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Two-fluid theory for a superfluid system with anisotropic effective masses
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In this work, we generalize the two-fluid theory to a superfluid system with anisotropic effective masses along
different principal axis directions. As a specific example, such a theory can be applied to spin-orbit coupled
Bose-Einstein condensate at low temperature. The normal density from phonon excitations and the second sound
velocity are obtained analytically. Near the phase transition from the plane wave to zero-momentum phases,
due to the effective mass divergence, the normal density from phonon excitation increases greatly, while the
second sound velocity is suppressed significantly. With quantum hydrodynamic formalism, we give a unified
derivation for suppressed superfluid density and Josephson relation. At last, the momentum distribution function
and fluctuation of phase for the long wavelength are also discussed.
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I. INTRODUCTION

At low temperature, Bose-Einstein condensation and su-
perfluidity would occur in a bosonic system. Tissa [1] and
Landau [2] propose two-fluid theory to explain the superfluid
phenomena in 4He. Comparing with usual classical fluid, due
to an extra degree of freedom (existence of condensate), the
existence of second sound is an important characteristic of
superfluidity. With realizations of Bose-Einstein condensate
(BEC) and fermion superfluidity in dilute atomic gas, the
second sound and other related superfluid phenomena in
atomic gas have attracted great interest [3–9]. For example,
sound velocities at zero temperature as a function of density
in cold atoms [10,11] have been measured experimentally.
The application of two-fluid theory for sound propagations in
cold atomic gas has been proposed [12,13]. The predictions
on the second sound [14,15] and the quenched moment of
inertia [16] resulting from superfluidity in cold atoms have
been observed experimentally [17,18]. According to the two-
fluid theory, the whole fluid can be viewed as a mixture of
two component fluids, namely, the normal part and superfluid
part. The motions of normal part result in viscosity, while the
motions of a superfluid one are dissipationless. As tempera-
ture grows from absolute zero to a superfluid transition point,
the superfluid density decreases from total density to zero.
Specially, the normal density at the usual superfluid system
(4He fluid or cold atoms) is vanishing at zero temperature.
Consequently, the moment of inertia is also vanishing in the
usual isotropic superfluid system at zero temperature.

*chengang971@163.com

Recently, spin-orbit coupled BEC has been realized exper-
imentally [19–24]. There exists a phase transition between
the plane-wave phase and the zero momentum phase in the
spin-orbit coupled BEC [19,25]. It is shown that, even at
zero temperature, there exists finite normal density, and even
all the total density becomes normal at the phase transition
point although the condensate fraction is finite [26]. At zero
temperature, due to finite normal density, there is finite mo-
mentum of inertia in the spin-orbit coupled BEC [27]. It is
shown that the suppressing of superfluid density is closely
related to enhancements of effective masses near the ground
state. Because the effective masses enhance anisotropically,
the expansion behaviors of spin-orbit coupled gas also show
anisotropy [28–30].

It is expected that due to enhancements of effective masses
in spin-orbit coupled BEC, the corresponding two-fluid theory
at finite temperature also needs to be revised greatly. In this
work, we generalize the two-fluid theory to a superfluid sys-
tem with anisotropic effective masses along different principal
axis directions. As an immediate application, we find that a lot
of superfluid properties of spin-orbit coupled BEC, e.g., the
decreasing of superfluid density, the suppressed anisotropic
sound velocities, etc., can be described by an anisotropic two-
fluid theory. Near the phase transition from the plane-wave
to zero-momentum phases, the normal density from phonon
excitation increases greatly, while the second sound velocity
is suppressed significantly.

The paper is organized as follows. In Sec. II, we review the
thermodynamic relations for a superfluid system. In Sec. III,
based on the entropy equation, we give a derivation for
dissipationless two-fluid equations. In Sec. IV, as an appli-
cation of the anisotropic two-fluid theory, we give a specific
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example, namely, spin-orbit coupled BEC, to illustrate the
above results. A summary is given in Sec. V.

II. THERMODYNAMIC RELATIONS FOR A
SUPERFLUID SYSTEM

First of all, we consider an original system K0 with the
particle mass m, in which the many-particle Hamiltonian

H0 =
∑

i

p2
0i

2m
+ 1

2

∑
i �= j

V (ri − r j ), (1)

where p0i is the particle momentum for K0 and V (ri − r j )
is the interaction potential between particles i and j. In the
following, we mainly investigate the effects arising from
enhancements of the effective masses, i.e., m → zm with z >

1. For this purpose, we consider another system K with the
effective mass m′ = zm. The corresponding Hamiltonian and
Lagrangian are written as

H =
∑

i

p2
i

2zm
+ 1

2

∑
i �= j

V (ri − r j ),

L =
∑

i

zmṽ2
i

2
− 1

2

∑
i �= j

V (ri − r j ),

where pi and ṽi are the particle momentum and velocity for K ,
respectively. From Hamilton’s canonical equations (or New-
ton’s second law), i.e., dp0i/dt = −∂V/∂ri and dpi/dt =
−∂V/∂ri, and the relations p0i = mv0i, pi = zmṽi, we get the
velocity for K in terms of that of K0, i.e.,

ṽi = v0i/z, (2)

where v0i is the particle velocity for K0 with the mass m.
Equation (2) shows that the enhancements of masses would
result in the decrease of velocity. In the following, the velocity
appearing in expressions is always referred to as that of the
original system K0, which has the mass m, rather zm. The
Lagrangian for K can also be expressed in terms of v0i, i.e.,

L =
∑

i

mv2
0i

2z
− 1

2

∑
i �= j

V (ri − r j ).

In order to get the thermodynamic relations, now we
consider a moving reference frame with the velocity u with
respect to the laboratory reference frame. The particle velocity
in the moving frame is

v′
i = v0i − u. (3)

The Lagrangian L is rewritten as

L =
∑

i

m(v′
i + u)2

2z
− 1

2

∑
i �= j

V (ri − r j ).

The canonical momentum and Hamiltonian in the moving
frame are thus given respectively by

p′
i ≡ ∂L

∂v′ i
= m(v′

i + u)/z = p0i/z = pi/z,

H ′ ≡
∑

i

p′
i · v′

i − L = H − u
z

· P,

where the total momentum P = ∑
i pi.

In terms of the Hamiltonian H ′, the partition function

Z ≡ tr e−βH ′ = e−βF = e−β[E−T S−u·P/z], (4)

where E is the energy in the laboratory frame, S is the entropy,
β = 1/T is the inverse temperature, and the free energy

F = E − T S − u · P/z. (5)

The grand potential

� ≡ −pV = F − μN = E − T S − u · P/z − μN,

where p is the pressure, V is the system volume, μ is the
chemical potential, and N is the total particle number. Further
introducing the energy density ε = E/V , the entropy density
s = S/V , the momentum density g = P/V , and the particle
number density n = N/V , the pressure is given by

p = −ε + T s + u · g/z + μn. (6)

Since the free energy is a function of {T,V, u, N}, e.g., F =
F (T,V, u, N ), using Eq. (5), we obtain

dF = −S dT − p dV + μ dN − P · du/z

= dE − T dS − S dT − u · dP/z − P · du/z, (7)

which leads to the fundamental thermodynamic relation

T dS = dE + p dV − μ dN − u · dP/z. (8)

For a fixed unit volume (dV ≡ 0), Eq. (8) turns into

T ds = dε − μ dn − mu · dj, (9)

where j ≡ g/(zm) is the particle current density.
On the other hand, using p2

i /(2zm) − u · pi/z = (pi −
mu)2/(2zm) − mu2/(2z), Eq. (4) becomes

Z = eβNmu2/(2z)Z0 ≡ eβNmu2/(2z)tr e−βH ,

where Z0 = tr e−βH ≡ e−βF0 and F0 is the free energy when
the fluid is at rest. So the free energy

F = F0 − Nmu2/(2z). (10)

For a superfluid system, Eq. (10) can be extended to a case
in which the superfluid and normal parts move with the
velocities vs = h̄∇θ/m and vn = u, respectively [31], where
θ is the phase of the condensate order parameter. In this case,
the free energy density, f = F/V , is given by

f = f0 − nmv2
n/(2z) + nsm(vs − vn)2/(2z), (11)

where f0 is the free-energy density when the fluid is at rest.
The term nsm(vs − vn)2/(2z) describes an extra energy due to
the motion of the superfluid part relative to the normal part
and ns is the particle number density of the superfluid part.
We should recall that the velocity for K is ṽs(n) = vs(n)/z.

The free-energy density f is a function of independent
variables {T, n, vn, vs}. Similar to Eq. (7), its variation can be
written as

df = −s dT + μ dn − mj · dvn + h · dvs, (12)

where h ≡ ∂ f /∂vs is the thermodynamic conjugate variable
of vs. From Eqs. (11) and (12), the particle current density
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and the conjugate variable of vs are given respectively by

j = − ∂ f

m∂vn
= nnvn + nsvs

z
,

(13)

h = ∂ f

∂vs
= nsm(vs − vn)

z
,

where nn ≡ n − ns is the particle number density of the nor-
mal part. From Eqs. (7) and (13), the thermodynamic relations
are generalized as

p = −ε + T s + mvn · j + μn,

T ds = dε − μ dn − mvn · dj − h · dvs,

d p = s dT + n dμ + mj · dvn − h · dvs. (14)

Equation (14) also holds for the anisotropic superfluid system.

III. TWO-FLUID EQUATIONS FOR ANISOTROPIC
EFFECTIVE MASSES

Having obtained the fundamental thermodynamic relations
in Eqs. (13) and (14), in this section we extend them to de-
rive the required two-fluid equations for anisotropic effective
masses. For an anisotropic system with different effective
masses along three principal axis directions, the Hamiltonian

H = H0 + Hint,

H0 =
∫

d3r ψ†

(
p2

x

2m1
+ p2

y

2m2
+ p2

z

2m3

)
ψ,

Hint = 1

2

∫
d3r1d3r2ψ

†(r1)ψ†(r2)V (r1 − r2)ψ (r2)ψ (r1),

(15)

where mi is the effective mass along the ith axis and ψ is
the bosonic field operator. We should note that, although the
masses are anisotropic, the Hamiltonian (15) still has Galilean
transformation invariance [32], and can describe the spin-
orbit coupled BEC near the ground state realized in recent
experiments [19]. Specifically, we write the effective mass as

mi = mzi,

where zi=1,2,3 � 1 characterize the enhancements of masses.

A. Two-fluid equations

To obtain the two-fluid equations for the Hamiltonian (15),
we generalize the free-energy density in Eq. (11) as

f = f0(T, n) −
∑

i=1,2,3

nmv2
ni

2zi
+

∑
i=1,2,3

nsm(vsi − vni )2

2zi
. (16)

Based on Eqs. (13) and (16), the particle current density and
the conjugate variable of the superfluid velocity of the ith axis
are given respectively by

ji = − ∂ f

m∂vni
= nnvni + nsvsi

zi
,

hi = ∂ f

∂vsi
= nsm(vsi − vni )

zi
. (17)

Although there exists anisotropy, the particle number, mo-
mentum, and energy are still conserved. The corresponding
continuity equations are given respectively by

∂n

∂t
+

∑
i

∂i ji = 0, (18)

∂gi

∂t
+

∑
j

∂ jπi j = 0, (19)

∂ε

∂t
+

∑
i

∂i jεi = 0, (20)

where gi = mi ji = zim ji, πi j is the pressure tensor, and jεi
is the energy current density. The superfluid velocity can be
written as a gradient of condensate phase, i.e., vs = h̄∇θ/m.
Therefore, the superfluid velocity vs is irrotational and satis-
fies the equation [33]

m∂vsi

∂t
+ ∂i(μ + X ) = 0, (21)

where μ is the chemical potential and X is a scalar function
which needs to be determined by an entropy equation (see the
following). The irrotationality condition is

∂ivs j = ∂ jvsi. (22)

We should note that the superfluid velocity for the anisotropic
system with the mass zim, i.e., ṽsi = vsi/zi [see Eq. (2)] would
have no irrotationality [27] due to zi �= z j in general.

The entropy equation can be derived as follows. Using
the thermodynamic relations in Eq. (14), continuity equa-
tions (18)–(20), and Eqs. (21) and (22), we get

T

[
∂s

∂t
+

∑
i

∂i

(
svni

zi
+ Qi

T

)]

= −
∑

i

Qi
∂iT

T

−
∑

i

(
gi

zim
− nvni

zi
− hi

m

)
∂iμ

−
∑

i j

(
π ji

z j
− p

zi
δi j − m j jvni

zi
− vs jhi

z j

)
∂ivn j

−
∑

i

⎛
⎝X

m
−

∑
j

vs jvn j

z j

⎞
⎠∂ihi. (23)

In deriving Eq. (23), we have introduced the heat current
density Q with

Qi ≡ jεi − μ(gi/m − nvni )

zi
−

∑
j

vn jπ ji

z j
− εvni

zi

+
∑

j

mvnivn j j j

zi
+

⎛
⎝∑

j

vn jvs j

z j
− X

m

⎞
⎠hi

and used the thermodynamic relation p = −ε + T s + mvnj +
μn. The right-hand side of Eq. (23) is a form of “currents”
time “forces” for entropy production. For the dissipationless
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process, the entropy production should be zero, so the right-
hand side should vanish, i.e.,

Qi = 0,

gi

zim
− nvni

zi
− hi

m
= 0,

π ji

z j
− pδi j

zi
− m j jvni

zi
− vs jhi

z j
= 0,

X

m
−

∑
j

vs jvn j

z j
= 0. (24)

From Eq. (24), we get constitutive relations

X =
∑

j

mvs jvn j

z j
,

gi = mnvni + zihi = nnmvni + nsmvsi = zim ji,

π ji = pδi j + z jm j jvni

zi
+ vs jhi,

jεi = μ(gi/m − nvni )

zi
+ vn jπ ji

z j
+ εvni

zi
− mvnivn j j j

zi
.

(25)

Due to Eq. (25), the entropy Eq. (23) becomes its conser-
vation equation

∂s

∂t
+

∑
i

∂i

(
svni

zi

)
= 0. (26)

The energy conservation equation can be replaced by the
entropy conservation equation. Finally, we have four complete
equations for the two-fluid theory:

∂n

∂t
+

∑
i

∂i ji = 0, (27)

∂gi

∂t
+

∑
j

∂ jπi j = 0, (28)

∂s

∂t
+

∑
i

∂i

(
svni

zi

)
= 0, (29)

m∂vsi

∂t
+ ∂i

⎛
⎝μ +

∑
j

mvs jvn j

z j

⎞
⎠ = 0, (30)

with constitutive relations

ji = nnvni + nsvsi

zi
,

gi = zim ji = mnnvni + mnsvsi,

π ji = pδi j + mnnvn jvni + mnsvs jvsi

zi
.

Equations (27)–(30) are the main results of this paper. These
equations have several important properties. First, due to
zi �= z j in general, the pressure tensor πi j would not be a
symmetrical tensor in the anisotropic case, i.e., πi j �= π ji.

Secondly, when z1 = z2 = z3 = 1, using the relation be-
tween the energy (ε) of the laboratory frame and that
(ε0) of another reference frame where the superfluid
part is at rest [33], i.e., ε = nmv2

s /2 + g0 · vs + ε0 with

g0 = nnm(vn − vs), and further comparing the thermody-
namic relation in Eq. (14) with its counterpart in [33],
i.e., dε0 = T ds + μ0dn + (vn − vs) · dg0, we immediately
get the relation for two chemical potentials μ and μ0, i.e.,
μ0 + mv2

s /2 = μ + mvs · vn. Here μ0 = ∂ε0/∂n denotes the
chemical potential for the reference frame in which the su-
perfluid part is at rest, while μ = ∂ε/∂n is the chemical
potential for the laboratory frame. Using replacement of μ +
mvs · vn → μ0 + mv2

s /2 in Eq. (30), Eqs. (27)–(30) recover
the famous Landau-Khalatnikov’s two-fluid equations [34]
with constitutive relations ji = nnvni + nsvsi, gi = m ji, and
π ji = pδi j + mnnvn jvni + mnsvs jvsi. For the anisotropic case,
the relation between two chemical potentials is given by

μ0 +
∑

j

mv2
s j

2z j
= μ +

∑
j

mvs jvn j

z j
. (31)

Thirdly, at zero temperature (ns = n, nn = 0, s =
0, vn = 0), the entropy in Eq. (29) can be neglected and
the constitutive relations become ji = nvsi/zi, gi = nmvsi,
and π ji = pδi j + mnvs jvsi/zi. Using the thermodynamic
relation in Eq. (14) (Gibbs-Duhem relation for superfluid
system at T = 0), i.e., d p = n dμ − h · dvs and irrotational
condition ∂ivs j = ∂ jvsi, one can show that Eqs. (28)
and (30) are equivalent. Taking μ0 + ∑

j mv2
s j/(2z j ) =

μ + ∑
j mvs jvn j/z j (vn = 0) into account, the two-fluid

equations (27)–(30) are reduced to

∂n

∂t
+

∑
i

∂i ji = 0,

(32)

m∂vsi

∂t
+ ∂i

⎛
⎝μ0 +

∑
j

mv2
s j

2z j

⎞
⎠ = 0,

which are consistent with Eqs. (8)–(10) for hydrodynamics
of spin-orbit coupled BEC in Ref. [29], with replacements
of μ0 → gn + Vext and vsi → ziṽsi (replaced by the velocities
of K [see Eq. (2)]). Therefore, in this sense, we can use
the Hamiltonian of anisotropic effective mass [Eq. (15)] to
describe the dynamics of the spin-orbit coupled BEC near the
ground state.

B. First and second sounds

It is known that the existence of second sound is an
important character for superfluidity. With the two-fluid equa-
tions (27)–(30), we can investigate the sound propagations for
the anisotropic system. If the amplitudes of sound oscillations
and the velocity fields vs(n) are small, we can neglect the
second-order terms of velocities in the two-fluid equations,
i.e.,

∂n

∂t
+

∑
i

∂i ji = 0,
∂gi

∂t
+ ∂i p = 0,

(33)
∂s

∂t
+

∑
i

∂i

(
svni

zi

)
= 0, m

∂vsi

∂t
+ ∂iμ = 0,

with gi = zim ji = mnnvni + mnsvsi.
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From the first two equations, we get

∂2n

∂t2
=

∑
i

∂2
i p

zim
.

From equation gi = mnnvni + mnsvsi, we get vni =
(gi − mnsvsi )/(mnn) and

∂s

∂t
�

∑
i

−s

zimnn
(∂igi − mns∂ivsi ),

∂2s

∂t2
=

∑
i

s

zimnn

(
∂2

i p − ns∂
2
i μ

)
.

By introducing the entropy for the unit mass, i.e., s̃ = s/
(nm) and ds = ms̃ dn + nm ds̃, we get

ms̃
∂2n

∂t2
+ nm

∂2s̃

∂t2
=

∑
i

s̃

zi
∂2

i p + nm
∂2s̃

∂t2

=
∑

i

s̃(nn + ns)

zinn

(
∂2

i p − ns∂
2
i μ

)
.

Using the thermodynamic relation (Gibbs-Duhem relation)
d p = n dμ + s dT and n = ns + nn, we get

nm
∂2s̃

∂t2
=

∑
i

[
nss̃

zinn

(
n∂2

i μ + s∂2
i T

) − nnss̃

zinn
∂2

i μ

]

=
∑

i

nss̃

zinn
s∂2

i T =
∑

i

nnsms̃2

zinn
∂2

i T .

Therefore, we obtain

∂2s̃

∂t2
=

∑
i

nss̃2

zinn
∂2

i T,
∂2n

∂t2
=

∑
i

∂2
i p

zim
. (34)

Equation (34) describes the sound propagations with small
amplitudes.

In order to solve Eq. (34), we choose (n, s̃) as independent
variables, e.g.,

d p = ∂ p

∂n

∣∣∣
s̃
dn + ∂ p

∂ s̃

∣∣∣
n
ds̃, dT = ∂T

∂n

∣∣∣
s̃
dn + ∂T

∂ s̃

∣∣∣
n
ds̃.

If the sound oscillations have the plane-wave forms, i.e.,(
δs̃
δn

)
=

(
A
B

)
ei(q·r−ωt ),

substituting them into Eq. (34), we get

ω2

(
A
B

)
=

(
W (α, φ)

(
∂T
∂ s̃

)
n W (α, φ)

(
∂T
∂n

)
s̃

1
mZ (α,φ)

(
∂ p
∂ s̃

)
n

1
mZ (α,φ)

(
∂ p
∂n

)
s̃

)(
A
B

)
q2, (35)

where q = q[cos(α), sin(α) cos(φ), sin(α) sin(φ)] and

1

Z (α, φ)
= cos2(α)

z1
+ sin2(α) cos2(φ)

z2
+ sin2(α) sin2(φ)

z3
,

W (α, φ) = nss̃2

nnZ (α, φ)
. (36)

The existence of nontrivial solutions in Eq. (35) requires

Det

[(
W (α, φ)

(
∂T
∂ s̃

)
n
− c2 W (α, φ)

(
∂T
∂n

)
s̃

1
mZ (α,φ)

(
∂ p
∂ s̃

)
n

1
mZ (α,φ)

(
∂ p
∂n

)
s̃ − c2

)]
= 0,

where c =
√

ω2/q2 is the sound velocity. Further intro-
ducing the specific-heat capacity at constant volume CV =
T ( ∂ s̃

∂T )
V

and using relation ∂
∂n = − N

n2
∂

∂V , we get ( ∂T
∂ s̃ )

n
( ∂ p

∂n )
s̃

− ( ∂T
∂n )

s̃
( ∂ p

∂ s̃ )
n

= − N
n2

∂ (T,p)
∂ (s̃,V ) = T

CV
( ∂ p

∂n )
T

, where ∂ (T,p)
∂ (s̃,V ) ≡ ( ∂T

∂ s̃ )V

( ∂ p
∂V )s̃ − ( ∂T

∂V )s̃(
∂ p
∂ s̃ )V is the Jacobian determinant. Hence the

sound velocity equation becomes

c4 −
[

TW

CV
+ 1

Z

(
∂ p

∂ρ

)
s̃

]
c2 + TW

CV Z

(
∂ p

∂ρ

)
T

= 0, (37)

where ∂ p/∂ρ = ∂ p/(m∂n) is the compressibility.
From Eq. (37), we can get the first sound velocity c1

and the second sound velocity c2 [35]. We see that, due to√
1/Z (α, φ) � 1, the enhancements of effective masses would

result in the decreasing of the sound velocities.
At zero temperature (s = 0, nn = 0, ns = n, vn = 0), the

linear Eq. (33) is reduced to

∂n

∂t
+ n∂xvsx

z1
+ n∂yvsy

z2
+ n∂zvsz

z3
= 0,

m
∂vsi

∂t
+ ∂iμ = 0. (38)

The sound velocity c(q) = c0

√
q2

x/z1 + q2
y/z2 + q2

z /z3/q with

c0 = √
∂ p/∂ρ = √

n∂μ/(m∂n).
The first and second sounds may be probed by measuring

the density response function. In order to get it, we need to
add an external perturbation potential δU ei(q·r−ωt ) in Eq. (34)
of the sound propagations, e.g.,

∂2s̃

∂t2
=

∑
i

nss̃2

zinn
∂2

i T,

∂2n

∂t2
=

∑
i

1

zim
∂2

i [p + nδU ei(q·r−ωt )]. (39)

The density response function is defined as

χ (q, ω) = δn

δU ei(q·r−ωt )
.

Similarly, if the solutions also have the plane-wave forms,
Eq. (39) becomes

ω2

(
δs̃
δn

)
=

(
W (α, φ)

(
∂T
∂ s̃

)
n

W (α, φ)
(

∂T
∂n

)
s̃

1
mZ (α,φ)

(
∂ p
∂ s̃

)
n

1
mZ (α,φ)

(
∂ p
∂n

)
s̃

)(
δs̃
δn

)
q2

+
(

0
nδU

mZ (α,φ)

)
q2ei(q·r−ωt ). (40)

From Eq. (40), we get

δn = n
[
ω2q2 − q4W (α, φ)

(
∂T
∂ s̃

)
n

]
mZ (α, φ)

[
ω4 − (

c2
1 + c2

2

)
ω2q2 + c2

1c2
2q4

]δU ei(q·r−ωt ).
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So the density response function

χ (q, ω) = n
[
ω2q2 − q4W (α, φ)

(
∂T
∂ s̃

)
n

]
mZ (α, φ)

[
ω4 − (

c2
1 + c2

2

)
ω2q2 + c2

1c2
2q4

]
= nw1q

2mc1

(
1

ω − c1q
− 1

ω + c1q

)

+ nw2q

2mc2

(
1

ω − c2q
− 1

ω + c2q

)
. (41)

In Eq. (41), w1(2) is the weight for the first (second) sound in
the density response function and satisfies

w1 + w2 = 1

Z (α, φ)
,

w1

c2
1

+ w2

c2
2

= 1(
∂ p
∂ρ

)
T

. (42)

Equation (42) shows that, in the anisotropic superfluid system,
the weights of sound oscillations decrease due to the enhance-
ments of effective masses.

The imaginary part of the density response function is

χ ′′(q, ω) = Im[χ (q, ω + i0)]

= −πn

2m

{
w1q

c1
[δ(ω − c1q) − δ(ω + c1q)]

+ w2q

c2
[δ(ω − c2q) − δ(ω + c2q)]

}
. (43)

The f -sum rule and the compressibility sum rules (for unit
volume) [36,37] are obtained by

− 1

π

∫ ∞

−∞
dω ω χ ′′(q, ω) = nq2

mZ (α, φ)
,

lim
q→0

{
− 1

π

∫ ∞

−∞
dω

χ ′′(q, ω)

ω

}
= n(

∂ p
∂ρ

)
T

, (44)

or in terms of the dynamic structure factor S(q, ω) =
−1

π (1−e−ω/T )Im[χ (q, ω + i0)],∫ ∞

−∞
dω ω S(q, ω) = nq2

2mZ (α, φ)
,

lim
q→0

∫ ∞

−∞
dω

S(q, ω)

ω
= n

2
(

∂ p
∂ρ

)
T

. (45)

Based on Eqs. (41)–(45), the first and second sounds may be
detected experimentally by measuring the density response
function [15,38].

C. Normal density and sound velocities

Near zero temperature, the gapless phonon excitations
would dominate the thermodynamics. In this case, the normal
density and sound velocities can be obtained analytically. The
normal density can be calculated from phonon excitations
by using Landau’s theory [39]. We assume that a thin tube
filled with liquid moves with the velocity u along the ith
axis direction. The normal part also moves due to dragging
by the tube and in equilibrium with the tube wall, while the

superfluid part is at rest. The current associated normal part is
given by

ji =
∑

q

qin(q), (46)

where qi=x,y,z is the ith component of vector q, n(q) =
1/[e

ω(q)−uqi
T − 1] is the Bose distribution for phonon, the

phonon energy ω(q) = c(q)q, the sound velocity c(q) =
c0

√
q2

x/z1 + q2
y/z2 + q2

z /z3/q, and c0 = √
∂ p/∂ρ is the sound

velocity determined by the compressibility at zero tempera-
ture. The average drift velocity of the phonon gas is exactly
given by

v̄ =
∑

q vin(q)∑
q n(q)

= u, (47)

with the phonon group velocity vi = ∂ω(q)/∂qi.
On the other hand, the current from the normal part is

given by ji = ρniv̄ with the normal density ρni. From Eqs. (46)
and (47) and taking the limit of u → 0, we get

ρni = zi
√

z1z2z3
2π2T 4

45h̄3c5
0

. (48)

Equation (48) shows that the normal density satisfies
the relation ρnx : ρny : ρnz = z1 : z2 : z3. When zi = 1, the
normal density is reduced to Landau’s result ρn,Landau =
2π2T 4/(45h̄3c5

0) [2,35]. The correction of the normal density
relative to the usual Landau result is given by

βi ≡ ρni/ρn,Landau = zi
√

z1z2z3.

The normal particle number density

nn = ρni/(zim) = √
z1z2z3

2π2T 4

45mh̄3c5
0

. (49)

Equation (49) shows that, when the effective masses increase,
the normal density from phonon excitations also increases.
This is because, when zi � 1, the phonon excitation energy ωq

decreases for a fixed momentum q; then the phonon number
also increases for a given temperature T .

Near zero temperature, the free energy is given by

F = E0 + Fphonon,

Fphonon = V fphonon = −T
∑

q

ln

[
1

1 − e−ω(q)/T

]

= TV

(2π h̄)3

∫
d3q ln[1 − e−ω(q)/T ]

= −√
z1z2z3

V π2T 4

90h̄3c3
0

,

where E0 is the ground-state energy. The entropy and heat
capacity are given respectively by

s̃ = −∂ fphonon

nm∂T
= √

z1z2z3
2π2T 3

45nmh̄3c3
0

,

CV = T
∂ s̃

∂T
= √

z1z2z3
2π2T 3

15nmh̄3c3
0

.
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The adiabatic compressibility would equal the isothermal
compressibility, i.e., ( ∂ p

∂ρ
)s̃ � ( ∂ p

∂ρ
)T , so we get the first and

second sound velocities from Eq. (37) as

c1 =
√

1

Z (α, φ)

(
∂ p

∂ρ

)
=

√
1

Z (α, φ)
c0,

c2 =
√

TW (α, φ)

CV
= 1

(z1z2z3)1/4

c1√
3
. (50)

For an isotropic system (z1 = z2 = z3 = 1), the above formula
[Eq. (50)] for second sound recovers the famous Landau’s
result, i.e., c2 = c1/

√
3 [2]. Comparing with the usual case,

the first sound velocity is suppressed by a factor
√

1/Z (α, φ),
while the second sound velocity is suppressed by a factor√

1/(Z (α, φ)
√

z1z2z3). The correction of the second sound
along the ith axis direction is given by

γi ≡ c2

(c0/
√

3)
=

√
1/(zi

√
z1z2z3).

As T → 0, the weight of second sound in the density response
functions is proportional to the difference between two com-
pressibility, i.e., �( ∂ p

∂ρ
) ≡ ( ∂ p

∂ρ
)s̃ − ( ∂ p

∂ρ
)T ∝ T 4 → 0 . So, the

weight of first sound w1 → 1/Z (α, φ), while the weight for
second sound w2 → 0 [see Eq. (42)]. We note that the normal
density and sound velocities in dipolar superfluid bosons with
anisotropic interactions also have been investigated [40,41].

IV. SPIN-ORBIT COUPLED BEC

In this section, we take spin-orbit coupled BEC as an ex-
ample to illustrate the above discussions. The corresponding
Hamiltonian is given by [20–24]

H = H0 + Hint,

H0 =
∫

d3r ψ†

[
(px − k0σz )2 + p2

y + p2
z

2m
+ �

2
σx

]
ψ,

Hint = 1

2

∫
d3r[gψ†

1 (r)ψ†
1 (r)ψ1(r)ψ1(r)

+ 2g′ψ†
1 (r)ψ†

2 (r)ψ2(r)ψ1(r)

+ gψ†
2 (r)ψ†

2 (r)ψ2(r)ψ2(r)], (51)

where k0 and � are the strengths of the spin-orbit and Raman
couplings, respectively. ψ1(2) is the boson field operator and
ψ† = [ψ†

1 , ψ
†
2 ] is the spinor form. g = 4π h̄2as/m and g′ =

4π h̄2a′
s/m are the strengths of the intra- and interspecies inter-

actions with as and a′
s being the s-wave scattering lengths. The

above Hamiltonian breaks the Galilean transformation invari-
ance [42]; however, we will see that the effective low-energy
hydrodynamics for sound oscillations restore the Galilean
invariance [32]. In the following, we focus on the case of
the U(2) invariant interaction, i.e., g′ = g, and set m = 1 and
h̄ = 1 for simplicity.

At zero temperature, the mean-field ground-state wave
function of the Hamiltonian (51) is written as [25,28,43–46]

|0〉 = √
n0

(
cos(θ )

− sin(θ )

)
eip0x,

where n0 is the atom number density in condensates. For
weakly interacting boson gas, n0 ≈ n (the total particle

number density). When � < 2k2
0 , p0 = k0

√
1 − �2/(4k4

0 )

and cos(2θ ) = p0/k0, while for � > 2k2
0 , p0 = 0 and θ =

π/4. A quantum phase transition occurs at � = 2k2
0 where

the sound velocity along the x-axis direction becomes
zero [24,43,47].

A. Normal density from phonon excitations and sound velocities

To investigate the normal density and sound velocities of
the Hamiltonian (51), it is necessary to derive hydrodynamics
for low-energy phonon excitation. Our starting point is the
microscopic equation of the order parameter, i.e., the time-
dependent Gross-Pitaevskii (GP) equation. We assume the
order parameter

|ψ〉 =
(√

n1eiθ1√
n2eiθ2

)
,

which satisfies the time-dependent GP equation [48]. Near the
ground state, we expand the GP equations in terms of small
fluctuations δns and δθs and get four linear equations:

∂tδn1 = −[(p0 − k0)∂xδn1 + n̄1∇2δθ1]

+�
√

n̄1n̄2(δθ1 − δθ2),

∂tδn2 = −[(p0 + k0)∂xδn2 + n̄2∇2δθ2]

−�
√

n̄1n̄2(δθ1 − δθ2),

−∂tδθ1 = −∇2δn1

4n̄1
+ (p0 − k0)∂xδθ1 + (gδn1 + gδn2)

− �

4

(
δn2√
n̄1n̄2

−
√

n̄2

n̄3
1

δn1

)
,

−∂tδθ2 = −∇2δn2

4n2
+ (p0 + k0)∂xδθ2 + (gδn2 + gδn1)

− �

4

(
δn1√
n̄1n̄2

−
√

n̄1

n̄3
2

δn̄2

)
,

where n̄1(2) denotes its average value in the ground state.
Next we introduce the total density fluctuation δn = δn1 +

δn2, the spin polarization δSz = δn1 − δn2, the common phase
δθ = (δθ1 + δθ2)/2, and the relative phase δθR = δθ1 − δθ2.
For low energy (ωq → 0) and long wavelength (q → 0) fluc-
tuations, we adiabatically eliminate the spin parts, i.e., δθR and
δSz. Therefore, we get the effective hydrodynamic equation
for the total density δn and common phase δθ [29], i.e.,

∂tδn = −n

[
∂2

x δθ

z1
+ (

∂2
y + ∂2

z

)
δθ

]
,

(52)
−∂tδθ = gδn,

where n = n̄1 + n̄2 is the average particle density in the
ground state. z1 = 1/ cos2(2θ ) = 1/[1 − �2/(4k4

0 )] describes
the enhancements of effective masses for the plane-wave
phase and z1 = 1/(1 − 2k2

0/�) for the zero-momentum phase.
Near the phase transition point (� → 2k2

0), z1 → ∞. From
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FIG. 1. Corrections of the normal density [panel (a)] and the
second sound velocity [panel (b)] in spin-orbit coupled BEC (along
the x-axis direction). Note that near the phase transition (�/k2

0 → 2),
the effective mass would diverge, i.e., z1 → ∞.

Eq. (52), we get the energies for phonon excitations as

ω±q = c(q̂)q,

where the sound velocity c(q̂) ≡√
cos2(α)/z1+ sin2(α)c0, c0 = √

gn =√
∂ p/∂n = √

n∂μ/∂n
with μ = gn − �2/(8k2

0 ) for the plane-wave phase and
μ = gn + (k2

0 − �)/2 for the zero-momentum phase [28].
q̂ = q/q = {cos(α), sin(α) cos(φ), sin(α) sin(φ)} and α is
the angle between q̂ and x axis. Taking the spatial derivatives
of the second equation and identifying gδn → δμ (deviations
relative to the ground-state values), Eq. (52) becomes the
linear Eq. (38) with z⊥ = z2 = z3 = 1.

From Eqs. (48) and (50), we get the normal density, the
first and second sound velocities in spin-orbit coupled BEC as

ρn(x̂) = z
3
2
1

2π2T 4

45h̄3c5
0

,

ρn(ŷ) = ρn(ẑ) = z
1
2
1

2π2T 4

45h̄3c5
0

,

c1(q̂) = c0

√
cos2(α)/z1 + sin2(α),

c2(q̂) = 1

(z1)1/4

c1(q̂)√
3

. (53)

Along the x direction, the corrections of the normal density
and the second sound velocity are given by

β1 = z
3
2
1 , γ1 = 1/z

3
4
1 . (54)

From Eqs. (53) and (54), we see that, with increasing the
effective mass, the normal density increases, while the second
sound velocity decreases. Especially, when � → 2k2

0 , i.e.,

near the phase transition point (z1 = 1/

√
1 − �2/(4k4

0 ) or

1/[1 − 2k2
0/�] → ∞), the effective mass diverges along the

x-axis direction. The normal density ρn(x̂) from phonon exci-
tations would increase greatly (see Fig. 1), while the second
sound velocity along the x-axis direction c2(x̂) → 0.

B. Superfluid density and Josephson relation

With the above linearized hydrodynamic equations, in the
following we give a unified derivation for superfluid density
and Josephson relation in spin-orbit coupled BEC. We should
stress that one can take two different viewpoints on the effects
of enhancement of effective mass in Eq. (52). The first one
is that the particle number density does not change, while
the superfluid velocity decreases due to a factor 1/z1, which
is adopted by previous sections in this paper. The other one
is that the superfluid density decreases, while the superfluid
velocity does not change, which would be adopted in the
following parts in this subsection.

We introduce superfluid density along the q̂ direction ρs(q̂)
as

ρs(x̂) = n/z1, ρs(ŷ) = ρs(ẑ) ≡ ρs⊥ = n,

ρs(q̂) = ρsx cos2(α) + ρs⊥ sin2(α). (55)

In this case, Eq. (52) becomes

∂tδn = −ρs(x̂)∂2
x δθ − ρs⊥

(
∂2

y + ∂2
z

)
δθ,

−∂tδθ = gδn. (56)

In the following, we will show that ρs(q̂) is indeed the
superfluid density.

We can write down an effective Hamiltonian for the hydro-
dynamic Eq. (56) as

Heff = 1

2

∫
d3r{ρs(x̂)(∂xδθ )2

+ ρs⊥[(∂yδθ )2 + (∂zδθ )2] + g(δn)2}. (57)

Assuming the commutator relation {δθ (r), δn(r′)} =
−δ3(r − r′) holds (Poisson brackets), we can easily get
the above hydrodynamic Eq. (56) from Hamilton’s equations,
i.e.,

∂tδn(r) = {δn(r), Heff}, ∂tδθ (r) = {δθ (r), Heff}.

Further assuming the quantized commutator relation
[δθ (r), δn(r′)] = −iδ3(r − r′) holds [49], the phase δθ

and density δn can be expressed in terms of the phonon’s
annihilation and creation operators

δθ (r, t ) =
∑

q

[
AqCqei(q·r−ωqt ) + A∗

qC†
qe−i(q·r−ωqt )

]
,

δn(r, t ) =
∑

q

[
BqCqei(q·r−ωqt ) + B∗

qC†
qe−i(q·r−ωqt )

]
,

where Aq(Bq) is a coefficient to be determined and Cq is
the annihilation operator for phonon. From the continuity
equation

∂tδn = −ρs(x̂)∂2
x δθ − ρs⊥

(
∂2

y + ∂2
z

)
δθ,

we get

−ic(q̂)Bq = qρs(q̂)Aq.
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From the commutator relation [δθ (r), δn(r′)] = −iδ3(r −
r′), we get AqB∗

q = −i/2 and then Aq = √
c(q̂)/[2ρs(q̂)q],

Bq = i
√

ρs(q̂)q/[2c(q̂)]. Finally, we have

δθ (r, t ) =
∑

q

√
c(q̂)

2ρs(q̂)q

[
Cqei(q·r−ωqt ) + C†

qe−i(q·r−ωqt )
]
,

δn(r, t ) = i
∑

q

√
ρs(q̂)q

2c(q̂)

[
Cqei(q·r−ωqt ) − C†

qe−i(q·r−ωqt )
]
.

(58)

From Eq. (58), we get density and phase fluctuations in terms
of phonon operators as

nq = i

√
ρs(q̂)q

2c(q̂)
(Cq − C†

−q),

θq =
√

c(q̂)

2ρs(q̂)q
(Cq + C†

−q). (59)

From Eq. (59), we can verify that ρs(q̂) is indeed the su-
perfluid density. For example, the superfluid density can be
written as [26]

ρs(q̂) = c2(q̂)κ (q̂)

= lim
q→0

|〈q|n−q|0〉|2ωq + |〈−q|nq|0〉|2ωq

q2
, (60)

where

κ (q̂) = lim
q→0

[
|〈q|n†

q|0〉|2
c(q̂)q

+ |〈−q|n†
−q|0〉|2

c(q̂)q

]

is the compressibility, |0〉 is the ground state, and |q〉 = C†
q |0〉

is the single-phonon state. In Eq. (60), we have used the
fact that the single-phonon’s contribution is dominant in the
compressibility [26] and ω±q = c(q̂)q. Due to influences of
the upper branch, in spin-orbit coupled BEC, the superfluid
density ρs(q̂) would be smaller than the total density, i.e.,
ρs(q̂) < n [26]. In this sense, we can interpret that the sup-
pression of superfluid density in spin-orbit coupled BEC is
due to the enhancement of effective mass.

On the other hand, as q → 0 and at low energy, the boson
field operator can be written as [49]

ψσ (r) = 〈ψσ 〉eiδθ (r) � 〈ψσ 〉[1 + iδθ (r)].

So we get

ψσ,q = i〈ψσ 〉θq = i〈ψσ 〉
√

c(q̂)

2ρs(q̂)q
[Cq + C†

−q]. (61)

With Eq. (61), the matrix element 〈0|ψσ,q|q〉 =
i〈ψσ 〉

√
c(q̂)

2ρs (q̂)q , 〈−q|ψσ,q|0〉 = i〈ψσ 〉
√

c(q̂)
2ρs (q̂)q , and the

Green’s function matrix Gσ,σ (q, 0) = −∑
n[

〈0|ψσq|n〉〈n|ψ†
σq|0〉

ωn0

+ 〈0|ψ†
σq|n〉〈n|ψσq|0〉

ωn0
] � − |〈ψσ 〉|2

ρs (q̂)q2 as q → 0 [50]. In the above
derivations, we have also used the fact that the single-phonon
states have dominant contributions in the Green’s function as
q → 0 and excitation energies for single-phonon states

ωn0 = ω±q = c(q̂)q. Using n0 = ∑
σ=1,2 |〈ψσ 〉|2, the

Josephson relation is obtained [50]:

ρs(q̂) = − lim
q→0

n0

q2trG(q, 0)
. (62)

The superfluid density from the Josephson relation [Eq. (62)]
is also consistent with the current-current correlation calcula-
tions [26].

From Eq. (61) of ψσ,q, we get the momentum distribution
function as q → 0,

Nq =
∑

σ=1,2

〈ψ†
σ,qψσ,q〉 = n0c(q̂)

2ρs(q̂)q
(2nq + 1),

where nq = 1/(eωq/T − 1) is the phonon Bose distribution
function for the rest frame. Specially, at T = 0 and as
q → 0, Nq = n0c(q̂)/[2ρs(q̂)q] ∝ 1/q; when ωq � T, Nq =
n0T/[ρs(q̂)q2] ∝ 1/q2, which are generalizations of the
isotropic results [49,51].

Using the effective Hamiltonian (57), we can calculate
the phase or density fluctuations within the hydrodynamic
formalism [35]. The energy in the momentum space is given
by

δE = Heff = 1

2

∫
d3r{ρs(x̂)(∂xδθ )2

+ ρs⊥[(∂yδθ )2 + (∂zδθ )2] + g(δn)2}

= 1

2

∑
q

[ρs(q̂)q2|θq|2 + g|nq|2]. (63)

Because the thermal probability distribution

P ∝ e−δE/T = e− 1
2

∑
q [ρs (q̂)q2|θq|2+g|nq|2]/T ,

for the long wavelengths (ωq � T ), the thermal fluctuations
of the phase and density are given by

〈|θq|2〉 = T

ρs(q̂)q2
, 〈|nq|2〉 = T

g
.

Along the x-axis direction (q̂ = x̂), we see the phase fluc-
tuation near the phase transition point [ρs(x̂) → 0] is very
dramatic and diverges, while the density fluctuation is always
finite.

V. CONCLUSION

In summary, we have generalized the two-fluid theory to
a superfluid system with anisotropic effective masses. As a
specific example, this theory is used to investigate spin-orbit
coupled BEC realized in recent experiments. At low temper-
ature, the normal density from phonon excitations and the
second sound velocity have been obtained analytically. Near
the phase transition from the plane wave to zero-momentum
phases, due to the effective mass divergence, the normal den-
sity from phonon excitation increases greatly, while the sec-
ond sound velocity is suppressed significantly. With quantum
hydrodynamic formalism, we have given a unified derivation
for the suppressed superfluid density and Josephson relation.
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Before ending this paper, we make three remarks. The first
is that our previous calculations are restricted to the case of
z > 1. However, our theory can be extended straightforwardly
to the other case of 0 < z < 1. The main results are similar
and thus are not discussed here. The second is that, for the
spin-coupled BEC at higher temperature, the up gapped exci-
tation would play an important role in hydrodynamics. Thus
how to take account of the up branch excitations properly
and construct corresponding hydrodynamic theory still needs
further investigations. The last is that, when the system is
exactly at the phase-transition point from the plane-wave
and zero momentum phases, the quadratic effective mass
terms (∝p2) in the Hamiltonian (15) would vanish, while
quartic terms (∝p4) may play an important role. In such
case, the corresponding hydrodynamics also needs further
investigation.
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