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Superadiabatic generation of cat states in bosonic Josephson junctions under particle losses
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We investigate a superadiabatic scheme to produce a cat state in a bosonic Josephson junction in absence
and presence of particle losses. The generation scheme is based on shortcuts to adiabaticity and strongly relies
on the parity conservation. The parity conservation also ensures that the produced state is a superposition of
cat states with various sizes. Parity is also the quantity to be measured in order to utilize the produced state
in interferometry. The generation scheme still works even if a number of particle losses during generation are
substantial.
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I. INTRODUCTION

Paradigmatic examples of nonclassical states would be
macroscopic superpositions as proposed by Schrödinger more
than 80 years ago. The Schrödinger cat state is actually one
of the most unusual phenomena in quantum mechanics, also
known by a broad audience, which moreover can be poten-
tially used in quantum computing [1] or interferometry [2,3].
There are numerous proposals to produce such states. On
the other hand, not many successful experiments have been
reported in this field—the results have been limited to small
systems consisting of a few ions [4,5] or several photons [6,7].

Many ideas to produce the cat states originate in simple
theoretical models, which approximately describe certain real
systems. Those are sometimes oversimplified, however they
provide us with a lot of intuition about dynamics of ultra-
cold atoms. An illustrative example is bimodal Bose-Einstein
condensation, typically understood in the frame of the single-
mode approximation, where we assume that all atoms share a
common spatial mode and their dynamics is limited in two
internal levels [8,9]. This is actually a system, for which
many schemes to produce highly entangled states have been
proposed. Not only that but also many successful experiments
have been reported, in which the squeezed [10–12] and over-
squeezed [13] states were produced.

There is a certain class of systems, of which the ground
states become the cat states for certain parameters. Indeed,
bimodal Bose-Einstein condensation can be the cat state as
the ground state [8]. For such a system, we can think of a gen-
eration scheme, where we adiabatically drive this system from
a parameter region, for which the ground state can be easily
obtained, to a parameter region, for which the ground state
is a macroscopic superposition [8,14]. The main difficulty of
this scheme is to maintain adiabaticity, i.e., critical slowing
down disables us from keeping a system in the ground state.
One of the ways to overcome this difficulty is to utilize short-
cuts to adiabaticity [15]. In this solution, besides dynamical
changes of parameters, we add time-dependent terms, which
help in preserving adiabaticity of original problems [16–18].
This technique turned out to be very effective in control of

Bose-Einstein condensation. For example, transformation of
trap potential [19–21] and generation of highly entangled
states [22–25] have been proposed. Some experimental real-
izations of shortcuts to adiabaticity in Bose-Einstein conden-
sation have also been reported [26–28].

For bimodal Bose-Einstein condensation, such additional
terms counteracting diabatic changes were proposed [25]. The
form of the additional Hamiltonian is nothing but the two-axis
countertwisting (TACT) Hamiltonian [29]. There are many
proposals to implement the TACT Hamiltonian, for example,
counterpropagating flows of ultracold atoms on a ring [30]
and dipolar interactions in spinor Bose-Einstein condensation
[31], while it has not been realized yet. Recently, physically
related schemes have been also studied [32].

Although realization of the TACT Hamiltonian is future
work, one could question if the superadiabatic scheme based
on shortcuts to adiabaticity [25] has any chance to work.
In particular, one would be interested in generation of the
cat state under particle losses, which always take place in
ultracold atoms due to collisions among atoms, because just
single-particle loss is enough to completely destroy entangle-
ment of the NOON state. It is also known that generation of
highly entangled states by the paradigmatic one-axis twisting
Hamiltonian also suffers from particle losses, where the inter-
play of nonlinear dynamics and particle losses induces various
noises [33–35]. One can then question if the nonlinear terms
added to the Hamiltonian, which are needed for shortcuts to
adiabaticity, induce side effects under particle losses or not.
In particular, it would be of interest if there is any advantage
of adding such extra nonlinear terms. From this viewpoint,
here we discuss effects of losses in the superadiabatic scheme
[25] and indicate the possibility to obtain potentially useful
macroscopic superpositions.

This paper is constructed as follows. Section II is the
brief summary of our methodology. We review basic prop-
erties of bosonic Josephson junctions and explain a genera-
tion scheme based on adiabatic time evolution in Sec. II A.
We introduce the formalism of shortcuts to adiabaticity by
counterdiabatic driving and apply it to a bosonic Joseph-
son junction in Sec. II B. We introduce the Monte Carlo
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wave-function method in order to take particle losses into
account in Sec. II C. Section III is devoted to results. In
Sec. III A, the superadiabatic scheme is compared with the
naive adiabatic scheme. In Sec. III B, we discuss the form of a
produced state by introducing the parity operator and discuss
how to detect it. In Sec. III C, we show that particle losses
do not drastically change distributions of states both in the
adiabatic and the superadiabatic schemes. In Sec. III D, we
discuss a possibility of detecting cat states and survival of
entanglement under particle losses. We summarize the present
work in Sec. IV.

II. METHODS

A. Adiabatic scheme generating a cat state

Suppose that a Bose-Einstein condensate can be well de-
scribed by using the single-mode approximation for spatial
degrees of freedom and two internal levels. These two modes
are represented by bosonic operators a1 (a†

1) and a2 (a†
2),

respectively. By using the angular momentum expression

Jx = 1
2 (a†

1a2 + a†
2a1), (1)

Jy = i
2 (a†

2a1 − a†
1a2), (2)

Jz = 1
2 (a†

1a1 − a†
2a2), (3)

the Hamiltonian of a bosonic Josephson junction is given
by [8,9]

HBJJ = h̄χJ2
z + h̄�Jx, (4)

where we assume that both the nonlinear interaction parame-
ter χ and the coupling parameter � are negative, χ < 0 and
� < 0. Here, the angular momentum operators satisfy the
usual commutation relations, [Jα, Jβ ] = iεαβγ Jγ . The com-
petition between the nonlinear interaction and the coupling
results in the phase transition at the critical point with the pa-
rameter � ≡ χN/� = 1, where N is the number of particles.
The system is in the disordered phase when 0 < � < 1 and in
the ordered phase when � > 1 [8,36].

The ground state in the ordered phase is a cat state, i.e.,
a macroscopic superposition of a mode-1 condensate and
a mode-2 condensate [8,36]. Especially, the ground state
corresponding to �−1 = 0 can be the NOON state [37].
However, if the system is cooled down into the ground state
directly, it would result in a statistical mixture of a mode-1
condensate and a mode-2 condensate. One of the strategies
to create a cat state is adiabatically tracking the ground state
from the disordered phase (or just above the critical point)
to the ordered phase by sweeping the parameter � [8,14,38].
One of the difficulties of this strategy is that it ends in failure
due to nonadiabatic transitions unless we take a long enough
time [39], whereas the parity conservation enables us to
ignore the small energy gap between the ground state and the
first excited state [38].

B. Superadiabatic scheme

By using the theory of shortcuts to adiabaticity [15], we
can mimic adiabatic dynamics within a short time. In the
counterdiabatic driving approach [16–18], the counterdiabatic

Hamiltonian cancels out diabatic changes. For a given sys-
tem described by a time-dependent Hamiltonian H0(t ), we
consider the adiabatic time evolution operator Uad(t ), i.e., the
solution of the Schrödinger equation ih̄∂tUad(t ) = H(t )Uad(t )
becomes adiabatic time evolution of the original Hamiltonian
H0(t ). Here, the total Hamiltonian H(t ) = ih̄[∂tUad(t )]U †

ad(t )
is decomposed into the original Hamiltonian and the counter-
diabatic Hamiltonian:

H(t ) = H0(t ) + HCD(t ). (5)

The approximate counterdiabatic Hamiltonian for the
bosonic Josephson junction (4) is given by

HCD = h̄ f

N
(JyJz + JzJy), (6)

where the schedule of counterdiabatic driving f is given by

f = −1

2

[
h̄� − h̄χN

2

(
1 − 1

N

)]
∂t (h̄�)[

h̄� − h̄χN
2

(
1 − 1

N

)]2 − ( h̄χN
2

)2(
1 − 1

2N

)2 , (7)

in the disordered phase, 0 < � < 1, and

f =
[
h̄χN

(
1 − 1

N

)(
1 − 3

N

) + 5h̄�
2�

1
N

(
1 − 7

4N

)]
∂t

(
h̄�
2�

)
[
h̄χN

(
1 − 1

N

) − h̄�
2�

(
1 − 3

N

)]2 − (
h̄�
2�

)2(
1 − 1

2N

)2 , (8)

in the ordered phase, � > 1, respectively [25]. Here, for
simplicity, we assume that the nonlinear interaction parameter
χ is time independent and the coupling parameter � is time
dependent. With the Hamiltonian

H = HBJJ + HCD, (9)

we can create a catlike state in a bosonic Josephson junction
within a relatively short time [25]. In order to design a contin-
uous schedule of counterdiabatic driving, the time derivative
of the coupling parameter should be zero at the initial time, at
the final time, and at the time passing the critical point � = 1.

Up to a choice of a reference frame, the counterdiabatic
Hamiltonian (6) is nothing else but the TACT Hamiltonian
as introduced in the context of spin squeezing [29] and also
studied before as the Lipkin-Meshkov-Glick model [40]. Note
that this form of interaction has not been realized yet, but
there are theoretical proposals to implement in experiments
[30,31]. It should be also noted that the similar counterdiabatic
Hamiltonian in the thermodynamic limit [41] and another
approximate counterdiabatic Hamiltonian [42] have also been
proposed. However, they cannot be applied to the above
scheme due to criticality.

C. Particle losses during generation

We take particle losses into account by using the
Monte Carlo wave-function method [43,44]. We consider
the Schrödinger dynamics with the non-Hermitian effective
Hamiltonian

Heff = H − ih̄

2

∑
n

C†
nCn, (10)

where Cn is the quantum jump operator. In this paper, we only
consider one-body losses for simplicity and thus the quantum
jump operator is given by Cn = √

γnan, n = 1, 2. Here γn

gives the decay rate of particles. Suppose that a state is given
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by |
〉. We define the probability of particle losses during a
given time interval δt as δp ≡ δt

∑
n〈
|C†

nCn|
〉 ≡ ∑
n δpn.

With the probability δp, particles are lost as |
〉 → Cn|
〉.
The type of the particles is selected with the probability
δpn/δp. Note that we normalize the wave function at each step
of numerical simulation. We average trajectories in the form
of the density operator

ρ = 1

M

M∑
l=1

|
 (l )〉〈
 (l )|, (11)

where |
 (l )〉 represents the lth trajectory of the stochastic
wave function and M represents the number of trajectories.
This density operator ρ for enough large M is equivalent to
the solution of the master equation

∂

∂t
ρ = i

h̄
[ρ,H] + Lρ, (12)

where L is the Lindblad superoperator:

Lρ =
∑

n

[
CnρC†

n − 1

2
(C†

nCnρ + ρC†
nCn)

]
. (13)

In this paper, we assume the equal decay rate γ ≡ γ1 = γ2

for simplicity. Then, the number of lost particles is given by

Nloss = N (1 − e−γ t ), (14)

where N is the number of particles at the initial time, and thus
the number of residual particles is given by

Nres = N − Nloss = Ne−γ t . (15)

III. RESULTS

A. Generation of cat states

We can consider two adiabatic schemes. One is to start with
the trivial ground state in the disordered phase and to track the
ground state into the ordered phase [8,14]. Experimentally,
we would be able to realize this scheme by cooling down
in the disordered phase and by adiabatically sweeping the
parameters. The other scheme is to start with the ground state
just above the critical point [38]. In this case, we do not need
to suffer from passing the critical point. However, it is difficult
to prepare the ground state just above the critical point by
cooling down due to the small energy gap. We should prepare
by using, for example, a π/2 pulse.

First, we study these two schemes with and without the
approximate counterdiabatic Hamiltonian (6). We assume that
the schedule that starts with the ground state in the disordered
phase is given by

�−1 = 48s5 − 120s4 + 100s3 − 30s2 + 2, (16)

where s = t/t f and �−1 : 2 → 0. This schedule is designed
from the boundary conditions, �−1(s = 0) = 2, �−1(s =
1/2) = 1, and �−1(s = 1) = 0 with ∂s�

−1|s=0,1/2,1 = 0.
Here, t f is the time at the end of the generation scheme.
In contrast, we assume that the schedule that starts with the
ground state just above the critical point is given by

�−1 = 1
2 (cos πs + 1), (17)

where �−1(s = 0) = 1 and �−1(s = 1) = 0 with ∂s

�−1|s=0,1 = 0. These generation schemes result in the
NOON state

|
NOON〉 = 1√
2

(|N, 0〉 + |0, N〉), (18)

if we take a long enough time. However, due to finite time
processes and approximations, the resulting states become
other states. We show how generated states deviate from the
NOON state under these situations.

In order to compare them quantitatively, we introduce the
residual energy

Eres = E − EGS, (19)

where E is the energy of the generated state and EGS is that
of the ground state (the NOON state), and also introduce the
quantum Fisher information concerning the operator Jz,

FQ[ρ, Jz] = 2
∑
k,l

pk+pl >0

(pk − pl )2

pk + pl
|〈k|Jz|l〉|2, (20)

where ρ = ∑
k pk|k〉〈k| is a given density operator. For pure

states the formula (20) reduces to

FQ[|
〉, Jz] = 4〈(�Jz )2〉 = 4
(〈

J2
z

〉 − 〈Jz〉2
)
. (21)

The generated states are close to the ground state when the
residual energy is small. Moreover, the generated states have
large entanglement when the quantum Fisher information
is large. Especially, the minimum of the residual energy is
zero and the maximum of the quantum Fisher information
is N2, which can be achieved by the NOON state. We plot
these quantities of the generated states for both schemes with
and without counterdiabatic driving in Fig. 1. Here, N = 50.
The filled symbols represent the schemes starting with the
ground state in the disordered phase and the open symbols
represent the schemes starting with the ground state just above
the critical point. The purple circles represent the schemes
assisted by the counterdiabatic Hamiltonian (6) and the green
squares represent the naive adiabatic schemes. It is clear that
adiabaticity is improved by the counterdiabatic Hamiltonian
(6) in both schemes (16) and (17) when generation time χt f is
small. Because we are interested in fast generation schemes,
which enable us to minimize effects of decoherence, these
results encourage us to investigate short-time regimes with the
counterdiabatic Hamiltonian.

It should be noted that acceleration of quantum dynamics
can be simply achieved by increasing the strength of the
nonlinear interaction χ . Then, one might wonder if there is
an advantage of counterdiabatic driving or not, which requires
the additional TACT Hamiltonian. From the Hamiltonians (4)
and (6), we should study the energy scale f /χN , which shows
the strength of the required TACT Hamiltonian compared with
the original nonlinearity. Here we plot f /χN with respect to
s = t/t f for |χt f | = 0.04, 0.08, 0.12, 0.16, 0.2 in Fig. 2. Ac-
cording to the results of Figs. 1 and 2, the present superadia-
batic scheme is actually efficient from the viewpoint of the en-
ergy cost. It should be also noted that the TACT Hamiltonian
itself has the ability to generate highly entangled states. Then,
one might also wonder if large entanglement is just generated
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FIG. 1. (a) Residual energy and (b) quantum Fisher information.
In both (a) and (b), the filled symbols represent the schemes starting
with the ground state in the disordered phase, the open symbols
represent the schemes starting with the ground state just above the
critical point, the purple circles represent the schemes assisted by
the counterdiabatic Hamiltonian (6), and the green squares represent
the naive adiabatic schemes. Here, N = 50.

by the additional TACT Hamiltonian or not. Here we study
entanglement dynamics driven by the total Hamiltonian H =
HBJJ + HCD, the original bosonic Josephson-junction Hamil-
tonian HBJJ, and only the counterdiabatic Hamiltonian HCD.
We plot the results of the case with |χt f | = 0.04 starting from
the disordered phase in Fig. 3. It is clear that resulting large
entanglement is generated by the combination of the original
bosonic Josephson-junction Hamiltonian and the additional
TACT Hamiltonian.

Hereafter, we only consider the schemes starting with the
ground state in the disordered phase because those starting
with the ground state just above the critical point are included
in the former cases and show similar results.

B. Parity conservation and measurement

In this section, we first discuss the form of the produced
state. Because our generation scheme is not the ideal, the
generated state is not the NOON state. Indeed, we can show
that our method generates a superposition of cat states with
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FIG. 2. Strength of the required TACT Hamiltonian compared
with the original nonlinearity. Here we consider the cases starting
from the ground state (a) in the disordered phase and (b) at the critical
point. The parameters are |χt f | = 0.04, 0.08, . . . , 0.2 [plotted by
gradation from blue to red (for the grayscale version, from larger
values to smaller values)] and N = 50.

various sizes

|
〉 =
N/2∑
m=0

gm|
m〉, (22)

where |
m〉 is a cat state

|
m〉 = 1√
2

(|N − m, m〉 + |m, N − m〉), (23)

for m = 0, 1, 2, . . . , N/2 − 1 and |
N/2〉 = |N/2, N/2〉. This
is shown by using the parity operator

� = exp[iπ (J − Jx )], (24)

where J = N/2 = (a†
1a1 + a†

2a2)/2. As the initial state, we
prepare the ground state, which has the parity +1. Then the
commutation relations

[HBJJ,�] = 0, [HCD,�] = 0 (25)

ensure conservation of the parity during generation. Note that
the conservation of the parity during the adiabatic scheme was
shown in Ref. [38], but it also holds during the superadiabatic
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FIG. 3. Time evolution of quantum Fisher information. The
system is driven by (purple circles) the total Hamiltonian H =
HBJJ + HCD, (green squares) the original bosonic Josephson junction
Hamiltonian HBJJ, and (light blue triangles) only the counterdiabatic
Hamiltonian HCD. Here, |χt f | = 0.04 and N = 50.

scheme. Therefore, the parity of the final state is also +1, and
thus it takes the form of Eq. (22).

This knowledge of the form of the generated state is useful
to calculate physical quantities. Indeed, the residual energy
and the quantum Fisher information can be calculated as

Eres = h̄χ

4

[
N/2∑
m=0

|gm|2(N − 2m)2 − N2

]
(26)

and

FQ[|
〉, Jz] =
N/2∑
m=0

|gm|2(N − 2m)2, (27)

respectively. We can actually reproduce the results in Fig. 1 by
using these formulas. These expressions also imply that small
residual energy leads to large quantum Fisher information,
i.e., a low-energy state has large entanglement.

Next, we show that the parity operator can also be used
to detect the generated superposition of cat states, i.e., by
measuring the parity after rotation along the z axis we can
detect the superposition of cat states. That is, for a given state
|
〉, we consider rotation θ ,

|
θ 〉 = e−iθJz |
〉, (28)

and then we measure the parity 〈�〉θ = 〈
θ |�|
θ 〉 or its vari-
ance 〈��2〉θ = 1 − 〈�〉2

θ . When the given state is the NOON
state (18), these quantities give perfect interference fringes
with the frequency N [45], i.e., 〈�〉NOON

θ = cos(Nθ ) and
〈��2〉NOON

θ = 1 − cos2(Nθ ) = sin2(Nθ ). In contrast, when
the given state is not a quantum superposed state but a classi-
cal mixed state, these quantities are 〈�〉cl

θ = 0 and 〈��2〉cl
θ =

1. It was shown that a superposition of two coherent spin states
also shows similar interference fringes [38].

Our superposition of cat states (22) gives

〈�〉θ =
N/2∑
m=0

|gm|2 cos[(N − 2m)θ ] (29)

−1

−0.5

0

0.5

1

0 2 4 6 8 10

Π
θ

Nθ/2π

FIG. 4. Parity measurement for the superposition of cat states
generated by the superadiabatic scheme. Here N = 50 and |χt f | =
0.04.

and

〈��2〉θ = 1 −
{

N/2∑
m=0

|gm|2 cos[(N − 2m)θ ]

}2

, (30)

which also show interference fringes. However, the frequency
of interference fringes is no longer N . We expect that it is
similar to N when |g0|2 is much larger than others, |gm|, where
m = 1, 2, . . . , N/2. As an example, we depict the result of the
parity measurement for a superposition of cat states generated
by the superadiabatic scheme in Fig. 4. Here, the parameters
are N = 50 and |χt f | = 0.04. We could detect this superposi-
tion of cat states and roughly estimate the dominant number of
particles comprising this superposition of cat states. It would
be also possible to determine the distribution {|gm|2} by using
the Fourier analysis.

The measurement of the parity after rotation e−iθJz is
nothing but the scheme used in interferometry to estimate θ .
This interferometric scheme gives one of the lower bounds of
quantum Fisher information [46], which is also known as the
error-propagation formula,

FQ[|
θ 〉, Jz] � FEP ≡ |∂θ 〈�〉θ |2
〈(��)2〉θ , (31)

which can be calculated by using Eqs. (29) and (30). In the
limit θ → 0, it leads to

FEP →
N/2∑
m=0

|gm|2(N − 2m)2, (32)

which is identical to the quantum Fisher information (27).
That is, the parity measurement with rotation e−iθJz is the best
method of interferometry that maximally extracts the potential
of the superposition of cat states (22). This agrees with the
known properties of the path symmetric states in optics [47].

C. Distributions of states and particle losses

Now we study effects of particle losses during adiabatic
and superadiabatic generation of the superposition of cat
states. We average 5000 trajectories of the Monte Carlo wave
function, which is large enough to describe loss processes.
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FIG. 5. The Wigner functions of states generated by the adiabatic scheme. The left panels are the cases without particle losses and the right
panels are those with particle losses (γ = 0.05). The upper panels are generated within χt f = 0.04, the middle panels are within χt f = 0.2,
and the lower panels are χt f = 0.4. Here, N = 50.

Here we utilize the SU(2) Wigner function [48] in order
to visualize the distributions of the produced states and their
entanglement. The SU(2) Wigner function is usually defined
for a fixed number of particles. However, in our case, the
density operator is block-diagonalized for each number of
particles as

ρ =
N∑

n=0

pnρn, (33)

due to particle losses. Here, pn is a probability of finding n
atoms and ρn is the density operator in the n particle subspace.
In this case, the SU(2) Wigner function takes the following

form:

W (θ, φ) =
N∑

n=0

pnWn(θ, φ), (34)

where Wn(θ, φ) is the SU(2) Wigner function for the density
operator in the n particle subspace [48].

In Fig. 5, we depict the SU(2) Wigner function of states
generated by the naive adiabatic scheme. The left panels
are the cases without particle losses and the right panels are
those with particle losses (γ = 0.05). The upper panels are
generated within χt f = 0.04, the middle panels are within
χt f = 0.2, and the lower panels are χt f = 0.4. Note that the
numbers of lost particles are about 5% of the initial particles

043621-6



SUPERADIABATIC GENERATION OF CAT STATES IN … PHYSICAL REVIEW A 99, 043621 (2019)

0

π/2

π

-π 0 π

θ

φ

-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2
 2.5

0

π/2

π

-π 0 π

θ

φ

-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2
 2.5

0

π/2

π

-π 0 π

θ

φ

-3

-2

-1

 0

 1

 2

 3

0

π/2

π

-π 0 π

θ

φ

-3

-2

-1

 0

 1

 2

 3

0

π/2

π

-π 0 π

θ

φ

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

0

π/2

π

-π 0 π

θ

φ

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

FIG. 6. SU(2)Wigner functions of states generated by the superadiabatic scheme. The left panels are the cases without particle losses and
the right panels are those with particle losses (γ = 0.05). The upper panels are generated within χt f = 0.04, the middle panels are within
χt f = 0.2, and the lower panels are χt f = 0.4. Here, N = 50.

for χt f = 0.04, about 22% of those for χt f = 0.2, and about
39% of those for χt f = 0.4, respectively. When the generation
time is too short (χt f = 0.04), the state cannot follow change
of the Hamiltonian, and thus the final state results in a spin
coherentlike state, which is similar to the initial state. For
much longer duration of evolution (χt f = 0.2), the final state
becomes a spin squeezedlike state. When we take a long time
(χt f = 0.4), the final state is much more squeezed. We have
to take much more time in order to obtain a catlike state.

In Fig. 6, we depict the SU(2) Wigner function of states
generated by the superadiabatic scheme. The parameters are
identical to Fig. 5. Even if the generation time is short (χt f =
0.04), two peaks appear with large distance, but with a “tail”

between them. Therefore, it rather resembles an intermediate
state between a cat state and a spin squeezed state. Then
at the generation time χt f = 0.2, it is clearly a complicated
non-Gaussian state, whereas for χt f = 0.4 one obtains the
SU(2) Wigner function with two distinct local maxima, which
is similar to that of a cat state.

In the superadiabatic scheme, as well as in the adiabatic
scheme, particle losses do not change distributions drastically
despite the fact that until χt f = 0.4 around 20 particles from
an initial 50 particles have been lost. Apparently the state is
changed by losses, but still there are thin negative fringes
in the SU(2) Wigner function, which indicate entanglement
between atoms. Moreover, thin negative fringes in the SU(2)
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Wigner function also suggest potential usefulness for high
interferometric sensitivity. This stems from the fact that an
interferometer is a device which rotates a state around the
interferometric axis. This device could be more sensitive if
smaller rotation angles can be distinguished with the refer-
ence state. Therefore, thinner structures in the SU(2) Wigner
function lead to more chance for precise interferometry. Of
course, more detailed analysis is necessary to confirm the
interferometric usefulness. In order to that, we will come back
to the parity measurement and also behavior of the quantum
Fisher information under particle losses.

D. Survival of superposition of cat states under particle losses

In this section, we see how entanglement properties and
outcomes of the parity measurement change when particle
losses take place.

As discussed in Sec. III B, the parity conservation is the key
concept of adiabatic and superadiabatic generation. However,
the parity is no longer a conserved quantity when particle
losses take place. Indeed, the Lindblad equation (12) leads to

∂

∂t
〈�〉 = 2γ 〈(Jx − J )�〉, (35)

which shows time evolution of the parity. Here we determine
the form of the density operator by using this equation.
Because (Jx − J ) and � commute, we obtain

Tr{(Jx − J )[�,ρ]} = 0. (36)

This leads to the invariance of the density operator under the
parity operation

ρ = �ρ�. (37)

It ensures that the density operator is block-diagonalized in
the parity � = +1 sector and the parity � = −1 sector, i.e.,
the density operator can be written as

ρ = ρ+ + ρ−. (38)

Here we introduce the parity � = ±1 eigenstates∣∣
 (M )
m,±

〉 = 1√
2

(|M − m, m〉 ± |m, M − m〉), (39)

and then ρ± can be written as

ρ± =
N∑

M=0

M/2∑
m,n=0

g±
m(g±

n )∗
∣∣
 (M )

m,±
〉〈



(M )
n,±

∣∣. (40)

Then, the parity after rotation e−iθJz is given by

〈�〉θ =
N∑

M=0

M/2∑
m=0

(|g+
m|2 − |g−

m|2) cos[(M − 2m)θ ]. (41)

Therefore, we still have a chance to observe interference
fringes. Indeed, we can find them in Fig. 7, where the
outcomes of the parity measurement are plotted for γ =
0, 0.01, 0.02, . . . , 0.1 (the percentage of numbers of lost par-
ticles with respect to those of initial particles is from 0 to ≈
10%). When large numbers of particles are lost, we cannot
easily find the number of residual particles comprising the
superposition of cat states, which is associated with blurred

−1

−0.5

0

0.5

1

0 2 4 6 8 10

Π
θ

Nresθ/2π

FIG. 7. Parity measurement for states generated by the superadi-
abatic scheme under particle losses with γ = 0, 0.01, 0.02, . . . , 0.1
[plotted by gradation from black to red (for the grayscale version,
from larger values to smaller values)]. Here N = 50 and |χt f | =
0.04.

distributions. However, it should be enough to find the evi-
dence of the superposition of cat states.

Next, we study how the quantum Fisher information de-
creases when some particles are lost. Because the quantum
Fisher information of cat states is scaled by the square
of the number of particles, we plot FQ[ρ, Jz]/N2

res with
respect to Nloss in Fig. 8. The quantum Fisher informa-
tion remains above the standard quantum limit even if
≈20% of the initial particles are lost. This implies sur-
vival of entanglement. A possible fitting of the quantum
Fisher information with respect to the number of lost par-
ticles is FQ(Nloss) ∼ FQ(0) exp[−γ Nrest f /4] = FQ(0)[(N −
Nloss )/N](N−Nloss )/4, which is also plotted in Fig. 8. Here we
use Eq. (15) in the second equality. This is quite unexpected
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1
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F
Q
[ρ

,J
z
]/

N
2 re

s

Nloss

FIG. 8. Quantum Fisher information scaled by the square of
the number of residual particles Nres with respect to the num-
ber of lost particles Nloss. The number of the initial parti-
cles is given by N = 50. Here, |χt f | = 0.04. The Heisenberg
limit is given by FQ[ρ, Jz]/N2

res = 1 and the standard quan-
tum limit is given by FQ[ρ, Jz]/N2

res = 1/Nres = 1/(N − Nloss ),
which is represented by the dashed curve. A possible fit-
ting FQ(Nloss )/N2

res ∼ [FQ(0)/N2
res] exp[−γ Nrest f /4] = [FQ(0)/(N −

Nloss )2][(N − Nloss )/N](N−Nloss )/4 is also given by the solid curve.
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scaling. Indeed, in the case of the paradigmatic one-axis
twisting Hamiltonian with symmetric losses, the quantum
Fisher information of the target cat state decreases as
FQ(0) exp[−γ Nt f ]. The present case also shows the exponen-
tial decay but it depends on the number of residual atoms (and
also has a factor 1/4) instead of the number of initial atoms,
and thus it gives slower decay.

IV. SUMMARY

We showed that the superadiabatic scheme can generate
low energy and highly entangled states within a short time
compared with the naive adiabatic scheme. The resulting state
is not the NOON state but a superposition of the cat states with
different sizes due to the approximation in counterdiabatic
terms. The form of this state (22) is ensured by the parity
conservation of the bosonic Josephson-junction Hamiltonian
and of the approximate counterdiabatic Hamiltonian. This
superposition of cat states can be detected by the parity
measurement after rotation along the z axis. The dominant
size of the cat states in the superposition of cat states can be
estimated from the frequency of the parity measurement if the
size distribution of the cat states is sharp enough. The Fisher
information estimated from the error-propagation formula for
the parity measurement coincides with the quantum Fisher
information, and thus the parity measurement is not only
able to detect the superposition of cat states but also the best
method of interferometry that maximally extracts the potential
of the superposition of cat states.

We also investigated the influence of particle losses during
superadiabatic generation of the superposition of cat states.
Particle losses blur the distributions of states, but they do
not drastically change those. In particular, negative interfer-
ometric fringes in the SU(2) Wigner function survive in fast
generation even if some particles are lost, which is evidence
of entanglement and of potential usefulness. We also showed
the possibility to detect the superposition of cat states by
using the parity measurement even if some particles are lost.
Although the quantum Fisher information decreases as the
result of particle losses, i.e., the size of entanglement becomes
small, it still remains above the standard quantum limit even

if a large number of particles are lost. Note that the parity
measurement is no longer the best way of interferometry if
particle losses take place. It is a future work to study how
to extract remaining usefulness of the superposition of cat
states as well as recent general interest to utilize cat states in
interferometry under various dissipative environments [49].

Here we studied with a small number of particles N =
50 due to the problem of computational cost. One might
wonder if the discussion in the present paper works for a
larger number of particles or not. We observed that the quan-
tum Fisher information concerning Jz scales as FQ(Nloss) ∼
FQ(0)e−γ Nrest f /4. Given the typical rate of one-body losses
around γ = 0.1 Hz (see, for instance, [11,50–52]) and typical
timescales in the ultracold atom experiments around 10 ms,
we expect that the number of atoms, for which the scheme
could beat the standard quantum limit in interferometry,
would be several hundred or a few thousand atoms. Indeed,
it is known that the time required to implement the naive
adiabatic scheme is comparable to the coherence time [38]
when we consider, for example, hundreds of trapped ions [53].
In order to create macroscopically entangled states with high
quality and with high probability, and also to utilize those after
creation, the generation scheme should be much faster than
coherence time. We expect that the interaction in the form of
Eq. (6) will be realized in the near future, for example, by
implementing the theoretical proposal [30,31], and that our
scheme will be a strong candidate to create macroscopically
entangled states in bosonic Josephson junctions.
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