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Quantum dimer models emerging from large-spin ultracold atoms
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We propose an experimental protocol for using cold atoms to create and probe quantum dimer models,
thereby exploring the Pauling-Anderson vision of a macroscopic collection of resonating bonds. This process
can allow the study of exotic crystalline phases, fractionalization, topological spin liquids, and the relationship
between resonating dimers and superconductivity subjects which have been challenging to address in solid-state
experiments. Our key technical development is considering the action of an off-resonant photoassociation laser
on large spin atoms localized at the sites of a deep optical lattice. The resulting superexchange interaction favors
nearest-neighbor singlets. We derive an effective Hamiltonian in terms of these dimer degrees of freedom, finding
that it is similar to well-known quantum dimer models, which boast a rich variety of valence bond crystal and
spin liquid phases. We numerically study the ground state, explain how to tune the parameters, and develop a
protocol to directly measure the dimers and their resonating patterns.

DOI: 10.1103/PhysRevA.99.043623

I. INTRODUCTION

Quantum dimer models—which describe the dynamics of
close-packed hard-core dimers on a lattice—have received
continued attention since their original proposal by Rokhsar
and Kivelson in 1988 [1]. Several factors have motivated
these studies, including connections to Pauling and Anderson
resonating valence bonds [2,3], Anderson’s theory of high-Tc

superconductivity [4,5], the appearance of quantum critical
points [6–8], topological order and fractionalized excitations
[9–13], their mapping to lattice gauge theories [14–16], and
their potential applications in quantum computation [17,18].
This rich variety of physics emerges due to the interplay
between quantum fluctuations, hard-core constraints, and the
lattice geometry of these systems. However, there are rela-
tively few experimental realizations of dimer models. In this
article, we show that experiments using an atomic gas trapped
in an optical lattice can realize and probe dramatic dimer
resonances in a range of quantum dimer models.

The spin physics emerging from atoms in optical lattices
can be qualitatively different from those in electron systems.
The atoms typically have spin greater than 1/2, and the natural
exchange processes lead to couplings which are more compli-
cated than a simple Heisenberg model. As we demonstrate,
these processes can be tuned to favor singlet dimers.

Our technique works for both fermionic and bosonic atoms
with vanishing electronic orbital angular momentum (l = 0)
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and relatively large hyperfine spin f , but with relatively weak
dipole-dipole interactions. Alkalis such as 7Li or 23Na are
potential candidates. By tuning the lattice depth and trapping
potential one drives the system into a Mott insulating state
with one atom per site [19]—effectively yielding immobile
spins on each site which interact via a virtual superexchange
process [20]. We propose manipulating these superexchange
interactions by optically coupling pairs of atoms to an ex-
cited molecular state which has L = 1 and S = 0. When
tuned sufficiently off-resonance, this optical coupling favors
the formation of nearest-neighbor hyperfine spin singlets,
which we refer to as dimers. In the large- f limit the dimers
are monogamous and orthogonal, e.g., a state where site i
forms a singlet with site j is orthogonal to one in which i
forms a singlet with k �= j. The resulting theory has the form
of a quantum dimer model and, depending on lattice geometry
and scattering length parameters, has the potential to realize
dimer crystals and dimer liquid (resonating valence bond)
ground states. At smaller f the dimers are not orthogonal,
but nonetheless the dimer configurations span the low-energy
subspace. We show how to work with this nonorthogonal
basis, and derive an effective dimer model.

We numerically find the ground state of our system for
small lattices. When f is large we find strong dimer crystal
correlations indicative of the columnar dimer state on the
square lattice and the

√
12 × √

12 plaquette phase on the
triangular lattice [21,22] (see Sec. V). At small f the results
are more ambiguous, and may point towards a spin liquid
or a translationally invariant symmetry broken state (such as
the nematic state predicted in Ref. [23]). We explain how
to further tune parameters to explore phase space—a useful
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requirement for the search for a spin liquid. We additionally
propose a protocol to detect the dimer correlations which are
central to many of these states.

To further characterize our model, we perform a large f
expansion, and find that as f → ∞ it reduces to a special case
of the Rokhsar and Kivelson model [1]. On the 2D square and
3D cubic lattice, there is some contention about the ground
states of that model [6,22,24], an issue which an experimental
realization of our proposal could resolve.

There have been previous proposals to observe related
physics in cold atom experiments, including crystallized
dimer phases [25–29], resonating plaquette phases [30–32],
and dimer liquid phases [23,33–36]—all hallmarks of the
quantum dimer model. However, these studies were generally
based on different mechanisms, and did not exploit mappings
of their systems onto quantum dimer models. Additionally,
Ising models can be implemented in cold atoms, and such
models may be mapped onto dimer models [37].

This paper is organized as follows. In Sec. II we present
the system we study, and its microscopic Hamiltonian. In
Sec. III we describe our proposal to tune the interactions. In
Sec. IV we present the effective model describing our system.
In Sec. V we numerically find the eigenstates of this model,
and describe their properties. In Sec. VI we explore the large f
limit, mapping our system onto more traditional dimer models
in Sec. VI A, showing how to tune parameters in Sec. VI C,
and describing the phases of this model in Sec. VI B. In
Sec. VII we propose a method to observe these phases.

II. MICROSCOPIC MODEL

A. Setup

To produce a quantum dimer model, we begin with a
tight-binding Hamiltonian for atoms in an optical lattice,
which includes spin-dependent interactions. There will be a
hopping term, where an atom with hyperfine spin projection
m moves between neighboring sites. There will also be an
on-site two-particle interaction term. In the presence of ro-
tational symmetry, these interactions can be decomposed into
different angular momenta channels F [38]. Thus, in complete
generality we write

Ĥ = −J
∑
〈i j〉

f∑
m=− f

b̂i,mb̂ j,m +
∑

F

UF

F∑
M=−F

ÂF,M†
ii ÂF,M

ii , (1)

where i runs over all lattice sites, and 〈i j〉 runs over all
distinct nearest-neighbor pairs. Due to particle statistics, we
sum over only even values of F , up to a maximum value F =
2 f for bosons, and F = 2 f − 1 for fermions. The b̂†

i,m(b̂i,m)
operators create (annihilate) an atom at lattice site i with
hyperfine spin f and spin projection m, while the ÂF,M†

i j (ÂF,M
i j )

operators create (annihilate) a pair of atoms on sites i and j
in total angular momentum state F with total projection M.
These operators may be defined via the relation

ÂFM†
i j = 1√

2

∑
m

CF,M
m,M−mb̂i,mb̂i,M−m, when i = j,

=
∑

m

CF,M
m,M−mb̂i,mb̂ j,M−m, when i �= j. (2)

Here, CF,M
m,m′ = C f + f →F

mm′ = 〈 f , m; f , m′|F, M〉 are Clebsch-

Gordan coefficients, and the factor of
√

2 is chosen so that
〈ÂFM

i j ÂFM†
i j 〉 = 1 in the vacuum state. The kinetic energy term

in Eq. (1)—parameterized by the positive constant J—models
the tunneling of atoms between neighboring lattice sites. The
parameters UF encode the local spin-dependent interactions.
While typically one expects that the scattering in different spin
channels to be of similar magnitude, in Sec. III we argue that
one can engineer an optical Feshbach resonance so that the
interactions are significantly weaker in the hyperfine singlet
channel than all others: UF �=0 	 U0 > 0.

We refer readers to the review article by Stamper-Kurn and
Ueda [38], for further background on Eq. (1).

B. Effective nearest-neighbor interaction

In the limit where the interactions are strong compared to
the hopping (UF 	 J), and there is exactly one particle per
site, this system should form a Mott Insulator. Super-exchange
will lead to a magnetic coupling between neighboring sites.
In particular, we let P be the projector into the space with
one particle per site, and define H0 = PHP, � = (1 − P)HP,
�† = PH (1 − P), and H1 = (1 − P)H (1 − P). Here H0 = 0,
and � ∝ J is considered small. We consider an eigenstate ψ ,
with ψ0 = Pψ , and φ = (1 − P)ψ . The Schrodinger equa-
tion Hψ = Eψ can be projected into the space with one
particle per site, and into the complementary space to give
H0ψ0 + �†φ = Eψ0 and H1φ + �ψ0 = Eφ. To lowest order
in J , the second equation yields φ = −H−1

1 �ψ0 + O(J ), and
hence (H0 − �†H−1

1 �)ψ0 = Eψ0 + O(J3), which yields the
effective Hamiltonian Heff = H0 − �†H−1�, or explicitly

Ĥeff =
∑

F

−2J2

UF

∑
〈i j〉

ÂF†
i j ÂF

i j . (3)

Under the condition UF �=0 	 U0 > 0, we can neglect all but
the F = 0 term to find

Ĥeff ≈ −2J2

U0

∑
〈i j〉

Â00†
i j Â00

i j . (4)

On bipartite lattices this model is an example of a SU(N )
antiferromagnet model [39,40]. We show in Sec. IV that our
model [Eq. (4)] can be mapped onto a dimer model.

For typical parameters (lattice depth Vx = Vy = 10ER,Vz =
30ER, wavelength λ = 1064 nm, and scattering length a0 =
20 Bohr), the superexchange coefficient is 2J2

U0
= 200 Hz. This

scale is large compared to neglected physics such as off-site
dipole interactions (∼0.5 Hz for alkali atoms). One may also
worry about tensor light shifts from the lattice or photoassoci-
ation beams. These will be minimal if the laser detunings are
larger than hyperfine splitting [41]. If any residual light shifts
remain, they can be canceled by adding additional fields (e.g.,
as in Ref. [42]).

III. TUNING THE INTERACTIONS VIA AN OPTICAL
FESHBACH RESONANCE

We propose inducing an optical Feshbach resonance
[43–66] between pairs of atoms by shining a laser tuned
near a transition to an excited molecular state, labeled by
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orbital angular momentum L = 1, electronic spin S = 0, and
total electronic angular momentum Ja = 1. These are good
quantum numbers in molecules formed from lighter elements
such as Lithium or Sodium, where spin-orbit coupling is
relatively weak [Hund’s case (b)] [67]. For example, the
laser can be tuned to couple the atoms to 1�u/g molecular
states, as in Refs. [49,60]. The nuclear angular momentum
is not important as long as the detuning of the laser is large
compared to the hyperfine splitting. In the cold collision
limit the rotational angular momentum of the nuclei vanishes,
R = 0. As in Ref. [68], second-order perturbation theory then
gives a contribution to UF = U bg

F + U Fesh
F of

U Fesh
F = αF

�2

δ + i
/2
, (5)

with U bg
F encoding the background scattering, including any

influence of on-site dipole-dipole interactions. The matrix
element �2 is proportional to the intensity of the laser. The
detuning |δ| must be taken much larger than the linewidth 
,
so molecular decay can be neglected [51]. This limit is reason-
able, as in typical experiments δ ∼ GHz and 
 ∼ 100 MHz
[51]. The line must be chosen judiciously so that unwanted
transitions are avoided.

The coefficient αF is the square of the overlap between the
electronic spin singlet (S = 0) and the hyperfine state with
total spin F [69]: It is related to the Wigner 9 j symbols. In
Appendix A we show how to calculate this matrix element for
the most relevant case of alkali atoms, which have s = 1/2
and nuclear spin i. We find

αF = (2i + 1)(2 f + 1) − F (F + 1)

2(2i + 1)2
. (6)

Assuming that U bg
F depends only weakly on F , one can

then choose the laser intensity and detuning so that UF �=0 	
U0 	 |


δ
U Fesh

F |, which then yields Eq. (4). For Lithium, the
laser intensity required to achieve this limit is only a few
W/cm2.

IV. FROM SINGLET COVERINGS TO DIMER MODELS

The Hamiltonian in Eq. (4) appears to count nearest-
neighbor singlet bonds. One might therefore expect that the
ground state would be formed by creating some pattern of
nearest neighbor singlets, which we will describe as a “singlet
covering.” For example, the first image in Fig. 1 illustrates
one possible singlet covering of 6 sites that are laid out in a
rectangle: |a〉 = Â†

1,2Â†
4,5Â†

3,6|0〉, where |0〉 is the vacuum state
with no particles. The label a = {(1, 2), (4, 5), (3, 6)} is the
set of all bonds. In general,

|a〉 =
∏

(i, j)∈a

Â†
i j |0〉. (7)

This definition works even for coverings which involve
longer-range bonds (such as the third image in Fig. 1). The
operator Â†

i, j adds exactly one particle each to sites i and j.
We are working in the sector with exactly one particle per
site, and therefore we require each site to appear in one and
only one of the bonds. Furthermore, by the standard rules of

FIG. 1. Examples of singlet cover states. The numbers label the
lattice sites, while lines represent a spin singlet between the atoms
on those sites. In this example, |a〉 = Â†

1,2Â†
4,5Â†

3,6|0〉. The notation
|(i, j) : a〉, introduced in the main text, denotes a state where sites i
and j are paired in a singlet, the original partners of i and j in |a〉
are paired in another singlet, and all the other bonds in |a〉 are left
unchanged.

adding angular momentum, a particle cannot be in a singlet
bond with more than one other particle.

As explained by Rokhsar and Kivelson [1] in the context
of spin-1/2 electrons, the singlet coverings are not eigenstates
of the Hamiltonian, but they are closed under the action
of Eq. (4), and the ground state is a superposition of such
coverings. In particular, a single term in the Hamiltonian maps
one single covering into another:

Âi j + Â†
i j |a〉 =

{|a〉, for (i, j) ∈ a

(2 f + 1)−1|(i, j) : a〉, for (i, j) /∈ a,
(8)

where the notation |(i, j) : a〉 denotes a state where sites i
and j are paired together into a singlet, the original partners
of i and j in |a〉 are paired together into a singlet, and all
the other bonds in |a〉 are left unchanged. An example of a
singlet covering |a〉 and a few of the related states |(i, j) : a〉
are illustrated in Fig. 1. Note, the labeling is not unique: One
goes from |a〉 in Fig. 1 to |(1, 4) : a〉 = |(2, 5) : a〉 by either
acting with Â†

14Â†
14 or Â†

25Â†
25. As illustrated by the right-most

figure, the nearest-neighbor bond operators acting on a state
with nearest-neighbor bonds can generate configurations with
longer-ranged bonds.

Thus, the Hamiltonian is a map on the space of singlet
coverings. Somewhat complicating the analysis, however, is
the fact that the singlet coverings are not orthogonal. In
fact, they are not even linearly independent. Nonetheless, as
detailed below, it is straightforward to work with these states.
In Appendix B we review the more traditional approach of
orthogonalizing the states, which is somewhat more involved.
Working with either basis gives equivalent results.

We consider a general state |ψ〉 = ∑
a ψa|a〉. Equation (8)

allows us to write

Ĥ |a〉 =
∑

b

|b〉Hba. (9)

Clearly, if
∑

a Hbaψa = Eψb, then Ĥ |ψ〉 = E |ψ〉, and the
eigenstates of the matrix Hba either yield eigenstates of Ĥ ,
or are null-vectors. The latter have eigenvalue 0. We will
solely be concerned with states with negative energy, and
hence will not encounter any of these null-states. Because
of the nonorthogonality, Hba is not a Hermitian matrix – but
it is self-adjoint with respect to the natural inner product:
〈φ|ψ〉 = ∑

ab φ∗
aψbSab, with Sab = 〈a|b〉.
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In Sec. V, we consider a small system, and enumerate all
dimer coverings. Although exponentially large in the system
size, this is a much smaller Hilbert space than a spin model on
the same lattice. We then numerically calculate Hab, and find
its eigenstates.

If we formally set f = ∞, then the dimer coverings are
orthogonal, and become eigenstates of the Hamiltonian. The
energies of these states are negative, and proportional to
the number of nearest neighbor dimers. Thus the ground
state manifold is highly degenerate, consisting of all nearest-
neighbor coverings. In Sec. VI we derive a systematic ex-
pansion in 1/(2 f + 1), and find that the leading terms break
this degeneracy and stabilize various dimer crystal or pla-
quette phases. The structure of this expansion corresponds to
Rokhsar and Kivelson’s model [1].

In the limit of small f , we anticipate the dimer crystal order
to disappear. In particular, Rutkowski and Lawler [23], carried
out a variational study of the Hamiltonian in Eq. (3), and
argued that for f < 3 a translationally invarient nematically
ordered state will be found. Another, even more exciting
possibility is a spin-liquid—which could either occur as an
intermediate phase, or at the phase boundary.

Related physics is seen in studies of anisotropic 2D lat-
tices of coupled spin-1 objects [70,71]. In those studies, the
researchers finds regions with nematic order, and others with
dimer crystal order. Surprisingly, there appears to be a direct
second order phase transition between these phases: Within
the Landau paradigm such a direct transition would require
fine-tuning. Moreover, there is evidence that this transition
displays “deconfined quantum criticality,” where the transition
is described by an emergent gauge theory, and is a spin
liquid [7]. By analogy one might expect that our model would
display a similar critical point as f is changed. We have,
however, not yet verified this conjecture.

V. NUMERICAL RESULTS

We numerically diagonalize the matrix Hab in Eq. (9).
To visualize the ground state, we calculate the correlation
functions Ckl

i j = 〈Â†
i j Â

†
i j Â

†
kl Âkl〉. As we argue in Sec. VII this

is an experimental observable. It corresponds to the proba-
bility of simultaneously having a dimer on bonds (i, j) and
(k, l ). In a state |a〉 consisting of a single dimer covering,
the expectation value 〈a|Â†

i j Â
†
i j |a〉 is equal to 1 if (i, j) ∈ a

and 1/(2 f + 1)2 otherwise. Similarly, 〈a|Â†
i j Âi j Â

†
kl Â

|
kla〉 is

equal to 1 if both (i, j) ∈ a and (k, l ) ∈ a, and is otherwise
suppressed by factors of 1/(2 f + 1)2.

Figure 2 shows the calculated correlations between a hor-
izontal bond (i, j) and a bond (k, l ) in the ground state on
a square lattice for two different values of f , where the
bond (i, j) is fixed in the lower left corner, and the bond
(k, l ) is varied. The fixed bond is colored red, while the
other is colored based upon the strength of the correlations.
A distinctive “ladder” pattern can be observed at f = 100.
This bond configuration is characteristic of the “columnar
state.” Our large f expansion in Sec. VI indeed confirms
that the columnar state is expected to be the ground state at
large f . In a finite size sample, the idealized columnar state
is a quantum superposition of four symmetry related dimer

FIG. 2. Dimer-dimer correlations 〈Â†
i j Âi j Â

†
kl Âkl〉 on a square

lattice with periodic boundary conditions, for (a) f = 100 and
(b) f = 3. The reference dimer (i, j) is the fat red bond in the lower
left corner. The thickness of the lines is proportional to the strength
of correlation, which is also indicated by color.

crystals, as shown in Fig. 3. Within this cartoon, and taking
f → ∞, all correlations Ckl

i j = 〈Â†
i j Âi j Â

†
kl Âkl〉 will be either

0 or 0.25, depending on the two bonds (i, j) and (k, l ) are
both found in the same configuration. The reference value
should be Ci j

i j = 0.25. The correlations in Fig. 2(a) share this
same pattern, but the contrast is somewhat weaker than in the
idealized picture. Such “quantum fluctuations” are due to the
fact that the quantum state has weight on configurations other
than those given by this cartoon.

For f = 3 [Fig. 2(b)], the correlations are somewhat more
ambiguous. The pattern includes short-range columnar order,
but it is unclear if there is long-range order.

Figure 4 shows the correlations on a triangular lattice for
the same two values of f . For this lattice, we anticipate
the ground state to be the

√
12 × √

12 phase [21], and so
we take our system to have the shape of a unit cell in the√

12 × √
12 phase. As illustrated in Fig. 5(b), the expected

unit cell consists of 12 sites, which resonate between two
plaquette configurations. Figure 5(a) further illustrates that in
each plaquette the spins are expected to resonate between two
different dimer configurations. The correlations correspond-
ing to this ansatz are shown in Figs. 5(c) and 5(d), for two
different reference bonds. The thicker (blue) bonds in the
idealized model have C = 0.25, while thinner (green) bonds
have C = 0.125, as labeled. The interpretation is that when
one expands out the superposition in Fig. 5(b), 1/4 of the
terms will simultaneously have bonds at a given red and blue

FIG. 3. Cartoon of the idealized columnar state, which is a
superposition of four symmetry related ladder configurations. Light
gray lines either represent bonds extending to sites beyond those
shown, or to bonds that wrap around periodic boundaries.
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FIG. 4. Dimer-dimer correlations 〈Â†
i j Âi j Â

†
kl Âkl〉 on a triangular

lattice for (a) f = 100 and (b) f = 3. The reference dimer (i, j) is the
fat red bond in the lower left corner, while (k, l ) is the bond located
at the position of the line. The thickness of the lines is proportional
to the strength of the correlation, which is also indicated by the color.

position, and 1/8 of the terms will simultaneously have bonds
at a given red and green position. The red bond is thicker
in Figs. 5(d) than 5(c), as it appears in more terms of the
superposition.

For large f , the pattern of bonds in Fig. 4 are nearly
identical to what one expects from the

√
12 × √

12 phase.
The deviations are of comparable size to those seen in the
square lattice. The f = 3 pattern shares some of the same
symmetries, but one observes significant differences, which
can be interpreted as spatial broadening. For example, in the
lower image of Fig. 4, the central three bonds have relatively
substantial weight, while no such weight is found in the
cartoon of the

√
12 × √

12 phase. Similar discrepancies were
seen in the numerical studies of the models in [21]. Since our
exact diagonalization approach is only able to capture a single
unit cell, we cannot say anything about long-range order from
this calculation.

We also use these numerical results to investigate the
stability of our system against small perturbations, such as off-
site dipole-dipole interactions and magnetic field noise. Using
parameters appropriate for Lithium, we find that the amplitude
for off-site dipole interactions to create an excitation is only
∼0.008 Hz, which is small compared to the lowest energy
plaquette-flip excitation ∼0.9J2/U0 ∼ 90 Hz. Our system is
however sensitive to small perturbations in the magnetic field,
which will break dimers to align spins in its direction. In
order to remain in the ground state, the magnetic field in the
experiment should be less than 30 μG.

FIG. 5. Cartoons of bond patterns in
√

12 × √
12 dimer crystal

phase on triangular lattice. (a) Each shaded rhombus represents a
quantum superposition of two bond patterns. (b) The

√
12 × √

12
phase is idealized as a quantum superposition of two patterns of
resonating bonds. This cartoon corresponds to a variational wave
function from which one can calculate the bond correlations Ckl

i j =
〈Â†

i j Âi j Â
†
kl Âkl〉. In (c) and (d), we take the lower left (fat red) bond as

the reference (i, j).

VI. LARGE f LIMIT

A. Mapping onto the Rokhsar-Kivelson model

We now consider the large f limit and show that our model
maps onto the classic Rokhsar-Kivelson dimer model.

For notational convenience it is useful to introduce a fic-
titious Hilbert space with orthonormal basis states labeled by
the singlet coverings |ã〉. This allows us to use the familiar
language of bras and kets in manipulating Hab. For example,
we write H̃ = ∑

ab Hab|ã〉〈b̃|. An eigenstate |ψ̃〉 of H̃ can
be mapped into the physical space via |ψ〉 = P̂|ψ̃〉, where
P̂ = ∑

a |a〉〈ã|. All eigenvalues of H̃ are also eigenvalues
of H , with the caveat that zero energy eigenvectors may be
unphysical as quantum states.

The diagonal elements of H̃ , Haa = (−2J2/U0)Na count
the number of nearest-neighbor singlets in |a〉. The low-
energy space is then spanned by nearest neighbor singlet cov-
erings. We will elimate the other modes to derive an effective
Hamiltonian which acts only in this low-energy space. The
key point is that the off-diagonal matrix elements are of order
(2 f + 1)−1 and are small in the limit f → ∞.

The leading order term in the effective Hamiltonian comes
from the parts of Ĥ which directly take one between nearest-
neighbor singlet coverings. For example, the Â†

14Â14 or Â†
25Â25

terms acting on the state |a〉 in Fig. 1. Terms of this
form take two parallel vertical nearest-neighbor bonds, and
replaces them with horizontal bonds (or vice versa), and
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FIG. 6. Illustration of second order process which takes one out
of the space of nearest-neighbor singlet coverings, then back. At
second order these fall into two classes: (a) cyclic process that return
the system to original state and (b) six-site ring exchange processes.

can be represented as H̃0 = −t (|=̃〉〈�̃| + |�̃〉〈=̃|) with t =
(2J2/U0)[2/(2 f + 1)]. The factor of 2 comes from the fact
that the same term is generated if one acts on either of the
new bonds.

Acting on any of the other nearest-neighbor bonds will
introduce a long-range bond. For example, the Â†

23Â23 term
acting on the state |a〉 in Fig. 1, yields the state with long
range bonds on the far right. There are 3N/2 − 2(N= + N�)
such terms, each of which will contribute to the effective
Hamiltonian in second order perturbation theory. Here N=
and N� count the number of plaquettes with two horizontal
or vertical bonds. As illustrated in Fig. 6(a), for each of
these terms, there are two ways to return to the initial state.
Up to an additive constant, one thus finds a contribution to
the effective Hamiltonian of H̃1a = V (|=̃〉〈=̃| + |�̃〉〈�̃|) with
V = 2 × λ × (2λ)/ε = (8J2/U0)/(2 f + 1)2. Here one factor
of 2 comes from bond counting, one λ = (2J2/U0)/(2 f + 1)
is for the forward matrix element, the 2λ is for the backward
matrix element, and ε = (2J2/U0) is the energy denominator.

There are also second-order processes which, as illus-
trated in Fig. 6(b), rotates a set of three bonds and can be
written as Ĥ1b = −t ′(|=̃�〉〈�̃=| + H.c.), with t ′ = (2λ)2/ε0 =
(8J2/U0)/(2 f + 1)2. Here one factor of 2 comes from the
existence of two possible intermediate states (each of which
can be reached in a single way). The second factor of 2 comes
from the two ways to reach the rotated configuration from
each intermediate state.

This reasoning can be continued to generate terms involv-
ing longer and longer ring exchanges. Any term which appears
at mth order scales as (2 f + 1)−m. Thus, unlike the spin-
1/2 electronic case, larger ring exchange terms are strongly
suppressed for large f .

This same argument goes through on any lattice. On a
square, cubic, or triangular lattice, the effective Hamiltonian
is of the form

ĤQDM =
∑

−t (|=̃〉〈�̃| + |�̃〉〈=̃|) + V (|=̃〉〈=̃| + |�̃〉〈�̃|)
− t ′(|=̃�〉〈�̃=| + |�̃=〉〈=̃�|) + · · · (10)

This defines the matrix elements Hab. Table I lists the para-
meters t, t ′, and V for different lattice geometries. On the tri-
angular lattice one interprets parallel nearest neighbor bonds
as those that are on opposite sides of a rhombus made from
two triangular units. The effective dimer model on the honey-

TABLE I. List of ring exchange amplitudes and bond interactions
obtained from Eq. (4), for different lattice geometries.

Ground state
Lattice geometry t

J2/U0

V
J2/U0

t ′
J2/U0

at large f

Square lattice 4
2 f +1

8
(2 f +1)2

8
(2 f +1)2 Columnara

Triangular lattice 8( f +1)
(2 f +1)2

4
(2 f +1)2

8
(2 f +1)2

√
12 × √

12

Cubic lattice 4
2 f +1

8
(2 f +1)2

8
(2 f +1)2

Honeycomb lattice 12
(2 f +1)2 O(1/ f 4) O(1/ f 4) Plaquette

Kagome lattice 12
(2 f +1)2 O(1/ f 4) O(1/ f 4)

aThere is some debate in the literature about the phases of dimer
models on a square lattice [24].

comb and Kagome lattices have similar terms, but the smallest
kinetic term involves three-bond loops, and therefore t has
an amplitude of O(2 f + 1)−2. Similarly, on those lattices the
potential term V ∼ O(2 f + 1)−4 penalizes parallel bonds on
alternate sides of a hexagon, while t ′ ∼ O(2 f + 1)−4 involves
a ring with bonds extending over two hexagons.

B. Phases

The effective model for our system from Eq. (10) has a rich
phase diagram, which has been well explored along t ′ = 0 in
a number of geometries [6,11,15,16,21,22,24,72–77]. For 2D
bipartite lattices with t ′ = 0, one finds only valence bond solid
phases, except for the Rokhsar-Kivelson point V = t . On 3D
and nonbipartite 2D lattices, dimer liquids may be found for
nonvanishing ranges of t/V . The phase diagram at finite t ′ is
less explored [78].

The valence bond solid phases described in the literature
fall into four types: columnar, plaquette, mixed, and stag-
gered. The columnar phase is built from vertical columns
of horizontal parallel bonds, or vice versa. In the plaquette
phase, dimer bonds resonate between different configurations
inside a multisite unit cell. For example, on a square lattice,
the plaquette phase has a unit cell with four lattice sites;
two parallel bonds resonate between horizontal and vertical
configurations inside a plaquette. The plaquette phases on a
triangular lattice have larger unit cells. The mixed phase is
a hybrid between the columnar and plaquette phases, which
is best described in terms of the symmetries it breaks [24].
The staggered phase has no flippable plaquettes (= or �).
The columnar phase is favored at large negative V , and the
staggered phase at large positive V .

As f → ∞, the dominant coupling constant in the effec-
tive model, Eq. (10), is t . On a square lattice, this generally
is believed to lead to a columnar phase, though there is some
contention [24]. (Experiments may be able to resolve these
issues.) On the triangular lattice, as f → ∞, we expect to
see a plaquette phase, called the

√
12 × √

12 phase, which
has a 12-site unit cell, and quantum resonances that extend
throughout the cell [21]. Observing these resonances is part
of Pauling and Anderson’s vision of quantum resonances that
manifest throughout a macroscopic system [3]. The analysis
in Sec. V confirms that at f = 100 these orders appear to be
present. The smaller f data is more ambiguous, and could
point towards a spin liquid or some other phase.
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C. Tuning the parameters in the large f dimer model

As presented, a given experimental realization yields a
unique dimer model: Aside from the over-all energy scale,
all parameters are determined by the spin f and the lattice
geometry. We can gain the ability to tune the parameters
by modifying the detuning and coupling strength of the
optical Feshbach resonance. For example, consider the case
UF �=0,2 	 U2 > U0 	 J . Then the effective Hamiltonian at
second order in the tunneling strength is

Ĥeff = −2J2

U0

∑
〈i j〉

Â00†
i j Â00

i j − 2J2

U2

∑
〈i j〉M

Â2M†
i j Â2M

i j , (11)

where Â2M†
i j = ∑

m C2M
m,M−mb̂i,mb̂ j,M−m creates a neighboring

atom pair with total spin F = 2 and azimuthal spin M. In
Appendix C we use our large- f perturbation techniques to
obtain a dimer model of the form of Eq. (10). We find that
to leading order t and t ′ are independent of U2, but V depends
on U2. By tuning U2/U0 via the Feshbach laser intensity and
detuning, one can control the relative size of V .

VII. DETECTION

To probe the valence bond solid order and observe the
resonating dimers in the plaquette and spin liquid phase,
we propose measuring the dimer-dimer correlation function
〈Â†

i j Âi j Â
†
kl Âkl〉. Similar correlation functions have been used

to characterize order in quantum dimer models [16,21,22,75].
We provide an experimental protocol to image these correla-
tions. Furthermore, in Sec. V we numerically calculated these
correlations in our system for both large and moderate values
of f .

To image the dimer bonds we propose shining a weak near-
resonant photoassociation laser on the system, tuned near a
molecular state with angular momenta L = 1 and S = 0. In
our system, when virtual hopping brings two atoms forming
an S = 0, L = 0 dimer onto the same lattice site, the near-
resonant light drives these atoms into the molecular state. The
excited molecule has a short lifetime and so those atoms are
lost from the trap.

After driving this photoassociation, one would use a quan-
tum gas microscope to image the location of all remaining
atoms [79,80]. All adjacent pairs of empty sites in the image
were likely occupied by atoms entangled in dimers. In this
way, a fraction of the dimers in the system can be imaged.
Quantitative dimer-dimer correlations can be extracted by
analyzing data from multiple realizations of this imaging pro-
cess, and can be used to identify the phase. Similar techniques
have been used in the past to probe atomic correlations [81].

One formal way to model this process is to take U0 →
U0 + i
/2, where 
 quantifies the photoassociation rate. We
thus see that the Hamiltonian in Eq. (4) gains an imaginary
term which removes a pair of neighboring particles. The
probability that (after a fixed time) atoms at neighboring sites
i and j are missing will be proportional to 〈Â†

i j Âi j〉. The
probability that there are also missing atoms at neighboring
sites k and � will then be proportional to 〈Â†

i j Âi j Â
†
kl Âkl〉.

We emphasize that the ability to directly image the valence-
bond correlations is one of the greatest strengths of using

cold atoms to explore dimer models. This imaging will al-
low unambiguous identification of the various valence-bond
ordered phases. Spin liquid phases will be characterized by the
absence of long-range valence bond order. The experimental
systems are much larger than those we can model numerically.

VIII. SUMMARY

In summary, we propose experimental protocols to produce
quantum dimer models and detect both static and resonat-
ing patterns of dimer configurations. In particular, we show
that appropriately tuned off-resonant photoassociation light
modifies the interactions in a gas of cold atoms, yielding a
low-energy Hilbert space spanned by short-range dimers. By
expanding in powers of (2 f + 1)−1 we develop an effective
dimer model Hamiltonian and discuss its phase diagram. We
find that a number of valence bond solid and plaquette phases
are readily produced and suggest techniques which are suited
to searching for even more exotic states such as topological
spin liquids. We demonstrate that by combining photoassoci-
ation with quantum gas microscopy one can directly detect the
dimers and the dimer-dimer correlations, thereby probing the
defining features of these phases. We numerically calculate
the dimer correlations, finding that on triangular lattices one
will be able to image an intricate pattern of resonating bonds,
extending over a 12-site unit cell.

Quantum dimer models have been highly influential in de-
veloping an understanding of how geometric constraints lead
to new emergent physics [72,74], and they have been used as a
theoretical foundation for attempting to understand phenom-
ena ranging from high temperature superconductivity to ex-
otic antiferromagnets [82]. A direct experimental realization
of dimer models is key to validating and refining these ideas.
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APPENDIX A: DERIVING THE EFFECTIVE
INTERACTION DUE TO AN OPTICAL

FESHBACH RESONANCE

Here we derive the effective interaction induced by our
proposed optical Feshbach resonance. We closely follow the
argument in our previous work, Ref. [68]. A laser is tuned near
a transition to a molecule state with well-defined electronic
spin S = 0 and well-defined electronic angular momentum
L = 1. Keeping only the relevant degrees of freedom, and
neglecting any coupling to the nuclear degrees of freedom,
we model the photoassociation as

ĤFesh =
∑
m,m′

(
E + i




2

)
|mol〉mm′ 〈mol|mm′
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+�(e−iωt |mol〉mm′ 〈at|mm′ + H.c.), (A1)

where the electronic singlet state is

|at〉mm′ = |↑m〉 ⊗ |↓m′〉 − |↓m〉 ⊗ |↑m′〉√
2

. (A2)

Here ↑/↓ represent the spin projection sz of the spin-1/2
electrons, while m, m′ are the spin projections of the nuclei.
Due to hyperfine interactions, |at〉mm′ is not an eigenstate of
the atomic Hamiltonian.

The energy of the molecule is E , and we have included
an imaginary part, 
 to model its finite lifetime. In principle,
the molecular energy should have some dependence on the
nuclear spin projections, but these will play no role as long
as the detuning of the laser is large compared to the hyperfine
splitting. Thus, we ignore them. We further assume that the
atoms are both in the same spatial mode of a single site of the
optical lattice and therefore drop spatial indices. The coupling
� will depend on the shape of this mode. The laser frequency
ω = E + δ is detuned from the atom-molecule transition by δ.
When the detuning δ is large compared to �, we use second-
order perturbation theory to eliminate the molecule and obtain
in a rotating frame

Ĥ ′
Fesh = �2

δ + i
/2

∑
mm′

|at〉mm′ 〈at|mm′ . (A3)

If the incoming and outgoing atoms are restricted to being
in a single hyperfine manifold ( f = i ± 1/2), then symmetry
implies that this expression can be replaced by

Ĥ ′ f
Fesh = P̂f Ĥ ′

FeshP̂f (A4)

= �2

δ + i
/2

∑
FM

α
f
F |F, M〉 f 〈F, M| f , (A5)

where |F, M〉 f is the two-particle state with total hyperfine
spin F and total spin projection M, built from two particles in
the manifold with hyperfine spin f . The operator Pf projects
into the space where each atom has spin projection f . The
SU(2) symmetry implies that the coefficients α

f
F do not de-

pend on M. In the main text we do not explicitly write the f
labels. Equating these expressions gives

α
f
F =

∑
m

|〈F, M| f |at〉m(M−m)|2, (A6)

where the state |at〉m(M−m) is given by Eq. (A2) with m′ =
M − m. Alternatively, this can be written as the square overlap
of two states: the first is formed by combining i1 and s1 into f1,
i2 and s2 into f2, then f1 and f2 into F . The second is formed
by combining s1 and s2 into S, i1 and i2 into I , then S and I into
F . The nine angular momenta s1, s2, i1, i2, f1, f2, S, I, F
can be combined into a Wigner 9-j symbol [83]. The most
natural notation for this construction involves recursively not-
ing how each angular momentum is constructed. For example
f1(i1s1) indicates that f1 is built from i1 and s1. In this
notation,

α
f
F = |〈F ( f1(i1s1) f2(i2s2))|F (I (i1i2)S(s1s2))〉|2. (A7)

Here we have a particularly simple case where s1 = 1/2, s2 =
1/2, i1 = i, i2 = i, f1 = f , f2 = f , S = 0, I = F . A third

representation of the coefficient is the expectation value

α
f
F = 〈F, M|PS=0|F, M〉, (A8)

where PS=0 = (1/4) − S1 · S2 is the projector into the space
where S = S1 + S2 = 0.

There are several ways to evaluate αF . The simplest is
to note that the condition S = 0 reduces Eq. (A7) to a 6-j
symbol—which is tabulated in Ref. [83] for the case s1 =
s2 = 1/2. The second is to directly evaluate Eq. (A6). Pre-
sumably there is also an approach based upon Eq. (A8). In the
remainder of this section we outline the second method, based
on Eq. (A6).

We first note that since the result is independent of M, we
can set M = 0. We then find a common basis for each set of
states, using the Clebsch-Gordon coefficients, defined by

| f m f 〉 =
∑

ms+mi=m f

Ci+s→ f
mi,ms

|sms, imi〉, (A9)

|FM〉 =
∑

m1+m2=M

C f + f →F
m1,m2

| f m1, f m2〉. (A10)

Using tabulated expressions for S = 1/2, we can invert this
relationship to arrive at

|sσ, im〉 = σ

√
f + 1/2 − σm

2i + 1

∣∣∣∣ f = i − 1

2
, m f = m + σ

2

〉
+

√
f + 1/2 + σm

2i + 1

∣∣∣∣ f = i + 1

2
, m f = m + σ

2

〉
,

(A11)

where σ = +1(−1) corresponds to ↑ (↓), and as before m
is the nuclear spin projection. Substituting this result into
Eq. (A2) and combining it with Eq. (A10) yields

αF =
∑

m

(
λ−mC f + f →F

m−1/2,−m+1/2 − λmC f + f →F
m+1/2,−m−1/2

)2
,

λm = f + 1/2 + 2m( f − i)√
2(2i + 1)

. (A12)

We then derive a series of sum rules: First, we express

A = ∑
n (C f + f →F

n,−n )
2
, as A = ∑

n〈F, 0| f , n; f − n〉〈 f , n; f −
n|F, 0〉. This sum contains a resolution of the identity
in the sector with M = 0, and hence A = 〈F, 0|F, 0〉 = 1.

Second, by the same reasoning B = ∑
n n2(C f + f →F

n,−n )
2 =∑

n〈F, 0| f , n; f ,−n〉n2〈 f , n; f ,−n|F, 0〉 which can be iden-
tified as the expectation value B = −〈F, 0| f̂ z

1 f̂ z
2 |F, 0〉. Finally,

C = ∑
n( f − n)( f + n + 1)(C f + f →F

n,−n )
2 = 〈F, 0| f̂ +

1 f̂ −
2 |F, 0〉.

Using the symmetry between the two spins, we can simplify

this to C = 〈F, 0| �̂f1 · �̂f2 − f̂ z
1 f̂ z

2 |F, 0〉. The resulting three
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identities are∑
n

(
C f + f →F

n,−n

)2
= 1,

∑
n

n2
(
C f + f →F

n,−n

)2
= −〈F, 0| f̂ z

1 f̂ z
2 |F, 0〉,

∑
n

( f − n)( f + n + 1)
(
C f + f →F

n,−n

)2

= 〈F, 0| �̂f1 · �̂f2 − f̂ z
1 f̂ z

2 |F, 0〉. (A13)

These sum rules, plus the expression 〈F, 0|F̂ 2|F, 0〉 =
F (F + 1) = 2 f ( f + 1) + 2〈F, 0| �̂f1 · �̂f2|F, 0〉, allow us to
write Eq. (A12) as

α
f
F = (2i + 1)(2 f + 1) − F (F + 1)

2(2i + 1)2
. (A14)

For our purposes, the most important feature of this expression
is that it is monotonic in F .

APPENDIX B: CONSTRUCTION OF
AN ORTHOGONAL BASIS

In the main text we work with a nonorthogonal basis, while
the more traditional approach involves orthogonalizing the
basis states, as originally developed for spin-1/2 systems in
Ref. [1]. Here we follow a similar procedure to construct the
orthogonal basis of dimer states for cold atoms for large spin
f , perturbatively in (2 f + 1)−1. The singlet coverings contain
both short- and long-ranged singlet bonds.

We first note that the singlet operators commute with one-
another unless they share a site. Hence the overlap between
two singlet coverings Sab = 〈a|b〉 factors into expectation
values of loops: sets of connected sites {i1, i2, · · · iL}. We
can always label these loops so that (i2 j+1, i2 j+2) ∈ a and
(i2 j+2, i2 j+3) ∈ b for j = 0, 1, · · · L/2 − 1. We will also have
(iL, i1) ∈ b. The contribution to Sab from such a loop is

S{i1,i2,···iL}
ab = 〈

Ai1i2 Ai3,i4 · · · AiL−1iL A†
i2,i3

A†
i4,i5

· · · A†
iL,i1

〉
, (B1)

where the expectation value is in the vacuum state with no
particles. The full Sab is the product of the contribution from
all such loops. To graphically generate this set of loops, one
simply takes the set of all bonds which are in only one of a
and b, but not the other. Figure 7 shows two examples of such
a graphical construction of the overlap matrix elements for a
six-site system.

Using the expression for the Clebsch-Gordan coefficients,
and assuming i �= j, Eq. (2) becomes

Ai j = 1√
2 f + 1

∑
m

(−1) f −mbimb j−m. (B2)

We substitute Eq. (B2) into Eq. (B1) and use Wick’s theorem
to evaluate the vacuum expectation value. There is only one
nonzero contraction, as there is only one creation operator
and only one annihilation operator acting on each site. Once
the m of a single site is set, all others are fixed. There are
2 f + 1 choices for m, and each term contributes equally.
Hence, S{i1,i2,···iL}

ab = (2 f + 1)1−L/2.

FIG. 7. Examples of transition graphs between nonorthogonal
singlet coverings, constructed graphically following Ref. [1]. The
magnitude of the overlap is given by Eq. (B3) and is shown in the
figure for the two cases. The overlap Sab comes from a single four-site
loop, and it represents the largest possible overlap in magnitude.
The overlap Sac comes from a single six-site loop, and it is down in
magnitude by a factor of (2 f + 1)−1. In the large-f limit, all singlet
coverings become orthogonal as the overlaps approach zero.

The full expression for Sab is just the product of the
contribution from each loop, and hence

Sab = (2 f + 1)Nloops

(
1√

2 f + 1

)Lloops

, (B3)

where Nloops is the total number of closed loops formed by
the dimers not common to |a〉 and |b〉, while Lloops is the total
number of sites involved in all loops.

For large f , we expand Sab in powers of (2 f + 1)−1 to
obtain

Sab = δab + �ab

2 f + 1
+ �(2)

ab

(2 f + 1)2
+ O( f −3). (B4)

Here, �ab = 1 if |a〉 and |b〉 differ by a four-site loop in their
transition graph and is zero otherwise. The sites making up
the loops do not need to be nearest neighbors. The symbol
�(2)

ab = 1 if |a〉 and |b〉 differ by either a single six-site loop,
or two distinct four-site loops in their transition graph, and is
zero otherwise.

We can now construct orthogonal “dimer states” via

|ā〉 =
∑

b

(
√

S−1)a,b|b〉. (B5)

The expansion in Eq. (B4) formally leads to

|ā〉 = |a〉 −
∑

b

(
�ab

2(2 f + 1)
+ �(2)

ab

2(2 f + 1)2

− 3

8(2 f + 1)2

∑
c

�ac�cb + · · ·
)

|b〉. (B6)

Figure 8 shows this construction for a small system of six
sites. Although this expansion is commonly used in the lit-
erature [1], it is at best formal. Intuitively one expects that
for a given f , any given orthogonal dimer state |ā〉 will
differ from the singlet covering |a〉 by a finite density of
loops. This intuition is reflected in the fact that subsequent
terms in Eq. (B6) contain ever higher factors of the volume
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FIG. 8. Pictorial representation of an orthogonal dimer state constructed from nonorthogonal singlet coverings, as expressed in Eq. (B5). A
dimer state |ā〉 has an associated O(1) singlet covering |a〉, which is used to label the state. At O( f −1) and higher, it contains contributions from
all coverings |b〉 which differ from |a〉 by a four-site loop in their transition graph, including those which lie outside the nearest-neighbor-only
Hilbert space. In the f → ∞ limit we find that the singlet coverings become orthogonal, such that |ā〉 = |a〉.
of space, and the limit f → ∞ does not commute with the
thermodynamic limit. For example, the diagonal element of
third term in parentheses,

∑
c �ac�ca, is proportional to the

total number of four-site loops that can be constructed, and
scales as N2

b , where Nb is the number of bonds in a.
Despite its formal nature, we note that one can use this

expansion to derive an effective dimer model Hamiltonian. We
omit the details as it is a lengthy argument, and the result is
the same as we found in Sec. IV.

APPENDIX C: BEYOND SINGLETS

In this Appendix we analyze the case of Eq. (3) to the case
when two of the terms are significant, namely,

Ĥeff =
∑
〈i j〉

−2J2

U0
Â00†

i j Â00
i j −

2∑
M=−2

2J2

U2
Â2M†

i j Â2M
i j , (C1)

where as in the main text, ÂFM†
i j creates a pair on sites i and j

with total spin F and spin projection M. We will assume that
U0 � U2, so that the first term is large compared to the second,
but that these two terms are large compared to all others.

The space of singlet coverings is not closed under Eq. (C1),
and we must enlarge our Hilbert space to include coverings
with both spin-2 and spin-0 dimers—the former of which
carry a quantum number M. For example, given two sites we
have a six-dimensional Hilbert space, spanned by the singlet
dimer, and the five spin-2 dimers. Given four sites, our Hilbert
space is spanned by 3 × 62 states—corresponding to the three
different ways to pair up the four sites, and the six different
flavors of each dimer. As in the purely singlet case, these states
are not orthogonal. That is, the state | 〉 = ÂFM†

12 ÂF ′M ′†
34 |vac〉

is not orthogonal to the state | 〉 = ÂF ′′M ′′†
14 ÂF ′′′M ′′′†

23 |vac〉,
regardless of angular momenta and projections, which are
denoted by the different styles of lines joining the sites. Dif-
ferent flavor bonds on the same sites, however, are orthogonal:
| 〉 = Â00†

12 |vac〉 is orthogonal to | 〉 = Â2M†
12 |vac〉.

The low-energy space is spanned by nearest-neighbor sin-
glets. As described in the main text, acting on states of this
form with Â00†

i j Â00
i j can either move us in this space or generate

longer-range singlets. We need to calculate how operators
of the form Â2M†

i j Â2M
i j act on these states. Let a describe the

singlet covering. If (i, j) ∈ a, then Â2M†
i j Â2M

i j |a〉 = 0. If (i, j) �∈
a then the action of Â2M†

i j Â2M
i j will involve the sites i, j and

their partners k, l . No other bonds matter, so we consider the

action on | 〉 = Â00†
ik Â00†

jl |vac〉. The notation does not imply

any spatial relationship between the sites—just that they are

connected. We then calculate |ψM〉 = Â2M†
i j Â2M

i j | 〉 as

|ψM〉 = Â2M†
i j Â2M

i j Â00†
ik Â00†

jl |vac〉 (C2)

= Â2M†
i j

∑
mnp

C2M
m,M−m

2 f + 1
(−1)n+p

× bi,mbj,M−mb†
inb†

k,-nb†
j pb†

l,-p|vac〉 (C3)

= Â2M†
i j

∑
m

C2M
m,M−m

2 f + 1
b†

k,-mb†
�,m−M |vac〉 (C4)

= 1

2 f + 1
Â2M†

i j Â2,-M†
kl |vac〉 (C5)

≡ 1

2 f + 1
|

M
〉, (C6)

where we have used C00
n,−n = (2 f + 1)−1/2(−1) f −n. The

Hamiltonian will always generate a superposition of all dif-
ferent M, |ψ〉 = ∑

M |ψM〉. Returning to the space containing
only singlets requires acting with either Â00†

ik Â00
ik or Â00†

jl Â00
jl .

We therefore calculate |φ〉 = Â00†
ik Â00

ik |ψ〉= Â00†
jl Â00

jl |ψ〉 as

|φ〉 = Â00†
ik

2 f + 1

∑
Mmnp

C2M
m,M−mC2,−M

−n,n−M√
2 f + 1

(−1) f −p

× bipbk-pb†
imb†

j,M−mb†
k,−nb†

l,n−M |vac〉

= Â00†
ik

2 f + 1

∑
Mm

(
C2M

m,M−m

)2 (−1) f −m

√
2 f + 1

b†
j,mb†

l,−m|vac〉. (C7)

Below we show that
∑

M (C2M
m,M−m)2 = 5/(2 f + 1), which

then gives

|φ〉 = 5

(2 f + 1)2
Â00†

ik Â00†
jl |vac〉. (C8)

This last Clebsch-Gordan identity is a special case of
the more general result VF f m = ∑

M (CFM
m,M−M )2 = (2F +

1)/(2 f + 1), which is proven by writing

VF f m =
∑

M

〈 f m; f M − m|F, M〉2 (C9)

=
∑
Mn

〈 f m; f n|F, M〉2 (C10)

= 〈 f m|X̂ | f m〉, (C11)

where X̂ = Tr2
∑

M |F, M〉〈F, M| is the trace over the second
spin of the projector into the space of fixed F . This operator
clearly transforms as a singlet under rotation, and hence VF f m

must be independent of m. We therefore sum over m and
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divide by 2 f + 1 to find

VF f m = 1

2 f + 1

∑
Mnm′

〈 f m′; f n|F, M〉2 (C12)

= 1

2 f + 1

∑
M

Tr|F, M〉〈F, M| (C13)

= 2F + 1

2 f + 1
. (C14)

Having established the action of the various terms in the
Hamiltonian on dimer coverings, we perturbatively eliminate
the coverings, which either contain longer range singlet bonds
or any F = 2 bonds. This process gives us an effective model
which only involves nearest neighbor singlets. The contribu-
tions from long-range singlets are identical to those derived
in Sec. IV. Below we show that the leading contributions
from the F = 2 bonds renormalize V , while leaving t and t ′
unchanged.

Let a be a nearest-neighbor singlet covering, and consider
nearest neighbors i and j such that a does not contain the
bond connecting them: i.e., (i, j) �∈ a. We will separately
consider the case where the partners of i and j are also nearest
neighbors, and the case where they are not. The first cir-
cumstance corresponds to parallel bonds. In that case, acting

with Â2M†
i j Â2M†

i j yields a state with two-fewer nearest-neighbor
singlet bonds, but two extra nearest-neighbor F = 2 bonds,
and hence an excited state with energy 4J2/U0 − 4J2/U2.
In the second case, one instead finds an intermediate state
with two-fewer nearest-neighbor singlets, but only one extra
nearest-neighbor f = 2 bonds. The other F = 2 bond is long-
ranged. Thus the second order process in which one returns
to the initial state will have different coefficients for parallel
and nonparallel bonds, hence shifting V . There will also be an
unimportant constant energy shift to all states. In particular,
the change in V will be

δV = −(2 × λ′) ×
(

1

ε
− 1

ε′

)
× (2 × λ̄), (C15)

where λ′ = (2J2/U2)(2 f + 1)−1 is the forward amplitude,
λ̄ = 5(2J2/U0)(2 f + 1)−2 is the backward amplitude. The
factors of 2 account for the multiplicity of processes: There
are two ways to produce a given intermediate state, and two
ways back. The energy denominators ε = 4J2/U0 − 4J2/U2

and ε′ = (4J2/U0 − 2J2/U2) are the energy denominators
associated with parallel and nonparallel bonds. We note that
this shift is of O( f −3) and so the effect of sub-dominant
scattering channels remain negligible in the large f limit,
furthering the validity of our description in terms of quantum
dimers.
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