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Quantum degenerate Majorana surface zero modes in two-dimensional space
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We investigate the topological properties of spin-polarized fermionic polar molecules loaded in a multilayer
structure with the electric dipole moment polarized to the normal direction. When polar molecules are paired by
attractive interlayer interaction, unpaired Majorana fermions can be macroscopically generated in the top and
bottom layers in dilute density regime. We show that the resulting topological state is effectively composed by a
bundle of one-dimensional (1D) Kitaev ladders labeled by in-plane momenta k‖ and −k‖, and hence belongs to
the BDI class characterized by the winding number Z, protected by the time-reversal symmetry. The Majorana
surface modes exhibit a flat band at zero energy, fully gapped from Bogoliubov excitations in the bulk, and hence
becomes an ideal system to investigate the interaction effects on quantum degenerate Majorana fermions. We
further show that additional interference fringes can be identified as a signature of such 2D Majorana surface
modes in the time-of-flight experiment.
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I. INTRODUCTION

A Majorana fermion (MF) is known to be its own antipar-
ticle [1], as a hypothesis in theoretical particle physics. In
condensed-matter systems, a MF can appear as a localized
edge state and reflect the topological property in the bulk of
system. It is known that a topological system can be clas-
sified into intrinsic topological order or symmetry-protected
topological (SPT) order: the latter is robust against small
perturbations for given on-site symmetries [2]. Ground states
of nontrivial SPT phases cannot be continuously connected to
trivial product states without either closing the gap or breaking
the protecting symmetry [3].

One of the mostly studied topological phases is proposed
by Kitaev [4] for a one-dimensional (1D) p-wave supercon-
ductor. The Majorana zero mode (MZM) of such a system
may be applied for quantum computation through braiding,
and a certain experimental signature has been proposed in
an ordinary s-wave superconducting wire with strong spin-
orbital coupling through the proximity effect [5–14] or even in
systems of ultracold atoms [15–19]. However nonambiguous
evidence is still lacking probably due to the poor signal-to-
noise ratio for a localized MZM. Recently, some extensions of
the 1D Kitaev model by including interchain tunneling [20],
dimerization [21], and long-ranged pairing [22,23] have also
been proposed.

In the systems of quantum gases, such intersite pairing
between fermions can be provided by long-ranged dipolar in-
teractions between polar molecules [24–29] or neutral atoms
with a large magnetic moment [30–32]. Since the inelastic
coupling between polar molecules can be well suppressed by
aligning dipole moments normal to the two-dimensional (2D)
plane with a strong transverse confinement [33–35], many

exotic ground states have been predicted in a 2D layer [36–49]
or in a bilayer or multilayer structure [39,44,46,50–52].

In this paper, we propose that macroscopically degener-
ate Majorana surface zero modes (MSZMs) can exist in a
2D continuous space, where spin-polarized fermionic polar
molecules are paired and hence perform a superfluid in a
stack of multilayer structure [Fig. 1(a)] through their dipolar
interaction. Within the BCS theory and Landau-Fermi-liquid
theory (both are well justified in our 3D system), we show that
the multilayer system becomes equivalent to an ensemble of
1D Kitaev ladders along the normal direction [see Fig. 1(b)],
labeled by in-plane momenta (k‖,−k‖). That is, each subsec-
tor is equivalent to the BdG Hamiltonian of 1D Kitaev ladders.
The resulting topological state actually belongs to the BDI
class, characterized by the Z index as the winding number.
The associated topological properties are confirmed by both
the analytical calculation as well as the numerical calculation
of entanglement spectrum or entropy when the long-range
pairing is included. These unpaired MSZMs are protected by
the time-reversal symmetry as well as the superfluid pairing
gap, showing a localized wave function along the normal
direction of layers (z) and a mobile flat energy band in
the in-plane direction (x-y) inside the superfluid gap. From
an experimental point of view, such a topological state can
be observed through the additional short period interference
fringes, which result from macroscopically occupied MSZMs
in the top and bottom layers. Our results therefore suggest an
interesting system to investigate quantum many-body proper-
ties of non-Abelian anyons in a 2D continuous space.

Our paper is organized as follows: in Sec. II, we set up a
system which is loaded into a stack of 2D layers with spin-
polarized fermionic polar molecules, and derive the effec-
tive model Hamiltonian within the mean-field approximation.
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FIG. 1. (a) Multilayer structure for identical fermionic polar
molecules loaded into a deep 1D optical lattice. The electric dipole
moment (arrows) is aligned to the normal (z) direction by the external
field. (b) Effective Kitaev ladder in momentum space [see Eq. (2)],
where fermions (rectangular boxes) in each “site” can be decom-
posed into two MFs (circles, see the text). Two unpaired MFs can
be found at the end of ladders if Eq. (10) is satisfied. Double-sided
arrows of dashed (solid) lines indicate interlayer pairing (hopping)
respectively (for simplicity, here we just show the configuration of
a special case, where only pairs between neighboring layers are
considered; see Sec. III A).

In Sec. III, we investigate the topological properties and
Majorana surface zero modes of a special case, where only the
nearest pairing is considered. We then extend our calculation
in Sec. IV toward a more general case when the long-ranged
pairing (due to dipolar interaction) is included. In Sec. V
we show why these MFs are stable against single-particle
perturbation due to the time-reversal symmetry. Finally we
discuss some experimentally related issues in Sec. VI and
conclude our paper in Sec. VII. In Appendix A, we show
how the unpaired MFs can be analytically obtained from the
Bogoliubov–de Gennes (BdG) equation. We then explicitly
calculate the winding number in Appendix B.

II. SYSTEM HAMILTONIAN

A. Full Hamiltonian and mean-field approximations

The system setup is illustrated in Fig. 1(a), where spin-
polarized fermionic polar molecules are loaded into a stack of
2D layers with interlayer spacing d and tunneling amplitude
tz. The electric dipole moment is polarized and perpendicular
to the layer by the external electric field, leading to an attrac-
tive interlayer interaction and a repulsive intralayer interaction
between molecules. As a result, the full system Hamiltonian
can be expressed as follows in the real-space coordinates:

H = −tz

L−1∑
j=1

∫
dr‖[ψ j (r‖)†ψ j+1(r‖) + H.c.]

+
L∑

j=1

∫
dr‖ψ j (r)†

[−∇2

2m
+ Utrap(r‖) − μ

]
ψ j (r‖)

+ 1

2

L∑
j, j′=1

∫
dr‖

∫
dr′

‖Vd (r‖ − r′
‖, jd − j′d )ψ j (r‖)†

×ψ j′ (r′
‖)†ψ j′ (r′

‖)ψ j (r‖), (1)

where m and μ are the mass and chemical potential of polar
molecules. ψ j (r‖) is the field operator for the layer index j
and the in-plane coordinate r‖. Vd (r‖, z) is the dipole-dipole
interaction between polar molecules. Here for simplicity, we
assume the layer width is much smaller than interlayer dis-
tance and can be neglected. Utrap(r‖) is the in-plane trapping
potential, and L � 1 is the number of total layers.

Since the multilayer structure described above is actually
a quasi-3D system, ordinary mean-field approximations are
well justified. In order to highlight the possibility of SPT
order in such 3D systems, we consider the parameter regime
when the averaged in-plane density is in the dilute regime,
i.e., the averaged interparticle distance between molecules
in the same layer is larger than the interlayer distance. It is
then reasonable to expect that the effects of in-plane repulsive
interaction (∼|r‖|−3) are relatively weaker than both the in-
plane kinetic energy and the effects of interlayer attractive
interaction (see Sec. VI below for more details). As a result,
the attractive interlayer interaction pairs up polar molecules in
different layers as a superfluid phase within the BCS theory.
By contrast, the repulsive interaction between molecules in
the same layer is a relatively weak effect, renormalizing the
effective mass and chemical potential within the Landau-
Fermi-liquid theory [39,53]. Throughout this paper, we will
not discuss the situation when the in-plane repulsion becomes
relevant, which appears only in the high-density regime. We
will briefly discuss its possible effects in Sec. V.

B. Effective Hamiltonian of Kitaev ladders

In the rest of this paper, we consider that the trapping
potential Utrap(r‖) is assumed to be shallow enough so that
we could neglect it and apply a periodic boundary condition
in the in-plane (x-y) direction. We will discuss the situation of
the finite-size effect in Sec. V and show it should be instant
to the stability of the topological properties. As a result,
within the mean-field approximations mentioned above, an
effective Bogoliubov–de Gennes (BdG) Hamiltonian can be
easily derived to be HBdG = ∑

k‖ Hk‖ , where

Hk‖ =
L∑

j=1

(
k2

‖
2m∗ − μ∗

)
c†

k‖, jck‖, j

− t∗
z

L−1∑
j=1

[c†
k‖, jck‖, j+1 + H.c.]

− 1

2

L∑
j �= j′, j j′=1

�
(| j′− j|)
k‖ [c†

k‖, jc
†
−k‖, j′ + H.c.]. (2)

Here ck‖, j = 1√
�

∫
dr‖ψ j (r‖) e−ik‖·r‖ is the field operator of

the jth layer and the in-plane momentum k‖. � is the
area of the 2D layer; μ∗, m∗, and t∗

z are the renormal-
ized chemical potential, molecule mass, and interlayer tun-
neling amplitude respectively. �

(| j′− j|)
k‖ is the gap function

between the jth and j′th layers by defining �
(| j′− j|)
k‖ =

−∑
k′

‖
Vd (k‖, k′

‖, j, j′)〈ck‖, jc−k‖, j′ 〉. Here we make a Fourier
transform of dipole-dipole interaction Vd (r‖, z) into momen-
tum space, and we find that (see Ref. [44]) Vd (k‖, k′

‖, j, j′) →
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−2π |k‖|e−|k‖|d as W/d → 0 (W and d are the layer width
and interlayer spacing). Therefore, the interlayer dipolar in-
teraction is attractive for the whole momentum transfer in
momentum space.

One can see that, if we define

H ladd
k‖ ≡ Hk‖ + H−k‖ , (3)

H ladd
k‖ is nothing but a two-leg Kitaev ladder in momentum

space, where the topological properties (if they exist) are
obviously protected by time-reversal, particle-hole, and chi-
ral symmetries at the same time, and hence belongs to the
BDI class of Altland-Zirnbauer classification [2]. Here the
time-reversal symmetry is effectively protected, because polar
molecules can be initially prepared in the same hyperfine
state with a polarized spin state [54]. And, their exchange
interaction is known to be so weak that spin relaxation is
almost frozen during the experimental holding time.

III. MSZMs FOR THE NEAREST-NEIGHBOR PAIRING

In order to investigate the possible topological properties of
the Kitaev ladder in momentum space, we would start from a
specific model, where superfluid pairing appears only between
nearest-neighboring layers, i.e., �

(| j′− j|)
k‖ = 0 for | j − j′| � 2.

Results including longer range interaction will be discussed in
the next section.

A. Exact solution of a special case

First, we show the exact solution of a special case and
then calculate the winding number for a general situation.
We consider a special situation when k2

‖/2m∗ − μ∗ = 0 and

�k‖ ≡ �
(1)
k‖ = t∗

z . This special choice makes the ladder Hamil-

tonian H ladd
k‖ have a single energy scale only.

We then define MFs in momentum space to be

γ
(1)

k‖, j ≡ ck‖, j + c†
−k‖, j γ

(2)
k‖, j ≡ −i(ck‖, j − c†

−k‖, j ), (4)

with the anticommutation relations {γ (a)
k‖, j, γ

(b)
k′

‖, j′ } =
2δ j, j′δa,bδk‖,−k′

‖ (a, b = 1, 2). After some algebra, we obtain
(see Appendix A)

H ladd
k‖ = it∗

z

L−1∑
j=1

(
γ

(2)
k‖, jγ

(1)
−k‖, j+1 + γ

(2)
−k‖, jγ

(1)
k‖, j+1

)
, (5)

where the ladder Hamiltonian becomes two decoupled chains
with two MFs missed at each end [see Fig. 1(b)]: γ

(1)
±k‖,1 for the

bottom layer ( j = 1), and γ
(2)
±k‖,L for the top layer ( j = L). One

can easily construct two “real” MFs in each layer by defining
γ̄

(a)
±,k‖ = (±1)1/2(γ (a)

k‖ ± γ
(a)
−k‖ ), which is its own antiparticle:

(γ̄ (a)
±,k‖ )

† = γ̄
(a)
±,k‖ a = 1, 2.

It is easy to show that, even for ladders with k2
‖/2m �= μ or

�k‖ �= t∗
z , we could still diagonalize H ladd

k‖ by introducing new

MFs, γ̃
(a)

k‖,l , which is a linear combination of γ
(a)

k‖, j (a = 1, 2),

and satisfies {γ̃ (a)
k‖,l , γ̃

(b)
k′

‖,l ′
} = 2δl,l ′δa,bδk‖,−k′

‖ . Localized MFs,

γ̃
(1)
±k‖, j=1/L, near the bottom or top layer can be still retained

when some condition is satisfied (see below). It is just an

extension of the 1D Kitaev chain to the two-ladder case in
momentum space.

B. General condition for MSZMs

The topological property of our Kitaev ladder in mo-
mentum space can be further investigated by calculating the
winding number with a periodic boundary condition along
the normal (z) direction. After applying Fourier transform on
the Hamiltonian [Eq. (2)] along the z direction. For simplicity,
here we just consider the nearest-neighboring pairing only,
although it can be in principle applied to a more general sit-
uation. Defining the Nambu spinor, Ck‖,kz

= [ck‖,kz
, c†

−k‖,−kz
]T ,

we obtain

HBdG = 1

2

∑
k‖

∑
kz

C†
k‖,kz

[
ξk �̃

†
k

�̃k −ξk

]
Ck‖,kz , (6)

where ξk ≡ k2
‖/2m∗ − μ∗ − 2t∗

z cos(kzd ). Note that we define
the 3D momentum k ≡ (k‖, kz ) and the 3D gap function
�̃k ≡ 2i�k‖ sin(kzd ) for the convenience of later discussion.
The Bogoliubov excitation energies are given by

E (±)
k = ±

√
ξ 2

k + |�̃k|2

= ±
√

ξ 2
k + 4|�k‖ |2 sin2(kzd ). (7)

The gap is closed at kz = 0 or π/d , and ξk ≡ k2
‖/2m∗ − μ∗ −

2t∗
z cos(kzd ) = k2

‖/2m∗ ∓ μ∗ − 2t∗
z = 0.

To calculate the winding number of the Bloch state wave
function, we first apply a unitary transformation on the BdG
Hamiltonian to make it off-diagonal,

HBdG = i

4

∑
k

	
†
k

[
0 vk

v
†
k 0

]
	k, (8)

with vk ≡ ξk + 1
2 (�̃∗

k − �̃k ) = ξk − 2i�k‖ sin(kzd ) ≡
R(k)eiθ (k) and 	k ≡ [ck + c†

−k,−ick + ic†
−k]T .

The winding number can be calculated as follows (see
Appendix B for details):

Wk‖ ≡
∫ π/d

−π/d

dkz

2π
∂kzθk‖,kz

= J−
2

∮
dz

2π i

z2 + 2J+z + 1

J1J2
∏4

j=1(z − Zj )]
, (9)

where μ∗
k‖ ≡ μ∗ − k2

‖/2m∗, J1 = t∗
z +�k‖
μ∗

k‖
, J2 = t∗

z −�k‖
μ∗

k‖
, and

J± = J1 ± J2. Four poles of the integrand are given as Z1,2 =
−1±√

1−4J1J2

2J1
and Z3,4 = −1±√

1−4J1J2

2J2
respectively. One can find

that Wk‖ become nonzero (i.e., topological nontrivial) only
when the following condition is satisfied:∣∣∣∣∣μ∗ − k2

‖
2m∗

∣∣∣∣∣ < 2t∗
z , (10)

which is independent of the gap function as expected. This
condition fails as k2

‖/2m∗ ± 2tz = μ∗, exactly when the Bo-
goliubov excitation energy becomes gapless at kz = 0 and
π/d [see Eq. (7)].
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From Eq. (10), the Majorana surface modes appears when
the in-plane momentum is within a certain range:

kMin < |k‖| < kMax, (11)

where kMin ≡ √
2m∗[Max(0, μ∗ − 2t∗

z )] and kMax ≡√
2m∗(μ∗ + 2t∗

z ) respectively.
Throughout this paper, we will consider the situation when

t∗
z > μ∗/2 only, so that kMin = 0 and ladders of all in-plane

momenta for |k‖| < kMax are topologically nontrivial. (Note
that kMax is also the largest Fermi momentum around the
Fermi sea at kz = 0.) Under this condition, the Majorana
modes occupy the whole in-plane Fermi sea in the top and
bottom layers. From the energy point of view, these unpaired
MFs stay in the middle of the superfluid gap. As for the
situation when μ∗ > 2t∗

z , only those states with in-plane mo-
menta, kMin < |k‖| < kMax, are possible states with topologi-
cal nontrivial properties. However, as we will show later, the
topological properties of such a case may become unstable
against disorder potential. We will therefore not emphasize
this case in the rest of this paper.

IV. MSZMs FOR A LONG-RANGED PARING

In this section, we will include the long-ranged pairing
order parameter into the Kitaev ladder [see Eqs. (2) and (3)],
where the pairing amplitude is expected to be �

(| j− j′ |)
k‖ =

�
(1)
k‖ × | j − j′|−3, due to the dipolar interaction. The major

goal is to investigate if the longer-ranged pairing will make
such a topological state unstable or to change the boundary
of the phase diagram, compared to the nearest-neighboring
pairing in the last section. In principle, we could repeat the
calculation of the winding number and investigate the effects
of longer-range pairing. However, the analytical calculation
becomes much more complicated and hence less intuitive.

Therefore, we will show numerical results based on the
entanglement spectrum and entropy as well as the exact di-
agonalization methods. Both of them confirm the topological
properties even with dipolar interaction.

A. Full numerical calculation of entanglement spectrum
and entanglement entropy

A topological phase can be also characterized by the quan-
tum entanglement between the subsystem and the environ-
ment [55–59]. In short, given a ground-state wave function
|�〉, one can calculate the reduced density matrix ρA for a
subsystem A by tracing over the environment [see Fig. 2(a)].
The eigenvalue λα of the reduced density matrix is the so-
called “entanglement spectrum” [57], which carries nonlocal
information and has been applied for calculating Berry phase
and zero-energy edge states [60]. For example, the degeneracy
of the entanglement spectrum has recently been implemented
to characterize the topological properties for some 2D quan-
tum Hall states [57] and for some 1D SPT phases [58,59].

For the 1D Kitaev model, λα is given by the eigenvalues of
the block’s Green’s-function matrix, i.e., Gk‖,i, j ≡ 〈ck‖,ic

†
k‖, j〉

with the layer indices i and j inside the subsystem A. In
Refs. [60–62], it has been shown that the zero energy mode of
the 1D Kitaev model corresponds to the degeneracy of λα =

FIG. 2. (a) The whole system is divided into finite subsystem
A with LA sites and environment. Here we consider L � LA � 1.
Panel (b) shows the entanglement spectrum λα (red plus), and the
entanglement entropy SA (blue square) as a function of k‖/kF for
μ∗ = 4t∗

z . Here kF ≡ √
2m∗μ∗. Panel (c) is the same as (b) but as a

function of μ∗/t∗
z for k‖ = 0. (d) Phase diagram of the topological

regime calculated from entanglement spectrum. N1/2 is the number
of the degeneracy in the entanglement spectrum at λα = 1/2 for the
subsystem A. This also indicates the number of MFs at the edge. The
upper and lower boundaries are exactly the same as kMin and kMax

calculated from Eq. (10).

1/2 in the entanglement spectrum, i.e., the pair of zero modes
at two ends of Kitaev chain contribute the maximal entan-
glement between subsystem A and the environment. Besides
the entanglement spectrum, a topological phase transition can
be also identified by the discontinuity of the entanglement
entropy of the subsystem (given by SA = −Tr[ρAlnρA]) after
tracing out the environment.

It has been shown that the entanglement spectrum λα of
subsystem A can be obtained by diagonalizing the entire
Green’s-function matrix Gk‖,m,n [60–62], where m and n are
restricted in subsystem A (along the z direction) with wave
number k‖.

To calculate the Green’s function, we first express the full
mean-field Hamiltonian in another form [see Eq. (6)]: HBdG =
1
2

∑
k‖,kz

C†
k‖,kz

[R(k) · �σ ]Ck‖,kz , where �σ = (σx, σy, σz ) are

Pauli matrices and R(k) ≡ (0, �̃k, ξk ). As a result, the
Green’s-function matrix defined in real-space lattice sites (i.e.,
layer),

Gk‖,m,n = 1

L

∑
kz∈BZ

eikz (m−n)d Gk, (12)

where d is the interlayer distance, L is the total number sites
of the z direction, and kz takes values in the first Brillouin
zone. It is worth mentioning that Gk is a 2 × 2 matrix, Gk =
1
2 (1 + R(k)·�σ

|R(k)| ).
In our case, we numerically diagonalize the block’s

Green’s function for subsystem A with a finite size, e.g., LA =
100 and L = 200, of the ladder as shown in Fig. 2(a). The
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numerical results converge and are independent of the choices
of subsystem in the thermal dynamic limit, L � LA � 1. In
Figs. 2(b) and 2(c), we show the entanglement spectra λα and
entanglement entropy SA obtained by calculating the Green’s
function from the effective Hamiltonian, Eq. (2). The topo-
logical regime for λα = 1/2 appears through a topological
phase transition at which the entanglement entropy diverges.
In Fig. 2(d), we show the regime of topological nontrivial
phase (λα = 1/2), which is exactly the same regime as defined
by Eq. (10). These numerical results agree with the analytic
calculation of the winding number, confirming the topological
properties in our current system.

B. Flat-band structure and edge state wave function

In our numerical calculation above, the topological prop-
erties of the Kitaev ladder (and hence the multilayer structure
in our original proposal) have been confirmed in a periodic
boundary condition along the normal (z) direction. However,
the localized edge state wave function as well as the possible
zero energy modes still have to be obtained within an open
boundary condition.

In this section, we perform a full exact diagonalization on
the mean-field Hamiltonian in Eq. (3), where a long-ranged
order parameter (pairing) is included with an open boundary
condition. In Fig. 3(a), we show the obtained single-particle
energy as a function of the in-plane momentum |k‖| = kx(we
choose ky = 0) for μ∗ = �

(1)
k‖ = t∗

z with finite layer number
L = 100.

The continuous energy bands above and below zero energy
is the Bogoliubov excitation spectrum, while a new zero
energy flat band appears between zero momentum and kMax =√

2m∗(μ∗ + 2t∗
z ) = √

3kF , where kF ≡ √
2m∗μ∗ = √

2m∗t∗
z .

In Fig. 3(a), due to the finite-size effect, the energy spectra
split near the gap closed point.

From Bogoliubov excitation energies in Eq. (7), it is easy
to show that the gap is closed at kx = kMax, and ky = kz = 0.

The presence of such a zero energy flat-band structure
indicates that the Majorana surface zero modes do exist in
our current 3D system, while its topological properties are
classified to be BDI class as a Kitaev chain.

We note that such quantum degenerate MSZMs have an
overlapping wave function in the 2D surface, and therefore
become a very interesting systems for investigating the many-
body physics of non-Abelian particles. We will then discuss
its stability in details in the next section.

When μ∗ > 2t∗
z , however, the physical properties are

changed: there will be a ring structure in momentum space,
where the Kitaev ladder becomes topological as kMin < |k‖| <

kMax; see Eq. (10). In addition to the gapless ring as |k‖| =
kMax, the Bogoliubov excitation energy gap also closes at
|k‖| = kMin. However, different from previous case, the ap-
pearance of these new gapless rings may cause additional
coupling between Majorana fermions and the Bogoliubov
particles, making the topological phases unstable against local
disorder potential. We will discuss this issue in the next
section.

Besides the energy spectrum, in Fig. 3(b), we also show
the density distribution, ρ j (k‖) ≡ 〈ψ0

k‖ |c†
k‖, jck‖, j |ψ0

k‖ 〉, for the
Majorana zero modes along the normal direction (z direc-

FIG. 3. (a) Single-particle band structure of ladder Hamiltonian
[see Eq. (3)] obtained by exactly diagonalizing L = 100 layers with a
long-ranged (dipolar) pairing for μ∗ = �

(1)
k‖ = t∗

z . (b) Particle density
distribution ρ j (k‖) in the real space for the Majorana zero modes
for different in-plane momentum k‖ with μ∗ = �

(1)
k‖ = t∗

z . Inset:
Semilog plot for the same data. The dashed lines are results for
nearest-neighboring pairing only.

tion). Here |ψ0
k‖ 〉 is the single-particle wave function of the

zero energy state for a given in-plane momentum, obtained
by exactly diagonalizing the Bogoliubov Hamiltonian. We
find that the wave function does decay more slowly than an
exponential function inside the bulk, reflecting the effects of
dipolar interaction when compared to the results of nearest-
neighboring pairing only. Besides, the decay slope is directly
related to the energy gap for a given in-plane momentum
k‖. For example, the energy gap is largest near k‖ = kF , and
the MF wave function decays with fast slope (shortest decay
length). When k‖ is closed to kMax, that is, the energy gap is
closing, the single-particle wave function of the zero energy
state becomes long tailed, as expected.

V. STABILITY OF MSZMs

In this section, we discuss the stability of the unpaired
MSZMs obtained from the Kitaev ladder in momentum space
[see Eq. (3)]. There are two aspects to study: first, whether the
system will be stable against the single-particle perturbation
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on the edge surface; second, whether the system is stable
against the possible interaction between Majorana fermions
due to the dipolar interaction. We will verify the first by
applying the time-reversal symmetry (TRS) on the current
system, and argue the second from existing results in similar
systems.

A. Stability with respect to disorder or inhomogeneous potential

In this paper, we concentrate on the situation when μ∗ <

2t∗
z such that the 1D Kitaev ladders of all in-plane momentum

are topological [see Fig. 3(a) and Eq. (10)]. The most general
single-particle perturbation on these unpaired MFs in the
bottom layer ( j = 1) can be expressed as Hdis = H1 + H2,
where

H1 = i
∑

k‖ �=−k′
‖

A(k‖, k′
‖)γ̃ (1)

k‖,1γ̃
(1)

k′
‖,1

,

H2 = i
∑

k‖

A(k‖,−k‖)γ̃ (1)
k‖,1γ̃

(1)
−k‖,1. (13)

Here A(k‖, k′
‖) is a general single-particle potential due to

local disorder or inhomogeneous potential Utrap(r‖) in the
in-plane (x-y) direction. To avoid confusion, we also have
defined all the unpaired MFs to be γ̃

(1)
k‖,1.

Note that these MF symbols are defined in momentum
space and therefore has slightly different properties compared
to the regular MFs defined in real space. As described in

Appendix A, the MFs in momentum space have (γ̃ (1)
k‖,1)

† =
γ̃

(1)
−k‖,1, T γ̃

(1)
k‖,1T

−1 = γ̃
(1)
−k‖,1. They satisfy the exchange prop-

erties, {γ̃ (1)
k‖,1, γ̃

(1)
k′

‖,1
} = 2δk‖,−k′

‖ . This is why we separate out

terms with k′
‖ = −k‖ in the above definition.

Starting from the H1 term, it is easy to find that the
Hermitian property of H1 leads to the following constraint:

A(k‖, k′
‖) = A(−k‖,−k′

‖)∗, (14)

because

H1 = H†
1 = −i

∑
k‖ �=−k′

‖

A(k‖, k′
‖)∗γ̃ (1)

−k′
‖,1

γ̃
(1)
−k‖,1

= i
∑

k‖ �=−k′
‖

A(k‖, k′
‖)∗γ̃ (1)

−k‖,1γ̃
(1)
−k′

‖,1

= i
∑

k‖ �=−k′
‖

A(−k‖,−k′
‖)∗γ̃ (1)

k‖,1γ̃
(1)

k′
‖,1

. (15)

On the other hand, the time-reversal symmetry (TRS) of the
system leads to

A(k‖, k′
‖) = −A(−k‖,−k′

‖)∗, (16)

because

H1 = T H1T −1

= −i
∑

k‖ �=−k′
‖

A(k‖, k′
‖)∗γ̃ (1)

−k‖,1γ̃
(1)
−k′

‖,1

= −i
∑

k‖ �=−k′
‖

A(−k‖,−k′
‖)∗γ̃ (1)

k‖,1γ̃
(1)

k′
‖,1

. (17)

One can see easily that the function A(k‖, k′
‖) = 0 for all

k′
‖ �= −k‖, because Eqs. (14) and (16) cannot be satisfied

simultaneously.
As for the remaining term, H2, the Hermitian property

requires that A(k‖,−k‖) = −A(k‖,−k‖)∗, because

H2 = H†
2 = −i

∑
k‖

A(k‖,−k‖)∗γ̃ (1)
k‖,1γ̃

(1)
−k‖,1. (18)

The TRS requires that A(k‖,−k‖) = −A(−k‖, k‖)∗, because

H2 = T H2T −1

= −i
∑

k‖

A(k‖,−k‖)∗γ̃ (1)
−k‖,1γ̃

(1)
k‖,1

= −i
∑

k‖

A(−k‖, k‖)∗γ̃ (1)
k‖,1γ̃

(1)
−k‖,1. (19)

In other words, we obtain A(k‖,−k‖) = A(−k‖, k‖). This
implies that

H2 = i
∑

k‖

A(k‖,−k‖)γ̃ (1)
k‖,1γ̃

(1)
−k‖,1

= i
∑

k‖

A(−k‖, k‖)γ̃ (1)
k‖,1γ̃

(1)
−k‖,1

= i
∑

k‖

A(k‖,−k‖)γ̃ (1)
−k‖,1γ̃

(1)
k‖,1

= i

2

∑
k‖ �=0

A(k‖,−k‖)
[
γ̃

(1)
k‖,1γ̃

(1)
−k‖,1

+γ̃
(1)
−k‖,1γ̃

(1)
k‖,1

] + iA(0, 0)γ̃ (1)
0,1 γ̃

(1)
0,1

= i
∑
k‖ �=0

A(k‖,−k‖) + iA(0, 0), (20)

which is nothing but a constant only.
Therefore, we find that any single-particle perturbation,

Hdis = H1 + H2, is actually irrelevant to the energy or wave-
function Majorana fermions. This important consequence re-
sults from the fact that all unpaired MFs in the bottom layer,
i.e., γ̃ (1)

k,1 , are transformed in the same way under time-reversal

operation, while the other type of Majorana fermion, γ̃
(2)

k,1 , is
not involved in this bottom layer at all. Therefore, the system
composed by a single type of MF should be robust against any
single-particle perturbation when the time-reversal symmetry
is considered, at least within the mean-field approximation
we consider in this paper. This important result also applies
to inhomogeneous trapping potential in the in-plane (x-y)
direction, since it can be always written in the same form as
Hdis even without a periodic boundary condition.

Finally, we emphasize that the topological properties of
the multilayer structure discussed in this paper can be also
understood as a 2D array of Kitaev chains in real space, where
the interchain tunneling makes the Majorana fermion mobile
in the (x-y) plane. In fact, Wakatsuki, Ezawa, and Nagaosa in
Ref. [20] have shown that the Majorana zero modes of their
multichain system can still exist and are of multidegeneracy
when interchain tunneling is turned on with an open boundary
condition. In other words, the zero energy flat band does not
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depend on the assumption of periodic potential, completely
consistent with results derived above. However, since our
analytic results are confirmed by investigating the equivalent
Kitaev two-leg ladders in momentum space [see Fig. 1(b)
and Eq. (2)], our approach can be easily generalized to the
thermodynamic limit in a mesoscopic system.

B. Stability with respect to the coupling between MSZMs
and Bogoliubov quasiparticles

The single-particle perturbation in Hdis discussed above
includes the coupling between MSZMs only. In principle, the
disorder potential may also couple MSZMs and Bogoliubov
quasiparticles in the bulk. From a perturbation point of view,
such coupling could be suppressed by the superfluid pairing
gap, and the only possible nontrivial effects can appear only
near the gapless ring: |k‖| = kMax.

However, we have to emphasize that the effects of such
hybridization depends not only on the energy differences
between particles, but also the occupation number in the
relevant states. We will show that the occupation number
of particles near the gapless ring at |k‖| = kMax should be
very small, and hence the coupling between MSZMs and
the Bogoliubov quasiparticles should be also irrelevant to
influence the topological properties.

In order to see this, we first calculate the in-plane oc-
cupation number of particles near |k‖| = kMax, which is the
Fermi momentum at kz = 0. Without loss of generality, the
occupation number can be easily estimated by using periodic
boundary condition. Within the standard BCS theory, the 3D
occupation number in momentum space at zero temperature is
given by n3D

k = 1
2 [1 − ξk/E (+)

k ], where E (+)
k is the Bogoliubov

excitation energy in Eq. (7). Therefore the 2D occupation
number of particles for a given in-plane momentum is given
by

n2D
k‖ ≡

∫ π/d

−π/d

dkz

2π
n3D

k = 1

2

∫ π/d

−π/d

dkz

2π

[
1 − ξk

E (+)
k

]

∼
∫ π/d

−π/d

dkz

2π

1

2

[
1 − ξk

|ξk|
]

=
∫ k0

−k0

dkz

2π
= 1

πd
cos−1

(
k2

‖/2m∗ − μ∗

2t∗
z

)
, (21)

where k0 ≡ 1
d cos−1 [(k2/2m∗ − μ∗)/2t∗

z ]. From the second
line, we have assumed the gap is small and negligible com-
pared to the chemical potential, so that a certain analytic
estimate can be derived.

It is easy to see that n2D
k‖ → 1

πd cos−1(1) = 0, when |k‖| →
kMax = √

2m∗(μ∗ + 2t∗
z ). In other words, we could reason-

ably expect that there is almost no Bogoliubov particles or
Majorana fermions occupied near the gapless ring at |k‖| =
kMax. Therefore, after considering the negligible occupation
number of particles near the gapless ring, we believe it is
reasonable to neglect the coupling between MSZMs and
Bogoliubov quasiparticles. The topological system we pro-
posed should be still stable in the thermal dynamic limit.

Finally, we note that when μ∗ > 2t∗
z , an additional gapless

ring appears at |k‖| = kMin, where the occupation number

there is still finite and like the case near |k‖| = kMax. As
a result, a certain coupling between the Majorana surface
modes and the Bogoliubov quasiparticles may be possible.
The topological property for the latter case may still exist, but
should be further investigated and is therefore not the situation
we will consider in this paper.

The same may be said of the trapping potential. If the
trapping potential is shallow so that the local-density approxi-
mation can be applied, we can treat this problem by replacing
the chemical potential μ by a position dependent form, i.e.,
μ(r‖) = μ + 1

2 m∗ω2r2
‖ , where m∗ is the effective mass of

polar molecules and ω is the trapping frequency. As a result,
we could still apply our analysis and obtain the regime for a
topological phase by |k2

‖/2m∗ − μ(r‖)| < 2t∗
z .

In other words, if only μ(r‖) < 2t∗
z , the whole system is

still well protected as we have discussed: All the possible
scattering between Bogoliubov quasiparticles in the bulk and
the Majorana zero modes appear near the gapless regime,
kMax = √

2m∗[μ(r‖) + 2tz].
However, as we have shown in Eq. (21), the occupation

number of Bogoliubov quasiparticles near the gapless regime
is also negligible.

Such a kind of inhomogeneous potential has been actually
studied for an array of 1D Kitaev chains in Ref. [20]. They
also numerically show that the zero modes could still exist
and are stable for such a case (with a finite trapping potential).
Therefore, we believe that the trapping potential should not
affect the stability of the topological phases we proposed
here, if only the local chemical potential is not too large [i.e.,
μ(r‖) = μ + 1

2 m∗ω2r2
‖ < 2t∗

z ].

C. Stability with respect to in-plane repulsive interaction

In this section, we briefly address the interaction effects
between MSZMs. We start by considering results in both
high-density and low-density regimes, where the pairing is
better defined in the real space for the former, while it is
better defined in momentum space for the latter. We will
argue that they should exhibit the same topological phase
even in the intermediate regime at least within the mean-field
approximation. Full analytic or numerical calculation beyond
the mean-field level is beyond the scope of this paper and
should be studied more carefully in the future.

Our argument starts from the high-density limit (not ad-
dressed in this paper), where the averaged interparticle dis-
tance between polar molecules in the same layer is shorter
than the interlayer spacing. Hence the horizontal (in-plane)
kinetic energy is suppressed by the strong repulsive dipolar
interaction. As a result, polar molecules in each layer can
be self-assembled to be a triangular lattice, and the relative
position of these lattice points (molecules) are mostly frozen
and aligned to each other [see Fig. 4(a) and Refs. [51,63]].

When a small amount of vacancies appears for certain
chemical potential, p-wave superfluidity appears within each
1D chain along the normal (z) direction, and the system
becomes almost equivalent to a planar array of 1D Kitaev
chains.

The topological properties therefore should be equivalent
to a 2D array of Kitaev chain with interlayer pairing, i.e.,
the BDI class (as the regular Kitaev chain) with localized
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FIG. 4. Schematic plots of polar molecules in a multilayer sys-
tem in high-density limit (a) and in low-density limit (b) respectively.
In high-density limit, strong repulsive dipolar interaction makes the
molecules form a triangular crystal in each layer. On the other
hand, in low-density limit, molecules are free-moving without fixed
relative position to each other. Therefore when interlayer attraction is
increased by reducing interlayer distance, the former can form a 2D
array of Kitaev chains with a vertical pairing between each other in
different layers, while the latter will form cross pairing between in-
plane momenta k‖ and −k‖ as in a Kitaev ladder [see also Fig. 1(b),
Eqs. (2) and (3)]. Here for simplicity, we just show the pairing
between molecules in the nearest-neighboring layers (denoted by
yellow elliptical curves) and use dashed line to demonstrate the
(schematic) paring in real space.

Majorana fermions at the edge forming a flat band as studied
in Ref. [20].

In the dilute limit (which is what we studied in this pa-
per), the intralayer dipolar repulsion is actually much weaker
compared to the in-plane kinetic energy. It is well justified
to apply Landau-Fermi-liquid theory in each 2D layer before
the interlayer pairing is introduced (see Refs. [39,53]). Such
a weak intralayer repulsion just renormalizes the effective
mass and chemical potential, and the topological properties
of such a multilayer system can be understood as a bundle
of 1D Kitaev ladder in momentum space, as we addressed
in the previous part of this paper. The resulting topological
phase also belongs to the BDI class with quantum degener-
ate Majorana surface modes in the top and bottom layer if
Eq. (10) is satisfied; see Fig. 4(b). The second-order (induced)
interaction [64] is relatively much weaker than the direction
dipole-dipole interaction in the dilute limit, and therefore we
will not consider it in our present calculation.

In the middle range of the in-plane density, however, in-
tralayer repulsion is comparable to the in-plane kinetic energy
and hence the topological properties have to be identified
beyond the single-particle (mean-field) picture. A relevant
study on the interaction effects of Majorana fermions has been

discussed [65,66]. For example, Fidkowski and Kitaev have
shown that the BDI class with Z topological invariance shall
be broken to Z8 when a short-ranged four-point interaction is
included [65,66].

But we note that in our present system the long-ranged
nature of dipolar interaction also makes the system quite
different from the short-ranged case studied by Fidkowski
and Kitaev. More specifically, we could write down the most
general mutual interaction term between four fermions in the
bottom layers to be

Hγ = 1

�

∑
k‖,i

′Uγ ({k‖,i})γ̃ (1)
k‖,1,1γ̃

(1)
k‖,2,1γ̃

(1)
k‖,3,1γ̃

(1)
k‖,4,1, (22)

where Uγ (k‖,1, . . . , k‖,4) is some complicated interaction ma-
trix element between MFs, γ̃ (1)

k‖,i,1.
∑′

k‖,i indicates a summation
of k‖,i with the conservation of total momentum, k‖,1 + · · · +
k‖,4 = 0.

In order to recover Fidkowski and Kitaev’s result for Z8

symmetry, Uγ has to be a constant, independent of the in-plane
momenta. This indicates that the bare interaction between
polar molecules has to be a short-ranged interaction in the real
space, which cannot be realistic or effective for our spinless
fermionic polar molecules. In fact, fermionic SPT phases are
not totally understood yet in 3D system, although it is argued
that there exists a bulk SPT and surface symmetry enriched
TO anomaly matching in a 3D bosonic weak SPT phase [3].
It is a very interesting and challenging subject for future
study. The multilayer structure as well as the Majorana surface
modes proposed in this paper suggest a very promising system
to investigate the many-body physics of these non-Abelian
particles.

Finally, we note that in Ref. [20] the authors also studied
the case when the interchain pairing is included. Within the
mean-field (BCS) approximation, they find that the multide-
generate Majorana zero modes are still present and stable if
the interchain pairing is of the same phase as the intrachain
pairing. These degenerate zero modes become unstable (and
hence with a finite dispersion) only when the time-reversal
symmetry is broken (i.e., the interchain pairing is of a different
phase than the intrachain pairing). Therefore, it is reasonable
to expect that the quantum degenerate Majorana surface zero
modes (in the BDI class) observed in our multilayer system
may be still stable against the in-plane repulsive interaction
between polar molecules, where the time-reversal symmetry
is still strictly preserved.

VI. EXPERIMENTAL MEASUREMENT

There have been several proposals to measure MFs. The
simplest way is by observing the long-distance correla-
tion between MFs in the two ending layers (for example,
see [67]), which should cause a short interference period
[i.e., ∝ cos(kzLd )] in momentum space (i.e., in the long-time
approximation of the time-of-flight experiments). Here Ld is
the distance between the top and bottom layers. We emphasize
that such measurement for the 1D Kitaev chain model suffers
a serious noise-to-signal ratio [67], since only “one” Majorana
mode exists at each end of the chain. Besides, the fact that
no long-ranged order can exist in 1D system also makes it
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FIG. 5. (a) The momentum distribution in 3D space n3D
k as a

function of the final position z with fixed k‖/kF = 0 for various μ∗.
(b) Integrated momentum distribution along y direction, nToF(x, z),
for time-of-flight measurement, showing a possible feature on the
interference pattern in the time-of-flight experiment. Here we con-
sider μ∗ = �

(1)
k‖ = t∗

z . The three cross sections (mx/h̄t = 0, 1, 1.5)
at different horizontal direction are shown on the right.

difficult to expect a significant signal. In our multilayer sys-
tem, however, unpaired MFs are macroscopically degenerate
near the surface layers, and therefore the experimental mea-
surement of these MSZMs becomes much more promising.

The unpaired MFs can be characterized by the nonlocal
fermionic correlations which can be detected in time-of-flight
(ToF) imaging, as illustrated in Fig. 5. We then study the
time-of-flight image for a free expansion time t , obtained by
integrating over the y direction, i.e.,

nToF(x, z) ∝
∣∣∣ω̃0

(mz

h̄t

)∣∣∣2
∫ ∞

−∞
dy n3D

mr/h̄t , (23)

where the final position r = h̄kt/m, and ω̃0(kz ) is the fourier
transform of the lowest band Wannier function. n3D

k is the
momentum distribution in 3D space,

n3D
k = n3D

k‖,kz
≡

L∑
j, j′=1

〈G|c†
k‖, jck‖, j′ |G〉 ei( j− j′ )dkz , (24)

where |G〉 is the ground-state wave function obtained by
diagonalizing the mean-field Hamiltonian in Eq. (2) with a
long-ranged pairing.

We first calculate the momentum distribution n3D
k with

fixed in-plane momentum k‖ = 0 with various chemical po-
tentials. By ramping the chemical potential, we can detect
the transition point, since the oscillations disappear if we
approach the transition point at μ∗ = 2t∗

z [see Fig. 5(a)] with
k‖/kF = 0. This numerical result agrees with Eq. (10). In
Fig. 5(b), we show the TOF signals for the case with μ∗ =
�

(1)
k‖ = t∗

z , proving that the oscillations will still be present in
the topological regime. As we can see, when the system is in
the topological regime, additional interference fringes emerge
due to the long-ranged correlation between macroscopically
degenerate Majorana surface modes in the top and bottom
layers. The contrast of such interference to its average density
is larger when away from the center, making it possible to be
measured in the present experiments.

VII. CONCLUSION

In this paper, we propose that a topological state can be
prepared and observed in a stack of 2D layers with fermionic
polar molecules polarized to the normal direction. The asso-
ciated quantum degenerate Majorana surface modes appear
in the surface layers due to the 3D p-wave superfluidity,
confirmed by the winding number, entanglement spectrum,
and entanglement entropy numerics. We also show the pa-
rameter regime to find MFs in the current experiments. Our
work paves the way for future investigation of the many-
body physics with non-Abelian statistics under time-reversal
symmetry.
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APPENDIX A: EXACT SOLUTION FOR A SPECIAL CASE
OF KITAEV LADDER IN MOMENTUM SPACE

In this section, we will derive the exact solution for
a special case of Kitaev ladder in momentum space, i.e.,
μ∗ − k2

‖/2m∗ = 0 and �
(1)
k‖ = t∗

z in Eq. (2). All longer-ranged
pairing is assumed to be zero for simplicity.

1. Majorana fermions in momentum space

To see how MFs appear in H ladd
k‖ , we first note that the def-

inition of Majorana fermions (MFs) in real space is different
from those in momentum space. For a general fermionic field
operator C(x) at the position x, its relation with MF operator
	(x) is the following:

C(x) = 1
2 [	1(x) + i	2(x)], C†(x) = 1

2 [	1(x) − i	2(x)],
(A1)
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and hence

	1(x) = C(x) + C†(x), 	2(x) = −i[C(x) − C†(x)]. (A2)

Therefore, by doing Fourier transformation, the Majorana
operators in momentum space can be given:

	1,k =
∫

	1(x)e−ikxdx =
∫

C(x)e−ikxdx +
∫

C†(x)e−ikxdx

= Ck + C†
−k, (A3)

	2,k = −i[Ck − C†
−k]. (A4)

We note that now the MF operators 	1/2,k are composed by the
Dirac fermionic operator at momentum k and its antiparticles
in the momentum −k.

From the above definition, the Hermitian and time-reversal
operation of the Majorana fermions in momentum space
become

	
†
1,k = C†

k + C−k = 	1,−k, (A5)

	
†
2,k = i[C†

k − C−k] = 	2,−k, (A6)

T 	1,kT −1 = C†
−k + Ck = 	1,−k, (A7)

T 	2,kT −1 = i[C−k − C†
k ] = −	2,−k, (A8)

where T is the time-reversal operator. We have used the fact
that T C(x)T −1 = C(x) and T CkT −1 = C−k to preserve the
time-reversal symmetry.

2. The Hamiltonian in Majorana fermion basis

Using similar notation, we can define MFs in our present
case as follows:

ck‖, j = 1
2

[
γ

(1)
k‖, j + i γ

(2)
k‖, j

]
, c†

k‖, j = 1
2

[
γ

(1)
−k‖, j − i γ

(2)
−k‖, j

]
, c−k‖, j = 1

2

[
γ

(1)
−k‖, j + i γ

(2)
−k‖, j

]
, c†

−k‖, j = 1
2

[
γ

(1)
k‖, j − i γ

(2)
k‖, j

]
(A9)

Since we are considering a special case, �k‖ = t∗
z and k2

‖/2m∗ = μ∗, the Hamiltonian in Eq. (2) can then be written as (here

we consider nearest pairing �k‖ ≡ �
(1)
k‖ only and assume longer-ranged pairing, �

( j)
k‖ = 0 for j > 1)

H ladd
k‖ = −tz

L−1∑
j=1

[c†
k‖, jck‖, j+1 + c†

−k‖, jc−k‖, j+1 + c†
k‖, jc

†
−k‖, j+1 + c†

−k‖, jc
†
k‖, j+1

+ c†
k‖, j+1ck‖, j + c†

−k‖, j+1c−k‖, j + c−k‖, j+1ck‖, j + ck‖, j+1c−k‖, j, ], (A10)

where L is the number of site or layers along the z direction.
After some straightforward algebra, the first four terms in the [ ] of the Hamiltonian are given by

1

4

(
γ

(1)
−k‖, j − i γ

(2)
−k‖, j

)(
γ

(1)
k‖, j+1 + i γ

(2)
k‖, j+1

) + 1

4

(
γ

(1)
k‖, j − i γ

(2)
k‖, j

)(
γ

(1)
−k‖, j+1 + i γ

(2)
−k‖, j+1

)
+ 1

4

(
γ

(1)
−k‖, j − i γ

(2)
−k‖, j

)(
γ

(1)
k‖, j+1 − i γ

(2)
k‖, j+1

) + 1

4

(
γ

(1)
k‖, j − i γ

(2)
k‖, j

)(
γ

(1)
−k‖, j+1 − i γ

(2)
−k‖, j+1

)
= 1

4

(
γ

(1)
−k‖, jγ

(1)
k‖, j+1 + γ

(2)
−k‖, jγ

(2)
k‖, j+1

) + i

4

(
γ

(1)
−k‖, jγ

(2)
k‖, j+1 − γ

(2)
−k‖, jγ

(1)
k‖, j+1

)
+1

4

(
γ

(1)
k‖, jγ

(1)
−k‖, j+1 + γ

(2)
k‖, jγ

(2)
−k‖, j+1

) + i

4

(
γ

(1)
k‖, jγ

(2)
−k‖, j+1 − γ

(2)
k‖, jγ

(1)
−k‖, j+1

)
+ 1

4

(
γ

(1)
−k‖, jγ

(1)
k‖, j+1 − γ

(2)
−k‖, jγ

(2)
k‖, j+1

) + −i

4

(
γ

(1)
−k‖, jγ

(2)
k‖, j+1 + γ

(2)
−k‖, jγ

(1)
k‖, j+1

)
+ 1

4

(
γ

(1)
k‖, jγ

(1)
−k‖, j+1 − γ

(2)
k‖, jγ

(2)
−k‖, j+1

) + −i

4

(
γ

(1)
k‖, jγ

(2)
−k‖, j+1 + γ

(2)
k‖, jγ

(1)
−k‖, j+1

)
. (A11)

Similarly, the last four terms in the [ ] are given by

1

4

(
γ

(1)
−k‖, j+1 − i γ

(2)
−k‖, j+1

)(
γ

(1)
k‖, j + i γ

(2)
k‖, j

) + 1

4

(
γ

(1)
k‖, j+1 − i γ

(2)
k‖, j+1

)(
γ

(1)
−k‖, j + i γ

(2)
−k‖, j

)
+ 1

4

(
γ

(1)
−k‖, j+1 + i γ

(2)
−k‖, j+1

)(
γ

(1)
k‖, j + i γ

(2)
k‖, j

) + 1

4

(
γ

(1)
k‖, j+1 + i γ

(2)
k‖, j+1

)(
γ

(1)
−k‖, j + i γ

(2)
−k‖, j

)
= 1

4

(
γ

(1)
−k‖, j+1γ

(1)
k‖, j + γ

(2)
−k‖, j+1γ

(2)
k‖, j

) + i

4

(
γ

(1)
−k‖, j+1γ

(2)
k‖, j − γ

(2)
−k‖, j+1γ

(1)
k‖, j

)
+1

4

(
γ

(1)
k‖, j+1γ

(1)
−k‖, j + γ

(2)
k‖, j+1γ

(2)
−k‖, j

) + i

4

(
γ

(1)
k‖, j+1γ

(2)
−k‖, j − γ

(2)
k‖, j+1γ

(1)
−k‖, j

)
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+ 1

4

(
γ

(1)
−k‖, j+1γ

(1)
k‖, j − γ

(2)
−k‖, j+1γ

(2)
k‖, j

) + i

4

(
γ

(1)
−k‖, j+1γ

(2)
k‖, j + γ

(2)
−k‖, j+1γ

(1)
k‖, j

)
+ 1

4

(
γ

(1)
k‖, j+1γ

(1)
−k‖, j − γ

(2)
k‖, j+1γ

(2)
−k‖, j

) + i

4

(
γ

(1)
k‖, j+1γ

(2)
−k‖, j + γ

(2)
k‖, j+1γ

(1)
−k‖, j

)
. (A12)

Now using the anticommutation relations, {γ (a)
j,k‖ , γ

(b)
j′,k′

‖
} = 2δ j, j′δa,bδk‖,−k′

‖ (a, b = 1, 2), we can obtain the Hamiltonian with

special case �k‖ = tz,

H ladd
k‖ = itz

L−1∑
j=1

(
γ

(2)
k‖, jγ

(1)
−k‖, j+1 + γ

(2)
−k‖, jγ

(1)
k‖, j+1

)
. (A13)

APPENDIX B: BDI CLASS AND WINDING NUMBER

In order to specify the TO, we have to check the symmetry first:

T H (k)T −1 = H (−k), CH (k)C−1 = −H (−k),SH (k)S−1 = −H (k). (B1)

Where T , C, and S are the antiunitary time-reversal symmetry (complex conjugate for the spinless model), particle-hole
symmetry, and chiral symmetry (product of T and C). It belongs to the BDI class and the topological phase is characterized
by the Z index. This topological state is protected by chiral symmetry.

The BdG Hamiltonian can be unitary transformed to the off-diagonal form,

HBdG = i

4

∑
k

	
†
k

[
0 vk

v
†
k 0

]
	k,

where μ∗
k‖ = μ∗ + k2

‖
2m∗ , vk = −μ∗

k‖ − 2t∗
z cos(kzd ) − 2i� sin(kzd ) and vk = R(k)eiθ (k). Then, the corresponding Q matrix can

be given,

Qk =
[

0 qk

q†
k 0

]
,

where qk = vk
|vk| = eiθk . The relevant space is the U (N ) unitary group. qk is a mapping from the z direction BZ to U (N ), which

is topologically classified by the first homotopy group, �1[U (N )] = Z, characterized by the winding number W ; see Ref. [2].
The winding number can be calculated as follows:

Wk‖ ≡
∫ π/d

−π/d

dkz

2π
∂kzθk‖,kz =

∫ π/d

−π/d

dkz

2π

∂kz [− cos θk‖,kz ]

sin θk‖,kz

=
∫ π/d

−π/d

dkz

−2π

∂kz{−[μk‖ + 2tz cos(kzd )]/R(k)}
−[2�k‖ sin(kzd )]

/R(k)

= 1

4π

∫ π

−π

dkz
1

�k‖ sin kz

[
2tz sin kz + 2

[μk‖ + 2tz cos kz]

R(k)2

[
2�2

k‖ sin kz cos kz − tz sin kz(μk‖ + 2tz cos kz )
]]

= 1

2π�k‖

∫ π

−π

dkz

4�2
k‖tz + 2�2

k‖μk‖ cos kz

[μk‖ + 2tz cos kz]2 + 4�2
k‖ sin2 kz

. (B2)

Changing the variables z = eikzd and letting J1 = tz+�k‖
μk‖

, J2 = tz−�k‖
μk‖

, and J± = J1 ± J2,

Wk‖ = 1

2π i

∮
dz

z
�k‖

4tz + μk‖
(
z + 1

z

)
[
μk‖ + tz

(
z + 1

z

)]2 − �2
k‖

(
z − 1

z

)2

= �k‖

2π i

∮
dz

μk‖z
2 + 4tzz + μk‖

[(tz + �k‖ )z2 + μk‖z + (tz − �k‖ )][(tz − �k‖ )z2 + μk‖z + (tz + �k‖ )]

= J−
2

∮
dz

2π i

z2 + 2J+z + 1

[J1z2 + z + J2][J2z2 + z + J1]

= J−
2

∮
dz

2π i

z2 + 2J+z + 1

J1J2[(z − Z1)(z − Z2)(z − Z3)(z − Z4)]
. (B3)

Four poles of the function are Z1,2 = −1±√
1−4J1J2

2J1
and Z3,4 = −1±√

1−4J1J2

2J2
respectively.
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It can be shown that Z3,4 = 1/Z1,2. By Cauchy’s residue
theorem, the winding number and the phase boundary can be
determined. There are three different situations:

A : If |Z1| < 1 and |Z2| < 1, �⇒ W = 1, (B4)

B : If |Z3| < 1 and |Z4| < 1, �⇒ W = −1, (B5)

C : If |Z1| < 1 and |Z3| < 1, or |Z2| < 1 and |Z4| < 1,

�⇒ W = 0. (B6)

They are three different gapped phases, where conditions
A and B correspond to two different nontrivial topolog-

ical phases. The corresponding Q matrix elements wind
around the origin of the complex plane counterclockwise and
clockwise respectively. Phase boundaries are determined by
|Z1,2| = |Z3,4| = 1, and hence μ∗

k‖ = ±2tz, which is consistent
with the condition for gap closing. Therefore, we can solve the
topological nontrivial conditions for A and B situations, and
obtain

|μ∗
k‖ | = | − μ∗ +

k2
k‖

2m∗ | < 2t∗
z . (B7)
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