and the
effect also occurs on a classical level, the TM could also be
observed through a mapping to local phases of Bose-Einstein
condensates in one-dimensional tubes of an optical lattice
[9,36,37]. This would then require only temperatures below
the critical temperature for Bose-Einstein condensation.

V. CONCLUSION

In conclusion, we have studied the spin-imbalanced
Hofstadter-Hubbard model with a flux α = 1/4. In the limit
of strong interactions, such that charge degrees of freedom are
frozen, we find a spin structure emerging from spin frustration
with a finite net magnetization in the transverse direction, i.e.,
a transverse magnetization effect. We investigate the stability
of this intriguing phase against quantum fluctuations and ob-
tain a rich phase diagram. Possible experimental realizations
for cold-atom setups are discussed. In the present paper, we
use single-site DMFT, i.e., nonlocal corrections to the self-
energy are neglected. A first extension would be two-site
cluster DMFT, which includes corrections to the hopping
matrix element. We can think of two different scenarios for
what could happen when including these corrections. Either
the transverse magnetization phase is stable since the resulting
transverse magnetization is large, i.e., of the same order of
magnitude as the longitudinal magnetization imposed by the
spin imbalance, and quantum fluctuations cannot fully destroy
it. On the other hand, if additional fluctuations are strong
enough, the induced geometric frustration could lead to a
breakdown of magnetic order. It is thus conceivable that this
system is a candidate for a quantum spin liquid.
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