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We outline a kinetic theory of nonthermal fixed points for the example of a dilute Bose gas, partially reviewing
results obtained earlier, thereby extending, complementing, generalizing, and straightening them out. We study
universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure
rescaling of spatial correlations, with time defining the scale parameter. The nonequilibrium initial condition set
by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this
can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically
slowed approach to a nonthermal fixed point. We identify such fixed points using a nonperturbative kinetic
theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent
flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A
key result is the simple analytical universal scaling form of the nonperturbative many-body scattering matrix,
for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the
time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical
critical exponent z and an anomalous scaling dimension η. The approach of the nonthermal fixed point is, in
particular, found to involve a rescaling of momenta in time t by t β , with β = 1/z, within our kinetic approach
independent of η. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral
as well as the nonperturbative many-body coupling function. As a side result, we obtain a possible finite-size
interpretation of wave-turbulent scaling recently measured by Navon et al.
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I. INTRODUCTION

A general characterization of the relaxation dynamics of
quantum many-body systems quenched far out of equilibrium
remains a largely open problem. In particular, it is interesting
to ask to what extent analogs of the universal descriptions
arising from the equilibrium theory of critical fluctuations
[1,2] exist for nonequilibrium systems.

The standard classification scheme of dynamical critical
phenomena applies to the linear response of classical systems
driven, in a stochastic way, out of equilibrium [3,4], as well as
to nonlinear critical relaxation [5–8]. Building on the theory
of boundary critical phenomena [9], relaxation after a quench
to an equilibrium critical point has been studied [10,11] as
well as the phenomenon of aging [12–14]. Quenches deeper
into the ordered phase induce phase-ordering kinetics and
coarsening [15–17]. Closely related dynamical scaling phe-
nomena, which we are particularly interested in here, are
(wave) turbulence [18–20], as well as superfluid or quantum
turbulence [21,22]. The study of universal phenomena far
from equilibrium has recently intensified, considering differ-
ent types of quantum quenches [23–43], many of them in the
context of quenches in ultracold Bose gases.

If an initially equilibrated system is quenched in a way
that it eventually reequilibrates closer to or on the other side
of a symmetry-breaking phase transition one would expect
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the universal characteristics of the (quantum) critical point
to have an influence also on the nonequilibrium dynamics of
that system. However, seen from a more general perspective,
the time evolution of the quenched system can approach a
nonthermal fixed point, i.e., show universal behavior away
from equilibrium, in general independent of the equilibrium
fixed point(s). Such fixed points have been discussed and
experimentally observed without [44–50] and with [51–55]
reference to ordering patterns and kinetics, and topological
defects, paving the way to a unifying description of universal
dynamics. This concept builds on a scaling analysis of non-
perturbative dynamic equations for field correlation functions
in the spirit of a renormalization-group approach to far-from-
equilibrium dynamics [36,37,45,56–61]. Near a nonthermal
fixed point, correlation functions show a time evolution which
takes the form of a rescaling in space and time [48,62]. In con-
sequence, the relaxation is critically slowed, i.e., correlations
evolve as a power law rather than exponentially in time.

Here, we outline a kinetic theory of nonthermal fixed
points, for the example of a dilute Bose gas, partially re-
viewing results obtained earlier [44–49], thereby extending,
complementing, generalizing, and straightening them out. We
discuss the distinction between the approach to a nonthermal
fixed point and a wave-turbulent evolution on the basis of
conservation laws, using ideas presented in Ref. [63], and
we derive the scaling properties for these different scenarios.
We find simple analytical forms for the universal many-body
scattering-matrix elements entering the kinetic equations at
the nonthermal fixed point. To confirm our predictions, we
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perform numerical evaluations. As a side result, we obtain a
possible finite-size interpretation of wave-turbulent momen-
tum scaling recently measured in a turbulent Bose gas [64].

We have written the paper in a way which allows the reader
to consider only that part which is of interest to her or him.
The remainder of this introductory section gives an overview
of the entire theory, the key questions and situations con-
sidered, and the key results provided by the theory. Readers
interested in the details of the derivations are referred to the
following sections and the appendices, an overview of which
is given at the end of this introductory section.

A. Typical scenario of how a nonthermal fixed point
can be approached in a Bose gas

Bose condensation dynamics after a cooling quench repre-
sents a typical scenario in which the approach of a nonthermal
fixed point can be observed. In a Bose gas cooled from above
the critical temperature, condensate formation is generally
understood to proceed through different stages [63,65–74].

If the condensation dynamics occurs sufficiently far out of
equilibrium, the system can thereby approach a nonthermal
fixed point and show universal scaling in space and time
[48,75–77]. When this is the case, the evolution of the occu-
pation number na(p, t ) = 〈�†

a(p, t )�a(p, t )〉, at a nonthermal
fixed point, corresponds to a rescaling in time and space like

na(p, t ) = (t/tref )α fS,a([t/tref ]
βp) . (1)

Here, we consider the more general case of an N-component
Bose field �a(p, t ), a = 1, . . . , N , and fS,a(p) = na(p, tref )
is a universal scaling function which depends on a single
d-dimensional momentum only and, within a scaling regime,
assumes a form exhibiting power-law momentum dependence

fS,a(p) = (|p|/pλ)−κ , p� � |p| � pλ, (2)

with universal exponent κ . In Eq. (1), tref is some reference
time within the scaling regime. The scaling exponents α and
β characterize the universality class of the fixed point [48].
They are typically related by a conservation law such as the
total particle density

∫
dp na(p, t ) = const, which implies

α = β d . Transport to lower |p| occurs when β > 0 while, for
β < 0, the distribution shifts to larger momenta. Generically,
the scaling regime is reached in a certain scaling limit, such
as for asymptotic time t → ∞ and infinite volume |p| → 0.
In the scaling limit, all correlation functions of the system are
expected to exhibit scaling.

Cooling, i.e., removal of hot particles, induces transport
of most of the remaining particles toward lower energies.
In an isolated system where particle number and energy are
conserved, this is possible because the collisions between
particles induce their energy to be transported to higher wave
numbers p. To understand this, note that the energy of a
particle scales, generally, as the momentum to the power of
a positive number ω(p) ∼ pz, with p = |p|, with dynamical
exponent z > 0. Therefore, the energy ω(p) n(p) of the system
is always concentrated at a higher wave number than the
particle number n(p). Hence, while many particles assume
lower energies, a few particles are scattered to modes where
the cooling quench has removed particles from the distri-
bution, i.e., decreased the occupation number of momentum

modes. As a result, the dynamics following a cooling quench
generically induces a bidirectional transport, moving particles
toward the infrared (IR) and energy to the ultraviolet (UV).
This is illustrated in Figs. 1(a) and 1(b) and has been discussed
for various examples in Refs. [48,57,63,65,66,75,76].

As long as the coherences between particles in distinct
eigenstates of the appropriate single-particle Hamiltonian are
negligible, the transport is well described by a quantum
Boltzmann kinetic equation for the occupation numbers of
these single-particle modes. This equation describes elastic
interparticle collisions which can induce particle transport
toward lower energies if energy and momentum are ex-
changed in the collision. As a result, the occupation num-
bers of low-energy modes increase, leading to the possibil-
ity of condensate formation. Once the occupation numbers
are sufficiently large, phase correlations between the modes
develop. The system is then more easily described in terms
of a classical field, even if it still exhibits large phase fluc-
tuations or topological structures and undergoes turbulent
dynamics.

These phenomena can occur sequentially and depend on
the specifications of the system, including its dimensionality,
density, and strength of interactions. During this stage, the
system is sometimes called a nonequilibrium quasiconden-
sate, in analogy to the phase-fluctuating equilibrium states
of low-dimensional Bose systems [78,79]. The relaxation of
the quasicondensate establishes phase coherence across the
sample, leading eventually to a Bose-Einstein condensate.

B. Cooling quenches

To set the stage for the presentation of the kinetic theory of
nonthermal fixed points and to provide concrete examples of
how to induce the corresponding far-from-equilibrium univer-
sal scaling dynamics, we discuss a few important aspects of
condensate formation following a cooling quench. We distin-
guish, in particular, weak and strong quenches for obtaining
different types of scaling behavior, namely, wave turbulence
or self-similar evolution at a nonthermal fixed point. A more
detailed discussion of the distinction between these types of
quenches is given in Appendix B.

Throughout this work, we focus on initially homogeneous,
nondegenerate Bose gases in a closed volume. In a cooling
quench, one typically removes particles with momentum p
whose energy ω(p) is above a certain energy scale ω(p) �
ωq ≡ ω(pq). This generically leads to a nonequilibrated par-
ticle distribution n(p) over the momenta p = |p| as indicated
by the colored long-dashed lines in Figs. 1(a) and 1(b).

Transport and ordering stages in condensate formation
after a quench were analyzed in a series of papers by
Svistunov, Kagan, and Shlyapnikov [63,65–67], by Semikoz
and Tkachev [68,69], and by Berloff, Kozik, and Svistunov
[70–74] in the context of weak wave turbulence as well as self-
similar transport. In the reequilibration process following the
quench, energy and number conservation imply a bidirectional
redistribution of particles. This transport process is sketched
in Figs. 1(a) and 1(b) where the particle distribution n(p, t )
is depicted, at different times, on a double-logarithmic scale.
The initial distribution after the quench is indicated by the
blue (red) long-dashed line, while the postquench evolution
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FIG. 1. Universal dynamics of a dilute Bose gas, as induced by cooling quenches of different strength. (a) Weak cooling quench. Sketch
of the time evolution of the single-particle radial number distribution n(p, t ) as a function of momentum p at three different times t (gray
short-dashed, solid, and long-dashed lines). Starting from the initial distribution n(p, t0) (blue dashed line) after a weak quench, removing
part of the thermal tail (gray shaded area), an inverse wave-turbulent cascade develops, transporting particles toward lower momenta. See text
for more details. (b) Strong cooling quench. The initial distribution n(p, t0 ) (red dashed line) is created by a strong cooling quench which
removes the thermal tail (gray shaded area). In the aftermath, a strong bidirectional redistribution of particles in momentum space (arrows)
occurs. This eventually builds up a quasicondensate in the infrared while refilling the thermal tail at large momenta. In (a) and (b), the particle
transport toward zero as well as large momenta is characterized by self-similar scaling evolution in space and time, n(p, t ) = tα f (tβ p), with
characteristic scaling exponents α, β, in general different for the two directions. The infrared transport moves particles to low-p modes (gray
arrow) while their energy is deposited by the scattering of much fewer particles to higher momenta (green arrow), conserving total energy
and particle number. Note the double-logarithmic scale. (c) Schematic sketch of the cooling quenches in the equilibrium phase diagram of
the dilute Bose gas, leading to the same final μ = gρ, for illustrating the initial and long-time states of the system, before the quench and
after reequilibration, respectively (cf. Appendix B). We emphasize that the dynamics ensuing the quenches can not be described within this
equilibrium plane.

is indicated by three (two) curves (gray short dashed, solid,
long dashed).

If the state resulting from the quench is sufficiently far
away from equilibrium, the ensuing time evolution can exhibit
universality. This implies that the distribution can take a
simple power-law form as indicated in Figs. 1(a) and 1(b), and
that the evolution becomes a self-similar rescaling in time and
momentum as in Eq. (1), within a certain region of momenta.

A central aspect of the phenomena discussed in this work is
that the character of the evolution depends very much on the
“strength” of the cooling quench which determines how far
the system can get out of equilibrium. A weak cooling quench
is depicted in Fig. 1(a) and generically leads to the buildup
of a weak wave-turbulent cascade. In contrast, the approach
to a nonthermal fixed point rather requires a strong cooling
quench, leading to the dynamics shown in Fig. 1(b).

1. Weak cooling quench

Consider a three-dimensional thermal dilute Bose gas just
above the condensation temperature Tc [see the phase-diagram
sketch in Fig. 1(c)]. Removing, from such a system, a few
of the high-energy particles, the subsequent particle transport
in momentum space toward lower energies is described by
the perturbative quantum Boltzmann equation in the classical-
wave limit (wave-Boltzmann equation) as long as mode occu-
pation numbers are much larger than 1 and their wavelength
is shorter than the coherence length set by the chemical
potential μ [63,65,66]. At lower energies, however, phase cor-
relations between momentum modes become significant, and
a (nonperturbative) description beyond the wave-Boltzmann
equation is needed [63,65,66,71–74].

For higher energies, where the wave-Boltzmann ap-
proach is still viable, Svistunov discussed different transport

scenarios based on weak wave turbulence [19,20]. Taking
into account that the scattering matrix elements in the per-
turbative wave-Boltzmann equation for such a dilute gas are
independent of the mode energies, he concluded that the
initial kinetic transport stage of the condensation process
in momentum space evolves as a weakly nonlocal particle
wave toward lower momenta. Within this cascade, particles
are transported locally, from momentum shell to momentum
shell, from the scale ω(pq ) of the energy concentration in the
initial state [see Fig. 1(a)] to the low-energy regime ω � μ

where coherence formation sets in and the description in
terms of the perturbative wave-Boltzmann equation ceases to
be valid. The flux-wave and weak-wave-turbulence stage of
condensate formation following a weak cooling quench was
later confirmed numerically by Semikoz and Tkachev [68,69].

2. Strong cooling quench

Distinctly different universal dynamical processes are pos-
sible in a dilute Bose gas which is excited by a strong cooling
quench at the initial time t0. An extreme version of such
a quench would be to first tune adiabatically to a chemical
potential 0 < −μ � kBTc and then remove all particles with
energies higher than ω(pq) ∼ |μ| [shaded area in Fig. 1(b)].

Such an extreme initial condition, in experiment, can alter-
natively be prepared by means of an instability, building up
strong overoccupation such that the majority of particles and
energy is around the momentum scale set by μ and interaction
energy dominates over kinetic energy (see Appendix B). This
can be achieved by starting with a system with unstable inter-
nal modes [44,50,80–83], or with an inhomogeneous conden-
sate [51–54,64,75,84], and can be technically advantageous.

In Fig. 1(c) we have sketched both a weak and a strong
cooling quench which are leading to the same final condensate
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density. Note that, for the strong quench, one needs to prepare
the prequench state with a chemical potential already much
closer to the critical value. To obtain the same postquench
density and thus postquench chemical potential μ as after
the weak quench, the prequench distribution needs a higher
temperature and density.

The postquench state induces a transport toward the IR
which essentially starts at the coherence-length scale set by
μ and immediately requires a description beyond the pertur-
bative wave-Boltzmann equation. The evolution during this
period evolves universally in the sense that it becomes largely
independent of the precise initial conditions set by the quench
as well as of the precise values of the parameters of the theory,
indicating the approach to a nonthermal fixed point of the
time evolution [48]. At this fixed point the distribution ideally
shows a universal form [cf. Eq. (1), Fig. 1(b), as well as
Appendix B 3].

The details of the evolution from the postquench distribu-
tion to the stage of universal scaling [85] are beyond the scope
of this work. We will mostly assume strong cooling quenches
as leading to the evolution near a nonthermal fixed point. In
contrast to this, weak quenches are implicitly assumed when
discussing wave-turbulent cascades and comparing them to
the self-similar rescaling which characterizes the universal
dynamics near nonthermal fixed points.

C. Kinetic theory of nonthermal fixed points: Key results

We briefly summarize the key results obtained in this work.
We begin with a systematic discussion of global conservation
laws and show, along the lines of [63], that the exponent
of n(p) ∼ p−κ of the universal scaling function [Eq. (2)
and Fig. 1(b)] determines which type of universal scaling
evolution is possible: Depending on the spatial dimension d
and the dynamical exponent z, for κ < d particle number and
energy are concentrated both in the IR, for κ > d + z both
are concentrated in the UV, while in-between these limits,
particles are in the IR while energy is in the UV. As a result,
only the latter case allows for a bidirectional transport of
particle and energy concentrations as described above. In
contrast, if both particles and energy are at the same end
of the spectrum, global conservation laws strongly constrain
the dynamics such that only single-side wave-front evolutions
leading to the buildup of wave-turbulent cascades are possible
(cf. [63]).

We focus on fixed-point solutions, obeying n(p, t ) =
t α f (t β p) as well as spatial scaling n(p) ∼ p−κ within a
regime of momenta p. We anticipate that the fixed point,
strictly speaking, is reached in the scaling limit, i.e., at asymp-
totic times. However, at any finite time, scaling according
to the fixed-point solution can be realized already to a very
good approximation. To obtain these solutions, one performs
a scaling analysis of wave-Boltzmann-type kinetic equations
using different perturbative and nonperturbative approxima-
tions [47,48].

While the bidirectional transport at a nonthermal fixed
point is a general phenomenon, the specific situation we focus
on here is that of an N-component Bose gas with U(N )
symmetric interactions. One can analytically describe this

by means of a kinetic equation derived within a Schwinger-
Keldysh functional path-integral approach [47,48].

Our analytic computation of the nonperturbative many-
body T -matrix entering the kinetic equation forms the main
basis of this paper. This T matrix involves a coupling func-
tion geff (p) obtained within a next-to-leading-order large-N
approximation of the dynamic equations for Green’s functions
[46]. This builds on and goes beyond, e.g., Refs. [44–49] (see
also closely related work in Refs. [54,84,86–89]). In physical
terms, the nonperturbative T matrix reflects the fact that in
the scaling regime, at energies below μ, the dynamics is
dominated by phase excitations, which in the large-N limit,
are mainly the relative phases between the fields [90].

We analytically and numerically evaluate the many-
body coupling. For p � p�, with healing-length scale p� =
(2mgρ)1/2 defined in terms of mass m, bare coupling g,
and density ρ, the coupling reduces to g, implying standard
perturbative wave-Boltzmann transport and, typically, weak
wave turbulence. In contrast, it describes collective scattering
for momenta p � p�. In this region, the coupling function
is strongly modified due to the high IR occupation numbers.
Remarkably, we find that it assumes a universal form, scaling
as geff (p) ∼ p2, independent of the microscopic interaction
strength and largely independent of the precise form of the
low-energy momentum distribution n(p). We emphasize that,
although this coupling function leads to a momentum- and
frequency-dependent scattering T matrix exhibiting scaling in
space and time, the kinetic equation it enters still assumes the
usual wave-Boltzmann form describing two-to-two scattering.

Assuming a scaling solution of the kinetic equation, power
counting allows one to determine the relevant scaling expo-
nents. In the case of weak-wave-turbulent evolution (p > p�)
we recover the scaling exponents α, β, and κ obtained by
Svistunov. In the IR regime (p < p�), however, we find a
different set of exponents, among which the ones obtained
in Refs. [48,89] are recovered. In our analysis of global con-
servation laws leading to the distinction between self-similar
evolution and wave turbulence, we combine the general ar-
guments of Ref. [63] with the nonperturbative description of
nonthermal fixed points as laid out in Refs. [44–49]. We re-
capture and use these arguments to obtain a systematic picture
of the differences and common aspects of the various kinds
of universal dynamics discussed in the literature: nonthermal
fixed points and wave-turbulent cascades, critically acceler-
ated wave fronts and critically slowed scaling, perturbative
and nonperturbative processes.

At a nonthermal fixed point describing self-similar trans-
port of particles to the IR in a nonperturbative regime
[Fig. 1(b)], we find, in d spatial dimensions and for a range of
dynamical exponents z, the temporal scaling exponents α =
βd , β = 1/z. They are fixed by z and the global conservation
of particles. As was shown in Ref. [90], this solution, obtained
in the large-N limit, applies in particular to the case of free
relative-phase excitations between the N components of the
gas with ω(p) = p2/2m, and thus z = 2. The spatial exponent
then results as κ = d + (3z − 4)/2 + η) = d + 1 + η which
allows bidirectional self-similar transport according to the
above criterion. This result includes an anomalous dimension
η which needs to be determined by solving the equation for
the spectral function. Note that the scaling solutions derived
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are not expected to capture any effects caused by nonlin-
ear excitations such as vortices, solitons, or domain walls
[51–54,75,81,82,84,91–94].

The rescaling of n(p, t ) is critically slowed, p� ∼ t−β as
t → ∞ and, since β > 0, implies transport of particles toward
the IR. This is in contrast to the weak-wave-turbulent flux of
particles, which occurs in the perturbative wave-Boltzmann
regime. There, the exponent β = 1/(z − 8/3) = −3/2 is neg-
ative for z = 2, and κ = d − 2/3 is smaller than d such that
energy and particles are concentrated at the UV end of the
distribution. Hence, the transport toward the IR can only
happen in the form of an accelerating wave front, weakly
violating the locality of the transport. This corresponds to
rescaling in momentum as p�(t ) ∼ (t∗ − t )−β (see Ref. [63]).

The main part of our paper, which provides the details of
how the above summarized results are obtained, is organized
as follows. In Sec. II we introduce the general formalism of
scaling and scaling forms for the occupancy spectrum and
discuss the important consequences arising from global con-
servation laws. In Sec. III we introduce the nonperturbative
kinetic equation. This encompasses the central analytic result
of a universal coupling function in the collective-scattering
regime. On this basis we derive, in Sec. IV, the scaling
exponents for self-similar dynamics, which we crosscheck,
in Sec. V, on the basis of numerical evaluations of the per-
turbative and nonperturbative scattering integrals. We draw
our conclusions in Sec. VI. An extended Appendix provides
further technical details.

II. UNIVERSAL DYNAMICS IN A BOSE
GAS AFTER A QUENCH

A. Model and observables

In this paper we focus on the universal dynamics of a
dilute, i.e., weakly interacting, homogeneous Bose gas in d =
3 spatial dimensions. In this section, we briefly summarize its
field-theoretical description and a few basic properties needed
in the following. The model is defined by the Gross-Pitaevskii
Hamiltonian for N boson fields of mass m, which is symmetric
under U(N ) rotations of the field vector (�a), a = 1, . . . , N ,

H =
∫

dd x

[
−�†

a

∇2

2m
�a + g

2
�†

a�
†
b�b�a

]
. (3)

The time- and space-dependent fields �a ≡ �a(x, t ) satisfy
Bose equal-time commutation relations [�a(x, t ),�†

b(x′, t )]=
δabδ(x − x′), [�a(x, t ),�b(x′, t )] = 0 (we use units where
h̄ = kB = 1) and summations over double indices are implied.
A single real coupling g = 4πa/m quantifies the contact
interactions, defined in terms of the s-wave scattering length
a. For simplicity of notation, we will suppress the field indices
in the following. The single-particle momentum distribution

n(p, t ) = 〈�†(p, t )�(p, t )〉 (4)

counts the directly measurable number of particles with mo-
mentum p. In the absence of a condensate and for sufficiently
weak interactions and occupation numbers n, the single-
particle excitations described by � are eigenmodes of H with
free-particle dispersion

εp = p2/(2m). (5)

For comparisons with cases of a different momentum scaling
∼pz of the dispersion, we will also consider a dilute Bose
gas with a macroscopic condensate fraction.1 The condensate
density ρ0 = |φ0|2 is given in terms of the spatially constant
field expectation value φ0 ≡ 〈�(x)〉 which, after a suitable
shift of the energy zero, is also independent of time. [We use
4-vector notation x = (x0, x)]. In this case, the Hamiltonian
can be expanded to second order in the fluctuation fields
�̃(x) around the condensate �(x) = φ0 + �̃(x), where, by
definition, 〈�̃(x)〉 ≡ 0. A Bogoliubov canonical transforma-
tion to bosonic quasiparticle operators �Q, defined in mo-
mentum space by �̃(p, t ) = up�Q(p, t ) − vp�

†
Q(−p, t ), with

u2
p − v2

p = 1, diagonalizes the resulting quadratic Hamiltonian

H =
∑

p

ωp(�†
Q(p, t )�Q(p, t ) + 1/2). (6)

The Bogoliubov dispersion and mode functions read as

ωp = [εp(εp + 2gρ0)]1/2, (7)

up =
(

εp + gρ0 + ωp

2ωp

)1/2

, vp =
(

εp + gρ0 − ωp

2ωp

)1/2

.

(8)

For momenta much larger than the healing-length momentum
scale |p| � pξ ,

pξ =
√

2mgρ0 =
√

8πaρ0, (9)

the Bogoliubov dispersion resembles that of the free fun-
damental bosons, ωp  εp + gρ0, and thus up  1, vp  0.
In the opposite limit, |p| � pξ , the quasiparticles are sound
waves,

ωp  cs|p|, (10)

u2
p  v2

p  gρ0/(2ωp)  mcs/(2|p|), (11)

with speed of sound cs = √
gρ0/m = pξ /(

√
2m). The occu-

pation number of sound-wave field modes with wave number
p is measured by

nQ(p, t ) = 〈�†
Q(p, t )�Q(p, t )〉 . (12)

According to the Bogoliubov transformation, particle and
quasiparticle mode occupation numbers are related by

n(p, t ) = (
u2

p + v2
p

)
nQ(p, t ) + v2

p. (13)

In thermal equilibrium, the particle and quasiparticle dis-
tributions are given by grand-canonical and canonical Bose-
Einstein distributions, respectively. In general, nBE(p) =
(exp{[ω(p) − μ]/T \} − 1)−1 for excitations with dispersion
ωp is set by the temperature T and the chemical potential
μ. We point out that, in the sound-wave limit, 0 < |p| � pξ ,

1The U(N )-symmetric model, at low energies and a total density
set by a chemical potential, in fact has N − 1 Goldstone modes with
free dispersion (5) and one density mode, characterized by strongly
suppressed density fluctuations and enhanced phase fluctuations,
with linear, Bogoliubov sound dispersion (7) (cf. Ref. [90]).
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and for large quasiparticle occupations, nQ(p, t ) � 1, relation
(13) together with Eq. (11) means that

n(p, t )  nQ(p, t ) gρ0/ωp (0 < |p| � pξ ). (14)

Hence, in the Rayleigh-Jeans regime of the equilibrium Bose-
Einstein distribution, −μ � ω(p) � T , where the occupan-
cies in an ideal gas are n(p, t ) ∼ T/εp ∼ T/p2 and those
of Bogoliubov sound are nQ(p, t )  T/ωp ∼ T/p, the extra
factor 1/p from the mode functions u2

p + v2
p ∼ 1/p ensures

the same power-law dependence on p of the left-hand side
of Eq. (13) for free and interacting bosons. The factor thus
adjusts the quasiparticle-number distribution to the modified
density of states in the sound-wave limit.

B. Momentum scaling and universal scaling functions

1. Momentum scaling

We are predominantly interested in the question as to what
extent nonequilibrium states exist for which the momentum
distributions (4) and (12) assume a universal form. Let us,
for the first, disregard the time evolution. Simple examples
of universal momentum distributions are those which, at least
in a limited regime of scales, show power-law scaling

n(sp) = s−ζ n(p). (15)

Here, s is a positive, real scaling factor, and ζ is a universal
scaling exponent which we assume, in the following, to be a
real number. See Table III for an index of all scaling exponents
appearing in this work.

Also, the dispersion relation can, at least in certain regions,
satisfy scaling

ω(sp) = szω(p). (16)

This is, e.g., everywhere the case for the free dispersion
(5) and, in the free-particle and sound-wave limits, for the
Bogoliubov dispersion (7).

In the following we will account for the scaling of ω(p), as
far as possible, by means of an arbitrary dynamical exponent
z. We anticipate in this way that self-energy corrections can
lead to a modified scaling of the quasiparticle dispersion and
that, in a treatment beyond kinetic scattering of free modes,
a more general scaling between frequency and momentum
is expected. In Appendix C we summarize the general field-
theoretic approach we use to analyze our model with respect
to universal dynamics. See, in particular, Appendix C 3 a for
the definition of the scaling of the spectral properties for a
general z.

Given a scaling (15) of n(p), the quasiparticle distribution,
in the scaling region, would satisfy

nQ(sp) = s−κnQ(p), (17)

with

κ = ζ + z − 2. (18)

Here, the exponent κ − ζ = z − 2 governing the relative scal-
ing of the two distributions accounts for the z-dependent
density of states which is encoded in the Bogoliubov coef-
ficients up and vp. Note that z − 2 interpolates between the
Bogoliubov quasiparticle case z = 1, for which the relative

scaling is given by Eq. (14) and free particles, z = 2, for which
nQ ≡ n (cf. also the discussion in Appendix C 3 c).

2. Bulk integrals

The momentum integral over the single-particle distribu-
tion n(p) yields the density of noncondensed atoms ρnc and
thus the observable total particle density is given by

ρtot = ρ0 + ρnc = ρ0 +
∫

dd p

(2π )d
n(p). (19)

Hence, the integral must be finite, and if n(p) shows power-
law scaling (15) in a certain range of momenta p = |p|, this
range can not extend over all possible p from 0 to ∞. This is
because the radial, i.e., p integral over pd−1−ζ , which includes
a volume factor, has a power-law divergence either in the
ultraviolet (UV), or in the infrared (IR), or is logarithmically
divergent in both limits.

This means that in any physically meaningful situation,
in the continuum and thermodynamic limits, the distribution
n(p) must take the form of a more general scaling function
which ensures convergence of the integral (19). Alternatively,
the finite size of a generic physical system and its definition on
a discrete grid would provide IR and UV cutoffs, respectively.
We are, however, interested in universal dynamics which,
within first approximation, is not affected by such boundary
conditions. To this end, we demand the scaling region to
be sufficiently far away from the boundaries of the system
and will study the intrinsic conditions under which scaling
dynamics can occur.

The integral over the occupancies of the quasiparticle
eigenmodes of the Hamiltonian defines the density

ρQ =
∫

dd p

(2π )d
nQ(p) (20)

which is in general different from the particle density (19).
In situations where the interactions between quasiparticles are
dominated by elastic two-to-two scattering, their total number
and thus the density ρQ are conserved in time. In this paper
we will restrict ourselves to situations where quasiparticle
number is conserved within the scaling region.

With Eq. (13), the particle density ρnc can be expressed
in terms of the quasiparticle density ρQ. In the sound-wave
regime, the relation is a pure power law [cf. Eq. (14)]. Assum-
ing contributions from outside the scaling region with a fixed
z to be negligible, the relation between the particle density and
the quasiparticle spectrum hence is

ρnc =
∫

dd p

(2π )d
Bpz−2nQ(p, t ), (21)

with some constant B which, for z = 1, is B = gρ0/cs [cf.
Eq. (14)], while for z = 2 one has B = 1, and quasiparticles
and particles are identical.

Aside from the density of (quasi)particles, also the energy
density

ε =
∫

dd p

(2π )d
ω(p)nQ(p) (22)

is a physical observable and therefore must be finite.
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3. Scaling function

Where not otherwise stated, we assume the momentum
distributions to be isotropic in the following: nQ(p) ≡ nQ(p).
Assume, for the first, that nQ(p) ∼ p−κ is a pure power law
in the radial momentum direction, satisfying Eq. (17) for all
momenta. Furthermore, presume a power-law form for ω(p)
[Eq. (16)] with z �= 0, such that the integrand in Eq. (22) is a
pure power law.

The exponent κ then determines whether the IR or the
UV regime dominates quasiparticle and energy densities. If
κ > d , the integral (20) is dominated by quasiparticles with IR
momenta, while for κ < d UV momenta dominate. Similarly,
κ > d + z leads to an IR dominance of the integral (22) for the
energy density whereas, for κ < d + z, energy is concentrated
in the high-momentum modes. In summary, the exponent
κ determines where quasiparticle and energy densities are
concentrated:

κ < d , quasiparticles and energy: UV; (23)

d � κ � d + z , quasiparticles: IR; energy: UV; (24)

κ > d + z , quasiparticles and energy: IR. (25)

According to the above, a power-law momentum distribution
requires regularization in the IR or in the UV limit. Note
that a regularization on one side only is sufficient when both
quasiparticles and energy are concentrated at the same end of
the spectrum, i.e., for κ satisfying (25) or (23). Different func-
tional forms for the distribution nQ are possible for providing
such a regularization and for describing the crossover between
the power-law region and the regularized region. Determining
the precise form of this functional form requires solving the
dynamic equations.

For κ obeying (23) or (25), a simple parametrization of
such a regularized quasiparticle distribution is given by

nQ(p) = f (p/p�; f1) (26)

in terms of a scaling function f (x) of the form

f (x; f1) = 2 f1[xκ̄ + xκ ]−1. (27)

f (x) interpolates, in x, between two different power laws, with
exponents κ̄ �= κ . Around x = 1 the scaling crosses over from
one power law to the other. In the distribution function nQ,
this crossover thus occurs at the momentum scale p = p�.
While the shape of the scaling function will be a universal
characteristics, its “position” will be fixed by the nonuniversal
scale p� and amplitude f1 = f (1; f1).

Note that in the regularized region, the function does not
need to exhibit a power law, but may have, e.g., an exponential
form. Furthermore, a sharp IR (UV) cutoff, i.e., f (x) ∼ �(x −
1) x−κ [ f (x) ∼ �(1 − x) x−κ ], can be realized by choosing
κ̄ → −∞ (→ ∞).

The simultaneous IR and UV convergence of both in-
tegrals, Eqs. (20) and (22), requires κ̄ < d and κ > d + z,
or vice versa. Within the interval (24) either the quasipar-
ticle or the energy density diverges, such that an extended
scaling function, with an additional regulator, is required. A
straightforward extension of the scaling function (27) involves
two crossover scales pλ > p�. To make the expression more

FIG. 2. Sketch of the self-similar evolution of the scaling form
(41) for nQ(p, t ) according to Eq. (39). Note the double-logarithmic
scale. The IR cutoff scale p� and the UV scale pλ, as well as the
amplitude f1 rescale with time t such that the total quasiparticle
density remains invariant. The sketch shows the case of an inverse
particle transport following a strong cooling quench. See Table II for
our predictions for the scaling exponents (first row, NTFP).

transparent, we introduce a third scale p0. Hence, we write

nQ(p) = f (p/p0; p�/p0, pλ/p0, f1), (28)

with the scaling function

f (x; y, z, f1) = f1 [yκ (x/y)κ� + xκ + zκ (x/z)κλ ]−1, (29)

such that, for κ� < κ < κλ, the amplitude f1 fixes f at x = 1
if the crossover scales are taken to the IR and UV limits
f1 = f (1; y → 0, z → ∞, f1) (see the sketch in Fig. 2). κ� <

d ensures convergence of the integral for the quasiparticle
density in the IR, while κλ > d + z renders the energy integral
finite in the UV.

As p0 above only sets the unit, we can simplify the
parametrization such that the scaling function has only two
arguments,

nQ(p) = f�(p/p�; pλ/p�, f0[p0/p�]κ ) , (30)

f�(x; y, f1) = f1 [xκ� + xκ + xκλyκ−κλ ]−1 , (31)

with f0 = f�(p0; y → 0, z → ∞, f0[p0/p�]κ ) or, equiva-
lently,

nQ(p) = fλ(p/pλ; p�/pλ, f0[p0/pλ]κ ), (32)

fλ(x; y, f1) = f1 [xκ�yκ−κ� + xκ + xκλ ]−1, (33)

with f0 = f�(p0; y → 0, z → ∞, f0[p0/pλ]κ ). In the
parametrizations (30) and (32), all momenta are expressed in
units of the IR scale p� and the UV scale pλ, respectively.
In the special cases that κλ = κ or that the UV scale is sent
to pλ → ∞, the scaling function (31), up to constant factors,
reduces to the function (27). The same applies to the function
(33) if κ� = κ or p� → 0.

In general, the precise form of the scaling function requires
solving the dynamic equations. Consequently, in realistic sit-
uations, it can, e.g., exhibit regions with different momentum
power laws as sketched in Fig. 1 which can relax the condition
(24), allowing, without cutoffs, κ > d + z in the IR and κ < d
in the UV. Such scaling functions have been discussed in
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Refs. [48,52,53,75,76] in the context of nonthermal fixed
points and the formation of topological defects.

C. Universal dynamics

1. Global conservation laws

Our aim is to describe possible forms of universal dynam-
ics realized in the model (3). We assume that, at a given
instant in time, the quasiparticle-number distribution nQ(p, t )
is parametrized by a suitably regularized scaling function
corresponding to finite total quasiparticle and energy densi-
ties. This scaling function could be of the type (29) which
disposes of the essential properties discussed in the previous
subsection, i.e., power-law behavior (17) within a region of
momenta p� � p � pλ and convergence of the integrals (19)
and (22) for quasiparticle and energy density, respectively.

The question then is, how such a distribution can evolve
in time in a universal manner, i.e., in a way that it keeps
its parametrization in terms of the initial scaling function,
varying only the nonuniversal scales p� and pλ, and the
amplitude f1. The considerations of the previous subsection
already provide an intuition of what types of dynamics are
possible, depending on the scaling exponent κ .

In most cases, one or more global conservation laws con-
strain the dynamics, and these laws play an important role
for the dynamical scaling phenomena possible in the system.
For a closed system and if quasiparticle-number changing pro-
cesses are absent, the total quasiparticle density is conserved
in time,

ρQ =
∫

dd p

(2π )d
nQ(p, t ) ≡ const. (34)

If, furthermore, neither internal excitations nor interactions
with an energy reservoir are possible, also the energy density
is a constant of motion

ε =
∫

dd p

(2π )d
ω(p)nQ(p, t ) ≡ const. (35)

In addition to the above also real particle number ρnc

[Eq. (19)] is a viable conserved quantity. In this work we will
eventually only consider quasiparticle-number-conserving
processes. A generalization to dynamics which, for z �= 2,
explicitly accounts also for particle-number conservation will
be done elsewhere. In the following, we will use the terms
“quasiparticles” for the respective quasiparticle eigenmodes
of the Hamiltonian, and “particles” to refer to the distribution
nnc(p) ∼ pz−2nQ(p), where both are identical for z = 2.

As was pointed out in Ref. [63] and as we will discuss in
detail, the conservation laws (34) and (35) limit the possibil-
ities of how the cutoff scales p� and pλ, and the amplitude
f1 can vary in time. For example, if κ > d , quasiparticles
are concentrated in the IR. In this case, shifting the infrared
cutoff p� implies a violation of the conservation law (34)
unless the amplitude f1 is adjusted appropriately. Similarly,
for κ < d + z, the bulk of energy sits in the UV, and pλ can
in general only be varied together with f1. If these conditions
are simultaneously fulfilled, d � κ � d + z, both IR and UV
cutoffs are needed [cf. Eqs. (24) and (29)], such that a change
of f1 requires also a shift of both of these cutoff scales.

On the contrary, if κ > d + z, both quasiparticles and
energy are concentrated at the IR cutoff scale. In this case,
an additional UV cutoff pλ � p�, which is expected to limit
a realistic physical distribution, can be shifted without sig-
nificantly “renormalizing” the entire function since neither
conservation law is strongly affected by the shift. The same
applies to shifting the IR cutoff p� if κ < d .

We remark again that for bimodal distributions such as
the one sketched in Fig. 1, energy and particle number are
concentrated in either the low- or the high-momentum power
law. Therefore, one can have the case that, e.g., κ > d + z
in the low-momentum regime, yet the energy of the whole
system is concentrated in the UV part of the high-momentum
power law. Hence, the dynamics anticipated for the case
of d � κ � d + z would be allowed in the low-momentum
regime, which is indeed what happens for strong cooling
quench dynamics [48].

In the next two subsections we discuss in more detail
how these constraints allow to classify the kinds of universal
dynamics possible in the system.

2. Nonthermal fixed points

Dynamical scaling hypothesis. Similar to universal RG
“evolution,” an isolated system can show universal evolu-
tion in real time, for instance, when it is quenched out of
equilibrium and subsequently reequilibrates. This evolution is
captured, in the simplest case, by a scaling hypothesis for the
time-dependent, angle-averaged quasiparticle distribution

nQ(p, t ) = (t/t0)α f ([t/t0]β p) . (36)

Here, f is a universal scaling function in momentum space,
and t0 is an arbitrary reference time within the temporal scal-
ing regime, where nQ(p, t0) = f (p). The universal exponents
α and β define the nonequilibrium renormalization-group
(RG) fixed point which the system approaches in time. In
contrast to the attractive thermal “fixed point” of the evolution
where both α and β are by definition zero, nonvanishing
exponents indicate the existence of a nonthermal fixed point
[44–46,48,62,95].

Here, we define a closed system to be at a nonthermal fixed
point whenever correlation functions, e.g., the quasiparticle
occupation nQ, obey a dynamical scaling behavior of the
form (36), characterized by universal scaling exponents and
a nonthermal universal scaling function f , in general in a
suitably defined scaling limit such as t → ∞.

Determining the universal scaling function f (p) in gen-
eral requires solving the dynamic equations. Instead of this,
we will work with a minimal ansatz for f as the one
given in Eq. (27), which interpolates between two momen-
tum power laws. Equation (36) will then be satisfied if the
parameters have the power-law time dependence f�(t ) ≡
nQ(p�(t ), t ) ∼ tα , p�(t ) ∼ t−β , giving the scaling evolution
nQ(p, t ) = f (p/p�(t ); f�(t )), with f defined in Eq. (27).
Choosing both exponents α and β to be, e.g., positive
real numbers, time evolution shifts the distribution nQ(p, t )
self-similarly to smaller momenta and larger values of
nQ(p�(t ), t ) ≡ f1(t ).

Constraints from conservation laws. As discussed in the
previous section, global conservation laws strongly constrain
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the form of the correlations in the system. They also constrain
the dynamics and thus play an important role for the possible
scaling phenomena. With regard to the scaling hypothesis
(36), they imply scaling relations between the exponents α

and β. For example, if the dynamics conserves the total
quasiparticle density, Eq. (34), the relation

α = βd (37)

must be fulfilled. Analogously, the conservation of the energy
density, Eq. (35), requires

α = β(d + z) . (38)

Here, we always presuppose that the respective integrals
converge. Given one of the above relations, the remaining
exponent can be determined by a scaling analysis of the
dynamic equations as we discuss in more detail in Secs. III
and IV.

Scaling evolution of the closed system. As discussed above,
we consider the case that quasiparticle number and energy are,
in each scattering process, simultaneously conserved in time.
For nonzero exponents α and β, however, the scaling relations
(37) and (38) can not both be satisfied for z �= 0. This means
that either α = β = 0 or that the scaling hypothesis (36) has
to be extended.

Suppose that the scaling function has a single regulator
such as in Eq. (27). As discussed in Sec. II B 3, quasiparticles
and energy are concentrated at the same end of the momentum
scaling region, within which nQ(p, t ) ∼ p−κ , if κ is outside
the interval (24). In this case, α = β = 0 is required, and
a scaling evolution is only possible at the opposite end of
the scaling region. This evolution leads to a wave-turbulent
cascade which we discuss in more detail in Sec. II C 3 below.

On the contrary, if κ is within the interval (24), or if energy
and particles are concentrated in different scaling regimes
(see end of Sec. II C 1), particles and energy are concentrated
at opposite ends of the scaling region. In this case, a more
general scaling hypothesis is needed which allows for dif-
ferent rescalings of the IR and the UV parts of the scaling
function (see Fig. 2). We consider the example (28) in terms
of the scaling function (29), and suppose that the nonuniversal
parameters follow the scaling evolution

f1(t ) ∼ τα0 , p�(t ) ∼ τ−β, pλ(t ) ∼ τ−β ′
, (39)

with the dimensionless scaling parameter

τ = t/t0. (40)

Here, t0 denotes a time which could mark the beginning of the
scaling evolution. This ansatz satisfies the extended scaling
hypothesis

nQ(p, t ) = τ α0+(β+β ′ )κ f (τ β+β ′
p; τ β ′

p�, τ β pλ) (41)

(see the sketch in Fig. 2). It is useful to express the momenta p
and pλ in Eq. (41) alternatively in terms of the IR scale p� and
to rewrite the scaling hypothesis in terms of a scaling function
of the type (31),

nQ(p, t ) = τ α f�(τ β p/p�; τ β−β ′
pλ/p�), (42)

suppressing the third argument of f�. Here, we introduced the
exponent α, defined as

α = α0 + βκ, (43)

such that the scaling hypothesis (42) is equivalent to Eq. (36)
in the regime p � pλ, i.e., in the limit pλ → ∞. Alternatively,
we can rewrite Eq. (41), by expressing p and p� in terms of
pλ, as

nQ(p, t ) = τ α′
fλ(τ β ′

p/pλ; τ β ′−β p�/pλ), (44)

with

α′ = α0 + β ′κ. (45)

Also, Eq. (44) is equivalent to the simpler scaling hypothesis
(36), with the replacements α ↔ α′, β ↔ β ′, p� ↔ pλ, in the
limit p � p� or p� → 0.

The scaling hypotheses (42), in the limit pλ → ∞, and
(44), in the limit p� → 0, can now be used, in the same
way as before, to obtain the scaling relations (37) between α

and β and (38) between α′ and β ′, respectively. In summary,
and eliminating α′ by means of Eqs. (43) and (45), i.e., α′ =
α + (β ′ − β )κ , energy and (quasi)particle densities are both
time independent if

α = βd, (46)

β ′(d + z − κ ) = β(d − κ ). (47)

Recall that these relations apply to the range of exponents (24)
where particles are concentrated at small momenta and energy
at large momenta. This implies β β ′ � 0, i.e., the IR and UV
scales p�, pλ rescale in opposite directions. These relations
hold in the limit of a large scaling region, i.e., for pλ �
p�. Thereby, particle conservation only affects the infrared
shift with β [Eq. (46)], while energy conservation gives the
condition (47) for β ′ in the UV. The scalings (39) represent
the leading power-law behavior in t while further nonleading
terms account for the exact conservation of the energy and
particle densities.

In the following, we will refer to the rescaling of a distri-
bution as sketched in Fig. 2, which implies a bidirectional,
non-local transport of particles and energy as self-similar.
With this we distinguish it from the buildup of wave-turbulent
cascades discussed in the next section which is, in leading or-
der, also self-similar but unidirectional and local. In particular,
the amplitude f1 does not scale with time and the power-law
part of the distribution remains approximately stationary.

3. Wave-turbulent transport

A special case of nonthermal scaling solutions includes
those which, in a certain regime of momenta, become sta-
tionary in time. Such solutions are studied in wave-turbulence
theory, usually within a Boltzmann kinetic approach [19,20]
(see Appendix F for a summary). In analogy to the self-similar
case in Sec. II C 2 above, we study below the constraints set
on such wave-turbulent solutions by global conservation laws
in a closed system. Explicit solutions will be discussed in
Sec. IV C 2.

Buildup of wave turbulence in a closed system. Let us
consider the buildup of wave turbulence in a closed system
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FIG. 3. Sketch of the buildup of the inverse quasiparticle cas-
cade, defined as a scaling evolution of the form (49) for nQ(p, t ) ac-
cording to Eq. (50), with α = βκ and, to leading order, α′ = β ′ = 0.
Note the double-logarithmic scale. The IR cutoff scale p� shifts
without significantly changing the total quasiparticle density. Only
a small non-leading-order rescaling of the UV scale pλ is required
to satisfy number conservation. The sketch shows the case of an
inverse particle transport following a weak cooling quench. See
Table II for our predictions for the scaling exponents. In the case
of a weak-wave-turbulence quasiparticle cascade, p� shifts in an
accelerated way, with τ replaced by τ ∗ [see Eq. (51)].

from an initially nonequilibrated quasiparticle distribution.
Suppose that this distribution has the form (29), with a power
law nQ(p) ∼ p−κ in the region p� � p � pλ between the IR
and UV cutoff scales. Again, taking into account the integrals
for (quasi)particle and energy densities [Eqs. (19) and (22)],
the value of the exponent κ tells us at which end of this region
energy and particle number are concentrated.

If the power law is sufficiently flat, κ < d , both particles
and energy are in the UV, and both Eqs. (37) and (38) need
to be fulfilled, presupposing that the IR cutoff is sufficiently
small, p� � pλ. This is only possible for α′ = β ′ = 0. As a
consequence, the amplitude f1 and the UV cutoff scale pλ are,
to a first approximation, constant in time (cf. Fig. 3).

Nonetheless, a wave-turbulent, quasilocal flux can build up
and thereby satisfy the global conservations laws while p�

decreases. As before, global conservation laws require that
this process in leading order confirms the scaling hypothesis
(44), with α′ = β ′ = 0, and thus α0 = 0 [cf. Eq. (45)]:

nQ(p, t ) = fλ(p/pλ; τ−β p�/pλ), (48)

with scaling function of the type (33), of which we suppress
the third argument. In turn, Eq. (43) implies that α = βκ in an
equivalent scaling hypothesis of the form (42):

nQ(p, t ) = τ α f�(τ β p/p�; τ β pλ/p�). (49)

To determine β requires analyzing the kinetic equation and
the scaling properties of the interactions. We will do this in
Secs. III and IV. Depending on these scaling properties, β

can be positive or negative. If β > 0, the wave-turbulent flux
builds up analogously to the self-similar scaling evolution.
The nonuniversal scales evolve according to

f�(t ) ∼ τα, p�(t ) ∼ τ−β, pλ(t ) ∼ const, (50)

as in Eq. (39), with τ = t/t0, but with α′ = β ′ = 0 (see Fig. 3).

On the contrary, if β < 0, building up a wave-turbulent
cascade toward the IR, which requires p� to decrease in time,
is not possible with τ = t/t0. τ rather needs to shrink with
time. The scaling analysis of the dynamic equations will show
that a scaling parameter algebraic in time is required, and the
simplest such parameter is given by (cf. Refs. [63,70])

τ = t∗ − t

t∗ − t0
≡ τ ∗. (51)

As a result, the cascade builds up behind a wave front which,
at time t∗, reaches zero momentum. Before this happens, how-
ever, the solution ceases to be valid as spreading information
over infinite distances in a finite time is impossible.

The wave front can be imagined to look like the evolution
shown in Fig. 3, however, with the cutoff scales evolving
according to (50) and (51). The value of t∗ is determined by
the given initial distribution at time t0. The scaling evolution
(50) is valid for τ ∗ < 1, and t∗ − t much smaller than the
overall evolution time t∗ − t0. In this limit, the distribution
behind the wave front becomes nearly stationary when taking
into account the global conservation of particle and energy
density. Note that, as a result of these conservation laws,
the scalings (50) can only represent the leading behavior,
while subleading terms form corrections which are the more
important the further away t is from t∗.

For κ > d + z, both quasiparticles and energy are concen-
trated in the IR, and a direct cascade can build up according
to the scaling form (41), with α′ = β ′κ , α = β = 0. If β ′ < 0
the evolution takes the form of a critically slowed wave front
while for β ′ > 0 an accelerating scaling evolution occurs.
At t = t∗, the wave front reaches infinite momentum, before
which the solution, however, is expected to break down as
arbitrarily high momenta are usually not captured.

We will show in Sec. IV that, for the cases of free particles
and Bogoliubov sound in the perturbative wave-Boltzmann
regime, following a weak cooling quench, an inverse cascade
builds up behind a wave front described by the scaling evolu-
tion (50), with scaling parameter τ = τ ∗ [Eq. (51)] (see also
Refs. [63,68,69]). One may say that this wave-front scaling
evolution is critically accelerating.

We emphasize that, in physically realistic situations, this
scaling evolution breaks down at a finite length scale 1/p� <

∞, i.e., before t = t∗ is reached, when the processes underly-
ing the kinetics of the system change in a fundamental way.
In Ref. [75] it was shown that in such cases, the change of the
noncondensate distribution comes to a halt and a condensate,
i.e., a macroscopic zero-mode population starts to rise up.

In the following and in accordance with the (wave-)
turbulence literature, we will refer to the rescaling of a dis-
tribution as sketched in Fig. 3, which implies a unidirectional,
quasilocal transport of particles or energy within the inertial
range, to the IR or the UV, as a cascade. With this we distin-
guish it from the bidirectional self-similar nonlocal transport
discussed in the previous section. Recall also that one can have
mixed forms with, e.g., both, a self-similar evolution in the IR
and a wave-turbulent cascade in the UV [see Fig. 1(b)].

D. Summary

Global conservation laws of bulk, i.e., momentum-
integrated quantities play an important role in distinguishing
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TABLE I. Scaling relations. The table summarizes the relations
between the scaling exponents as obtained, in Sec. II C, from the
constraints set by global conservation laws. Depending on the rel-
ative size of the momentum-scaling exponent κ , the dimension d ,
and the dynamical exponent z, one expects either the buildup of an
inverse cascade, a bidirectional self-similar evolution, or the buildup
of a direct cascade of quasiparticles.

α β α′ β ′ τ

Inverse cascade βκ <0 0 0 τ1

κ < d >0 t/t0

Bidirectional self-similar βd β ′(d + z) β
d − κ

d + z − κ
d < κ < d + z

Direct cascade 0 0 β ′κ <0 t/t0

d + z < κ >0 τ1

between the different types of scaling dynamics possible in
an isolated system. A wave-turbulent, quasilocal transport of
either quasiparticles or energy, which, in the inertial range,
does not change nQ in time, is possible only if both these
quantities are concentrated at the same end of the inertial
range. Depending on the relative size of κ [cf. Eqs. (23)
and (25)], one expects either an inverse cascade or a direct
cascade. In contrast, if the scaling function has a single power
law ∼p−κ and κ is inside the interval (24), a self-similar
evolution is expected. Exemptions to this can appear when
the function has more than one power law, e.g., one in the
IR and one in the UV as sketched in Fig. 1(b). In such a case,
self-similar evolution is also possible outside the interval (24).
Scaling relations between the exponents for these different
cases are summarized in Table I. Note that at the boundaries
κ = d and κ = d + z, a more careful analysis would be in
order.

III. KINETIC DESCRIPTION OF UNIVERSAL
TIME EVOLUTION

A. Kinetic equation

The main goal of this work is to find scaling solutions of
Boltzmann-type kinetic equations for the occupation number
distributions (4) or (12) and compute the respective scaling
exponents. These equations can be written as

∂t nQ(p, t ) = I[nQ](p, t ), (52)

where I[nQ] is a scattering integral to be specified below.
We assume the scaling functions to be regularized such that

the total (quasi)particle density and energy are finite. This is,
e.g., satisfied by the form (29), with κ� = 0, κλ � 1. We then
derive the scaling exponents β or β ′, and κ , from which one
obtains the remaining exponents by means of conservation-
law constraints as summarized in Table I. Which solutions are
possible will depend crucially on the interaction properties of
the Bose fields encoded in the scattering integral.

In the following sections we introduce the scattering in-
tegral I and derive universal exponents of scaling solutions
of the kinetic equation (52). We begin with determining the

scaling properties of the scattering integral and subsequently
discuss the different possible solutions following from these.

B. Scaling properties of the scattering integral

1. Classical-wave limit

The time evolution of the momentum distribution np ≡
nQ(p, t ) of Bose-field excitations is described, in the kinetic
approximation, by a generalized quantum Boltzmann equa-
tion (QBE). For details of the derivation within the quantum-
field-theoretic approach we choose here, see Appendix D. The
QBE takes the form (52), with scattering integral

I[nQ](p, t )

=
∫

kqr
|Tpkqr|2δ(p+k−q−r)δ(ωp+ωk−ωq−ωr )

× [(np+1)(nk+1)nqnr− npnk(nq+1)(nr+1)], (53)

where we use the shorthand notation
∫

k ≡ ∫
dd k (2π )−d and

Tpkqr is the scattering T matrix discussed in more detail
below. The scattering integral I[nQ](p, t ) describes the redis-
tribution of the occupations np of momentum modes p with
eigenfrequency ωp due to elastic 2 → 2 collisions. If a Bose
condensate is present, the occupation numbers describe, in
general, quasiparticle excitations, and the scattering matrix
as well as the mode eigenfrequencies are modified as we
discuss in more detail in the following. Note that in this
work we will only consider transport entirely within the
ranges where a fixed scaling exponent z applies. As a conse-
quence, particle-number changing processes are suppressed.
Collective scattering effects beyond two-to-two exchange of
occupation numbers will be captured by the T matrix.

The QBE scattering integral (53) has two classical limits: If
np � 1, the scattering integral reduces to the usual Boltzmann
integral for classical particles with its integrand proportional
to nqnr − npnk. In the opposite, classical-wave limit of large
bosonic mode occupations np � 1, one obtains the wave-
Boltzmann scattering integral

I[nQ](p, t ) =
∫

kqr
|Tpkqr|2δ(p + k − q − r)

× δ(ωp + ωk − ωq − ωr )

× [(np + nk )nqnr − npnk(nq + nr )], (54)

as the terms of third order in the distribution function np
dominate over the classical-particle, second-order Boltzmann
terms. As we are interested, in this work, in the kinetics of
the near-degenerate Bose gas, with np � 1, we will restrict
our discussion to the integral (54) of the wave-Boltzmann
equation (WBE).

Since we are assuming isotropic distributions nQ(p, t ) =
nQ(p, t ) ≡ np, it is convenient to write the WBE in the form

∂t nQ(p, t ) = I[nQ](p, t ), (55)

I[nQ](p, t ) =
∫

kqr
Wpkqrδ(ωp + ωk − ωq − ωr )

× [(np + nk )nqnr − npnk (nq + nr )], (56)
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with the angle-averaged transition matrix squared (d = 2, 3)

Wpkqr = 21−dπ−1
∫

d�p d�k d�q d�r kd−1qd−1rd−1

× |Tpkqr|2δ(p + k − q − r). (57)

2. Scaling behavior

The scattering integral in the classical-wave limit [Eq. (56)]
is a homogeneous function of momentum and time, i.e., scales
in these variables if the same holds for the quasiparticle
distribution np = nQ(p, t ),

nQ(p, t ) = sα/βnQ(sp, s−1/βt ) (58)

[cf. Eq. (36)], and for the modulus of the T matrix,

|T (p, k, q, r; t )| = s−m|T (sp, sk, sq, sr; s−1/βt )|, (59)

with scaling dimension m of the T matrix. Choosing the
scaling parameter s to be

s = (t/t0)β (60)

shows that Eq. (58) is equivalent to the scaling form (36)
of nQ, with nQ(p, t0) = f (p). In the following, we will keep
this notation in terms of a more general scaling parameter s,
keeping in mind that also a different scaling such as with τ ∗,
Eq. (51), is possible.

The scaling (59) of the T matrix squared implies that

W (p, k, q, r, t ) = s−2(d+m)+3W (sp, sk, sq, sr; s−1/βt ). (61)

From the above, one obtains the spatiotemporal scaling of the
scattering integral

I[nQ](p, t ) = s−μI[nQ](sp, s−1/βt )

= (t/t0)−βμI[nQ]([t/t0]β p), (62)

where the second line follows by inserting the scale parameter
(60). The exponent μ is obtained from Eqs. (56) and (61) as

μ = 2(d + m) − z − 3α/β. (63)

While the exponent m is required for deriving the scaling
exponent β of the time evolution,2 the exponent κ character-
izing the spatial scaling of nQ(p, t0) [Eq. (17)] depends on the
purely spatial momentum scaling of the T matrix and thus
of the scattering integral, at a fixed instance in time, e.g., at
t = t0. Suppose that the distribution function nQ scales, within
a region of momenta, according to Eq. (17), being regularized
by an IR cutoff p� (or a UV cutoff pλ) and that in the limit
p � p� (or p � pλ) the scattering integral is finite. The T
matrix then is expected to scale in the momenta, at a fixed
time t0, according to

|T (p, k, q, r; t0)| = s−mκ |T (sp, sk, sq, sr; t0)|. (64)

The exponents mκ and m are, in general, different. Note that,
in the following we will write scaling exponents such as mκ

with a subscript κ to emphasize that they characterize spatial

2And of α, in principle, which however follows from β by means
of conservation laws (cf. Sec. II C).

scaling at a fixed time t0 while their counterparts without
subscript apply to scaling in momentum and time.

As we will exemplarily show below, the scaling (64)
applies only within a limited regime between the IR and
UV cutoffs, p� � p � pλ. Provided that the integrand is
sufficiently local in momentum space,3 such that I[nQ](p) is
independent of the respective cutoff, the momentum scaling
in the respective region reads as

I[nQ](p, t0) = s−μκ I[nQ](sp, t0). (65)

The scaling exponent μκ is obtained from Eqs. (56), (61), and
(64), with np ∼ p−κ , as

μκ = 2(d + mκ ) − z − 3κ. (66)

Note that the exponents μκ and μ [Eq. (63)] are, in general
different, distinguishing pure spatial from space-time scaling.

We furthermore remark that, to prove the locality of the
scattering integral, it is possible to make estimates as in
Ref. [19]. Numerically, it is difficult to prove locality explic-
itly from the calculation of the scattering integrand. However,
as we will show in Sec. V B 2 (cf. Fig. 8), the scattering in-
tegral, in the scaling momentum region, shows independence
of the particular value of the IR cutoff and thus proves to be
local to a sufficiently large extent within the scaling region.

C. Properties of the scattering T matrix

In general, the scaling hypothesis for the T matrix
[Eq. (59)] is not justified throughout the entire space of
possible momentum arguments. Scaling rather holds, with
different exponents, within separate limited scaling regions,
for the following reasons. The scaling exponent κ will turn
out to be a positive real number such that the momentum
occupation numbers nQ(p) ∼ p−κ grow large in the IR regime
of small p. If the T matrix stays finite in the same regime,
as is the case in the perturbative approximation, the WBE
can eventually fail. As we will argue in the following, this
problem can, however, be remedied by taking into account in
a systematic way nonperturbative collective-scattering effects
in the T matrix, beyond the Boltzmann perturbative order of
approximation.

1. Perturbative region: Two-body scattering

For the noncondensed, weakly interacting cold Bose gas
away from unitarity the T matrix is known to be well approx-
imated by

|Tpkqr|2 = (2π )4g2, (67)

where, in d = 3 dimensions, g = 4πa/m is proportional to
the s-wave scattering length a. Equation (67) applies up to
an ultraviolet cutoff scale pu and falls off to zero beyond this
scale, which ensures the unitarity of the scattering amplitude
[96]. pu ∼ 1/a scales with the inverse of the scattering length
a and is typically much larger than the highest significantly

3Locality of the integral in momentum space is to be understood
on a logarithmic scale. It ensures that the scaling remains largely
unaffected by the cutoffs (cf., e.g., Ref. [19]).
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occupied momentum mode. As we discuss in more detail in
Appendix D 2, Eq. (67) represents the leading perturbative
approximation of the full momentum-dependent many-body
coupling function.

The matrix elements (67) are independent of the momenta
and, thus, |Tpkqr| scales according to Eqs. (59) and (64), with
the scaling exponents

mκ = m = 0 (free particles; perturbative) . (68)

If a condensate with density ρ0 � ρ is present, the quasiparti-
cle excitations below the healing-length scale pξ = √

2gρ0m
take the form of sound waves on the background of the
bulk condensate (cf. Sec. II A). The elastic scattering of
these sound waves is captured, in leading-order perturbative
approximation, by a wave-Boltzmann equation with T matrix4

|Tpkqr|2 = (2π )4 (mcs)4

pkqr

3g2

2
, (69)

where the speed of sound cs is defined in terms of the healing-
length momentum scale mcs = pξ /

√
2 = √

gρ0m. See Ap-
pendix D 2 b for a derivation of the corresponding wave-
Boltzmann scattering integral. According to Eq. (69), the
scaling exponents defined in Eqs. (59) and (64) are related
by

mκ = m = −2 (Bogoliubov sound; perturbative). (70)

We emphasize that the above perturbative expressions are, in
general, of limited applicability for solutions showing scaling
in the far infrared. The validity of Eqs. (67) and (69) in
the limit p → 0 depends crucially on the occupancies np of
the momentum modes. In the following, we discuss highly
occupied free-particle and quasiparticle distributions and the
respective modification of the scaling properties of the T
matrix.

2. Collective scattering: Many-body T matrix

Consider as an example the case d = 3. With the T ma-
trices (67) and (69) inserted, contributions to the scattering
rates in the integral I[nQ](p), which are of higher order than
ζ 2n2

Q and thus beyond the approximation (54), are expected
to become important where ζ 2n2

Q � 1, with ζ = aρ1/3 being
the diluteness parameter. To find universal scaling solutions in
such a highly occupied region of strong collective scattering,
an approach beyond the Boltzmann, leading-order perturba-
tive approximation is required.

Here, we use an s-channel loop resummation derived
within a quantum-field-theoretic approach based on the two-
particle irreducible (2PI) effective action or � functional
(see Appendix C). The scheme is equivalent to a large-N
approximation at next-to-leading order. It gives an effective
momentum-dependent coupling constant geff (p) replacing the
bare coupling g in Eq. (67) and changing the scaling ex-
ponent m of the T matrix within the IR region of large

4Taking also into account three-wave scattering of Bogoliubov
modes involving the condensate is beyond the scope of this article
and will be done elsewhere. This implies that exchange of particles
with the condensate mode is not captured here yet.

FIG. 4. Effective coupling geff (p0, p) in d = 3 dimensions as a
function of the spatial momentum p = |p|, on a double-logarithmic
scale. The figure shows cuts in the p0–p plane, with p0 = 0.5εp (dark
lines) and p0 = 1.5εp (transparent bright lines). Different colors (line
styles) refer to different infrared cutoff scales p� as listed in the
legend. p� is set by the scaling form of the occupation-number
distribution entering the nonperturbative coupling function (see, e.g.,
Fig. 2). All momenta are measured in units of the “healing”-length
wave number p� = (2gρncm)1/2 which is set by the noncondensed
particle density ρnc. Note that p� sets the scale separating the pertur-
bative region at large p from the nonperturbative collective-scattering
region within which the coupling assumes the form given in Eq. (74).
See Fig. 5 for the dependence in the full p0-p plane.

occupancies (see Appendices D and E for technical details
of the derivation). This builds on and goes beyond, e.g.,
Refs. [44,46,48,49]. As is furthermore shown in Refs. [85,90],
the momentum dependence of the effective coupling is re-
covered in an equivalent momentum dependence of the bare
coupling obtained for the phase angles of the Bose fields
within a low-energy effective-theory approach.

Many-body T matrix for scattering of free particles. The
resummation scheme provides us with an expression for the
T -matrix elements which, for free particles (z = 2), reads as

|Tpkqr|2 = (2π )4g2
eff (εp − εr, p − r). (71)

Here, p − r and εp − εr are the momentum and energy trans-
fer in a scattering process, respectively. geff is an effective
coupling function derived in the 2PI approach, as described
in detail in Appendix C. Making a scaling ansatz for n(p, t )
[Eq. (30)] with scaling function of the type (31), the depen-
dence of geff on the energy and momentum arguments can be
calculated explicitly, as shown in Appendix E 1. As a result of
the ansatz in terms of the scaling function (31), the coupling
depends on the IR cutoff scale p�.

Figure 4 shows the resulting momentum-dependent ef-
fective coupling function geff (p0, p) along exemplary cuts
p0 = 0.5εp and p0 = 1.5εp in frequency-momentum space,
for different infrared cutoffs p�. The function geff is plotted
as a function of p/p�, where p� is defined as

p� =
√

2gρncm. (72)
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FIG. 5. Contour plot of the effective coupling function
geff (E , p)/g of free particles, for d = 3, as a function of E = 2mp0

and p = |p|, for p� = 10−3 p�. This function enters the T matrix
as defined in Eq. (71). Cuts through this function, for E = 1.5 p2

and E = 0.5 p2 (black dashed lines), are shown in Fig. 4. The
quasiparticle distribution nQ was chosen to scale with κ = 3.5.
The coupling function in the collective-scattering region (73), is
well described by the universal form (74) which does not depend
on κ . The scattering resonance marked by the dark red “ridge” is
centered around the Bogoliubov-type energy-momentum transfer
E = [2p2

� p2 + p4]1/2.

p� is the analog of the healing-length scale pξ [cf. Eq. (9)],
which, instead of the condensate density ρ0, is set by the non-
condensed particle density ρnc = ρtot − ρ0 [recall Eq. (19)].

At large momenta, the effective coupling is constant and
agrees with the perturbative result geff = g. However, below
p�, the coupling deviates from the perturbative result. Within

p� � p � pnp = p�, (73)

the effective coupling assumes the universal scaling form

geff (p0, p) 
∣∣ε2

p − p2
0

∣∣
2ρnc εp

(κ > 3) (74)

independent of both the microscopic interaction constant g
and the particular value of the scaling exponent κ of nQ (see
Appendix E 1). Below the IR cutoff p < p�, the coupling
settles in to become constant again.

Note, in particular, that this low-momentum cutoff, for the
case of universal scaling evolution at a nonthermal fixed point
(58), implicitly leads to a time dependence of geff (p0, p; t ) as
p�(t ) ∼ t−β decreases in time [cf. Eq. (39)].

Before we discuss our results further, we briefly remark
that the effective coupling geff has a slightly more complicated
structure than what has been discussed so far. The areas
of constant geff shown in Fig. 5 (blue to orange) for E =
2mp0 > 0 reflect the dependence on p0 and p of the form
(74). The two dashed black diagonal lines in Fig. 5 correspond
to the exemplary cuts E = 1.5 p2 and 0.5 p2 along which
geff (E (p), p) is depicted in Fig. 4. The coupling features,
along the former cut, a peak at p  1.5p�. This peak can be
seen at different frequencies and momenta, shown as a red
band in Fig. 5. It appears, in fact, at the energy transfer

E (p) = [
2p2

� p2 + p4
]1/2

(75)

taking Bogoliubov form for a momentum transfer p = |p| �
p�, and thus has the form of a many-body scattering reso-
nance indicating the exchange of soundlike quasiparticles for
p � p� (see also Appendix E 1). According to our numerical
evaluation, the peak does not seem to play a visible role for
the wave-turbulent scattering integrals discussed later.

Figure 5 furthermore indicates that the coupling for ex-
change of E (p) = p2 is suppressed and scales differently, seen
as a narrow line along the diagonal E = p2. This does not
appear to affect the scaling of the solutions of the kinetic
equations either. One finds in this case geff (E (p), p) ∼p (see
the discussion of Fig. 11 in Appendix E 1, and [89]).

Universality of the effective coupling. The simple universal
form (74) of the effective coupling in the collective-scattering
regime is one of the central results of this work. It results from
the s-channel resummation and only requires the quasiparticle
occupancies nQ(p) ∼ p−κ to show a sufficiently steep power
law, κ > 3 = d , and to be regularized in the IR below the mo-
mentum scale p� such that n(p) gives a finite particle number
and energy (cf. Appendix E 1 for details of the derivation).

Note that, while expression (74) is independent of g, the
dependence of the full effective coupling on the bare coupling
g appears in the fact that the universal increase of geff (p0, p)
with its increasing arguments p0 and p reaches g at the scales
p  p� and p0  ε(p�) which, in turn, depend on g. Note
furthermore that the effective coupling is universal in a similar
sense as in the unitary limit of g → ∞, as at a Feshbach
resonance. There, the quantum corrections to the self-energy
which have been neglected here lead to a UV scaling |geff |2 ∼
p−2 as p → ∞.

We strongly emphasize that the result (74) is independent
of κ if κ > 3 (see Appendix E 1 c for details). In Sec. IV we
will show that, at an IR nonthermal fixed point, one has κ > d
if z > 4

3 , which is fulfilled for the free particles considered
here. Hence, universality is ensured in the case of d = 3
dimensions.

The scaling properties of geff allow us to confirm the scal-
ing hypothesis (64) for the T matrix. Within the perturbative
regime, the coupling function scales as

geff (p0, p) = s−γκ geff (sz p0, sp), (76)

with z = 2 and

γκ = 0 (perturbative regime), (77)

while, in the collective-scattering regime,

γκ = 2 (collective-scattering regime). (78)

Together with Eq. (71) this gives the scaling exponent

mκ = 2 (free particles; collective) (79)

of the T matrix in the collective-scattering regime (73). We
will discuss the scaling properties for general d and z in the
collective-scattering regime in more detail in Sec. IV B.

We emphasize that, according to the above nonperturbative
results, the breakdown of the perturbative wave-Boltzmann
scattering integral which appears due to the rise of occupation
numbers in the IR is counteracted by a strong power-law
falloff of the scattering T matrix. At very low scales, below the
IR cutoff p�, the effective coupling saturates again to a much
smaller constant. This saturation occurs due to the growth of
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occupation numbers being regularized to ensure convergence
of physical quantities such as particle and energy densities.
As a consequence, this effectively reinstates in this lowest-p
regime the same scaling as in the perturbative region, albeit
at a constant value generally different from the perturbative
approximation.

We finally remark that, as can be shown within a Luttinger-
liquid–type low-energy effective theory [90], the power-law
suppression of the coupling in the IR limit can be understood,
in a multicomponent system, to be due to the fact that relative
phases and densities in a multicomponent system fluctuate
similarly, while only the total density fluctuations are sup-
pressed by the repulsive interactions.

Many-body T matrix for Bogoliubov sound waves. If the
strongly occupied IR modes have a Bogoliubov-type disper-
sion scaling with z = 1, the T -matrix elements are calculated
analogously, as we show in Appendix E 2.

D. Summary

The kinetic approach outlined in this section forms the ba-
sis of the scaling analysis presented in the following sections.
Using a nonperturbative large-N approximation of Kadanoff-
Baym–type equations of motion for single-particle Green’s
functions, we derived kinetic equations of the quantum-
Boltzmann form (54), with a scattering T matrix which de-
pends on the distribution function itself. The analytic form
(74) of the universal effective coupling function defining the
momentum-frequency dependence (71) of the T matrix is a
central result of this work. It decreases the effective coupling
below the bare coupling g where it shows a universal power-
law form (see Fig. 5).

IV. SCALING ANALYSIS OF THE KINETIC EQUATIONS

We are now in the position to derive the scaling properties
of the solutions to the kinetic equations (55) and (56). Before
we proceed with this final step, we discuss the generalization
of the scaling properties of the effective coupling function,
and thus of the T matrix and the scattering integral to the
time-dependent case, on the basis of a scaling analysis of
the self-energy entering the field equations in the Schwinger-
Keldysh formalism. This will allow us to predict the scaling
of the many-body T matrix for general dimensions d and
dynamical exponent z, as well as a possible anomalous scaling
dimension η to be introduced in the following.

A. Field-theoretic description of the scattering integral

In order to perform the generalized scaling analysis, we
first need to summarize how the effective coupling geff (p)
is obtained. We follow for this a field-theoretic approach,
from which we derive the kinetic equation and the scattering
integral (see Appendices C and D for details). We determine
geff (p), which defines the T -matrix elements (71) by means of
an s-channel loop resummation. As a result, it can be written
as

geff (p0, p; t ) = g

|1 + g�R(p0, p; t )| (80)

(see Fig. 10 for a diagrammatic representation). The retarded
one-loop self-energy �R(p0, p; t ) is defined by

�R(p0, p) = i

2

∫
dq0

2π

1

q0 + iε

∫
dd k dk0

(2π )d+1

× [ρab(p0 − q0 + k0, p + k) Fba(k0, k; t )

− Fab(p0 − q0 + k0, p + k; t ) ρba(k0, k)] (81)

[cf. Eqs. (C15) and (C17)], in terms of the statistical and
spectral functions

Fab(x, y) = 〈{�a(x),�b̄(y)}〉/2, (82)

ρab(x, y) = i〈[�a(x),�b̄(y)]〉, (83)

with indices a, b ∈ {1, 2}, with ā = 3 − a and �1(x) ≡
�(x), �2(x) ≡ �†(x), and their momentum-space analogs in
Eq. (81) follow from Fourier transformation with respect to
the four-vector x − y while t = (x0 + y0)/2. Within the ki-
netic approximation considered in this work, ρ(p0, p) remains
constant in time t .

The scaling properties of F and ρ are defined by

Fab(p0, p; t ) = s2−η+α/β Fab(sz p0, sp; s−1/βt ), (84)

Fab(p0, p; t0) = s2−η+κ Fab(sz p0, sp; t0), (85)

ρab(p0, p) = s2−η ρab(sz p0, sp). (86)

Aside from the already known exponents, η appears as an
anomalous scaling dimension of the spectral function.5

For z = 1 and 2, ρ(p0, p) is given in Eqs. (C26) and (C27),
respectively, encoding the dispersion relation as well as the
density of states. For the free quasiparticles considered here,
η modifies the scaling of the density of states

ρab(p0, p) ∼ i

p2−η−z
[Babδ(p0 − ωp) − B′

abδ(p0 + ωp)], (87)

where B and B′ are constant matrices (cf. Appendix C 3 c).
The particle and quasiparticle distributions, obtained by

frequency integrations over F ,

n(p, t ) =
∫ ∞

0

dω

2π
TrF (ω, p; t ) − 1/2, (88)

nQ(p, t ) =
∫ ∞

0

dω

2π
Tr[σ 3F (ω, p; t )] − 1/2, (89)

5We point out that we choose a notation different from that
in earlier work (e.g., Refs. [44,46,48]), effectively replacing κ →
κ − η, to take into account that in equilibrium, both ρ and F
scale with the same anomalous dimension η while out of equi-
librium the scaling dimension of F gets modified by κ �= z (cf.
Appendix C 3 d). Note furthermore that the scaling (84) along the
center-time axis x0 = y0 = t is different in character from scaling
known in the context of initial-slip and aging dynamics [10–14]. See
Appendix C 3 d.
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scale, according to Eqs. (84) and (85), as

n(p, t ) = sα/β−η+2−z n(sp, s−1/βt ), (90)

n(p, t0) = sκ−η+2−z n(sp, t0) = sζ n(sp, t0), (91)

nQ(p, t ) = sα/β nQ(sp, s−1/βt ), (92)

nQ(p, t0) = sκ nQ(sp, t0), (93)

which for η = 0 is consistent with Eqs. (15), (17), and (58).
In the perturbative regime, the contribution from the self-

energy �R in the denominator of the coupling function (80)
can be neglected as compared to the 1, and geff ≡ g. In the
collective-scattering regime, the scaling behavior of geff ,

geff (p0, p; t ) = s−γ geff (sz p0, sp; s−1/βt ), (94)

geff (p0, p; t0) = s−γκ geff (sz p0, sp; t0), (95)

can be determined by inserting the scaling of F and ρ into
Eq. (81). Straightforward power counting gives

�R(p0, p; t ) = sα/β−d+z+2(2−z−η) �R(sz p0, sp; s−1/βt ). (96)

The scaling analysis at a fixed time t0 requires more care. If the
integral (81) is infrared divergent, it requires the quasiparticle
distribution nQ entering F to be regularized as discussed
earlier and will then be sensitive only to the infrared part of the
distribution. In this case, it leads to a universal coupling and
with this to the scaling of the solution of the kinetic equation
at an IR nonthermal fixed point. On the contrary, if the integral
is IR finite, it becomes sensitive to the UV part of nQ and in
general will not give rise to fixed-point scaling.

In the IR-dominated case, the integral �R depends also on
the cutoff scale p� such that simple power counting gives

�R(p0, p; t0; p�) = sκ−d−z+2(2−η) �R(sz p0, sp; t0; sp�),

(97)

and it remains, at first, unclear, to what extent the scaling is
provided by the rescaling of p� and how much by that of p.

1. Universal scaling at an IR-dominated nonthermal fixed point

Inspection of the integral (81) allows to infer the con-
tribution from the rescaling of p� from the power of the
divergence of the integral. The terms in the integrand in square
brackets give rise to divergencies where the arguments of ρ

or F vanish. However, for p � p�, the arguments of F and
ρ in each product can not be zero simultaneously. Among
the different divergent terms, for κ > 0, those arising from
F dominate the integral [compare Eqs. (85) and (86)]. As
a result, the divergencies originating from F determine the
scaling in p�:

�R(p0, p; t0; p�) = sκ−d−z+2−η �R(p0, p; t0; sp�). (98)

This scaling behavior is consistent with Eqs. (E6) and (E9) in
Appendix E 1 where we exemplarily discuss the case d = 3,

z = 2, η = 0.6 Factoring (98) out of (97) leaves

�R(p0, p; t0) = s2−η �R(sz p0, sp; t0), (99)

as for the spectral function (86) itself. We further note that,
according to Eq. (98), if

κ > d + z − 2 + η (IR dominance), (100)

the value of �R increases, for fixed p and p0, when p� is
lowered, decreasing geff accordingly [cf. Eq. (80)]. We also
see that in this case the total density ρnc = ∫

p n(p, t0), whose
scaling is determined by (91), is dominated by the IR cutoff,
i.e., ρnc ∼ pd

�(�/p�)κ−z+2−η, where the fixed scale parameter
� adjusts the “engineering” dimension to that of the density
ρnc.

Hence, assuming ρnc = const, the dependence of �R on p�

can be exchanged for a dependence on the invariant density,
leaving a universal momentum-energy dependence g�R(p) ∼
p−2+ηgρnc ∼ p−2+η p2

�. As a result, for p � p�, the 1 in the
denominator of the coupling (80) can be neglected compared
with g�R, leaving a universal geff of the type found earlier [cf.
Eq. (74)]. We will later show that, for our IR nonthermal fixed
points, the condition (100) is fulfilled, such that (99) defines
the universal IR momentum scaling of the effective coupling
function (80).

2. Thermal case and wave turbulence

On the other hand, weak wave turbulence and thermal
states in general have exponents κ < d + z − 2 + η. From the
scaling (98) of �R in p� it follows that for κ < d + z − 2 + η,
the integral (81) is no longer IR divergent and thus sensitive
also to the UV end, while the dominant contribution in p�

still arises from the F functions. Moreover, the overall scaling
(97) implies that for κ > d + z − 2(2 − η), the integral is
UV finite.7 For 0 < κ < d + z − 2(2 − η) (see footnote 8)
the integral (81) is UV divergent, so the cutoff pλ is needed,
which for κ > d + z − 2(2 − η) is the case only for the
normalization.

In these cases, in the UV, both F and ρ are equally
important in Eq. (81), giving a momentum scaling [cf. (99)]

�R(p0, p; t0) = sκ−d−z+2(2−η) �R(sz p0, sp; t0) (101)

for fixed IR and UV cutoff scales, i.e., g�R(p) ∼
p−κ+d+z−4+2η, consistent with Eq. (E28) for d = 3, z = 2, and
η = 0.

Moreover, as the total density is dominated, for κ < d +
z − 2 + η, by the UV end of the spectrum n(p), i.e., ρnc ∼
pd

λ(�/pλ)κ−z+2−η, substituting p� for p� leads to an overall
scaling g�R(p) ∼ p−2+η(pλ/p)κ−d−z+2−η p2

� [cf. the explicit
example in Eq. (E28)].

6�R according to Eq. (E9) scales as p2−κ
� , and the integral over y in

Eq. (E9) scales, by Eqs. (E14) and (E17), as ∼x−1 ∼ p�/p, giving in
total �R ∼ p3−κ

� , as in Eq. (98) for d = 3, η = 0, z = 2.
7The integral (E14) in the case z = 2, d = 3, η = 0 is UV divergent

already for κ < 2. However, for κ > d + z − 2(2 − η), the leading
divergence is an imaginary constant, the last term in Eq. (E15) which
drops out when inserting π̃κ into �R.
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We point out that in Refs. [44–47], the scaling (101) was
employed to derive stationary wave-turbulent scaling expo-
nents, while rather Eq. (99) applies. The temporal scaling
analysis in Ref. [48], though, is not affected by the IR diver-
gence of the �R integral and, for η = 0, gave the result (96).

B. General scaling of the effective coupling geff (p, t )

The scaling properties presented in the previous section
are used, in the following, to derive general scaling relations
between the exponents γ , γκ , m, mκ , α/β, κ , z, and η, for
spatial dimension d . We start with the scaling in time and
momentum. Equation (96) implies a scaling of the effective
coupling according to Eq. (94), with

γ = α/β − d − z + 4 − 2η . (102)

Comparison of Eqs. (59), (71), (E50), and (94) yields

m = γ + 2z − 4 + 2η (103)

between γ and the scaling exponent m of the T matrix.
Combining Eqs. (102) and (103) eliminates γ and η,

m = α/β − d + z (collective scattering). (104)

Note that both the distribution function nQ(p, t ) and the T
matrix show a spatiotemporal scaling independent of η [cf.
Eq. (92) for nQ]. Hence, the anomalous dimension is not
affected by the scaling properties of the kinetic equation and,
in turn, can not depend on them. This result is consistent with
the fact that η accounts for the scaling of the spectral prop-
erties which remain unchanged during the kinetic evolution
within the leading-order gradient approximation [97] of the
scattering integral considered here.

As we have anticipated in Sec. II C and will discuss further
in the forthcoming sections, depending on the type of scaling
evolution, the quotient α/β is either fixed by the global
conservation of quasiparticle number α/β = d [cf. (46)] or by
the momentum scaling law α/β = κ (cf. Table I). In the first
case, i.e., for (bidirectional) self-similar evolution, one finds

m = z (self-similar evolution, collective scattering).

(105)

In the case of wave-turbulent cascades, the exponent reads as

m = κ − d + z (cascade, collective scattering). (106)

In analogy to the above, the momentum scaling at fixed time
t0 defined by Eq. (95) is governed by Eq. (99),

γκ = 2 − η (collective scattering, universal) (107)

provided that (100) is satisfied, which we will later confirm to
be the case for η < 2. Comparison of Eqs. (64), (71), (E50),
and (95) gives the general relation between the T matrix and
geff exponents at fixed time t0:

mκ = γκ + 2z − 4 + 2η. (108)

Hence, inserting Eq. (107) yields

mκ = 2(z − 1) + η (collective scattering, universal),

(109)

which for η = 0 is consistent with our earlier results (79) and
(E51). Note that, as is the case for the universal scaling forms
(74) and (E49), the exponents γκ and mκ are independent of κ

in the collective-scattering regime [cf. Eqs. (107) and (109)].
The above relations generalize our results obtained in

Sec. III C 2 for the momentum scaling exponents γκ and mκ

in d = 3 and for Bogoliubov sound (z = 1) and free particles
(z = 2), to arbitrary dimensions and dynamical exponents z,
including a possible anomalous dimension η.

Finally, if κ < d + z − 2 + η, i.e., outside the universal
scaling regime (100), the UV-sensitive coupling scales as
(101):

γκ = κ − d − z + 2(2 − η) (collective, nonuniversal)

(110)

and thus

mκ = κ − d + z (collective scattering, nonuniversal).

(111)

C. Scaling analysis of the kinetic equation

We are now in the position to use the scaling properties of
the scattering integral derived in the previous subsections to
determine the remaining exponents of the scaling solutions
of the wave-Boltzmann equations. Recall that we need to
distinguish, depending on the value of the exponent κ of nQ ∼
p−κ , between a self-similar rescaling of nQ, with bidirectional
transport of particles and energy in momentum space, and the
buildup of wave-turbulence cascades behind a wave front (cf.
Table I and Figs. 2 and 3). In the following, we will analyze
the kinetic equation separately for these cases, starting with
the self-similar evolution of the quasiparticle spectrum. It will
turn out that this type of scaling evolution only applies in the
nonperturbative regime while wave-turbulent cascades exist
predominantly in the perturbative case.

Our results for the different types of scaling dynamics will
be summarized in a compact way in Table II and Sec. V.

1. Self-similar scaling evolution

Unidirectional self-similar transport. We begin with the
scaling form (36) for nQ, with one nonuniversal momentum
scale, disregarding for a moment a possible second cutoff, and
insert it into the left-hand side of the wave kinetic equation
(55). Using Eq. (62), one finds

(t/t0)α−1(α + β q ∂q) f (q)|q=(t/t0 )β p

= t0(t/t0)−βμI[ f ]([t/t0]β p). (112)

For the kinetic equation (112) to hold at any momentum p
and time t within the scaling regime, in particular at t = t0,
the time-independent fixed-point equation

(α + β p ∂p) f (p) = t0I[ f ](p) (113)

for the scaling function f (p) = nQ(p, t0) needs to hold. More-
over, both sides of Eq. (112), at a given momentum q, scale in
the same way in time only if the scaling relation

α = 1 − βμ (114)
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TABLE II. Scaling exponents. The table summarizes the scaling exponents for nonperturbative and perturbative scaling evolution following
a cooling quench, describing quasiparticle transport for general dimension d , dynamical exponent z, and anomalous dimension η. The
exponents are defined by the scaling forms for nQ and n given in Eqs. (15), (17), (42), (44), and depicted in Figs. 2 and 3. Only transport
to lower momenta is relevant for such a quench. The self-similar and cascade evolutions in the nonperturbative collective-scattering regime
(p � p�) and for z > 0 have a positive β and slow down algebraically at large times due to their proximity to an IR nonthermal fixed
point (NTFP). In contrast, β < 0 for the buildup of a strong-wave-turbulence (SWT) or weak-wave-turbulence (WWT) inverse (quasi)particle
cascade, implying a critically accelerated wave-front evolution. While the WWT cascade occurs in the perturbative regime, the SWT cascade
is nonperturbative, occurring below the nonuniversal scale pnp ∼ p1/(2−η)

� p1/2
λ . The rightmost column is obtained from ζ = κ + 2 − z − η [cf.

Eq. (91)]. See Table III for an overview and index of all exponents.

α β α′ β ′ κ − d ζ − d

Nonperturbative dynamics

IR NTFP (self-similar,
algebraically slowed)

2(2 − η)/3 � z � 2(2 − η)
βd 1/z β ′(d + z) β

3z−4+2η

z−4+2η

3z
2 − 2 + η z

2p � p�

IR NTFP (cascade,
algebraically slowed)

0 < z < 2(2 − η)/3, η < 2
βκ 1/z 0 0 z − 4−2η

3
2−η

3p � p�

SWT (cascade,
accelerated wave front)

z < 0, η > 2
βκ 1/z 0 0 z 2 − ηp � pnp � pλ

Perturbative dynamics

WWT (cascade,
accelerated wave front)

No constraints on z, η
βκ 1

z−(8−4η)/3 0 0 z − 8−4η

3 − 2−η

3pnp � p

is satisfied. Inserting the scaling exponent (63) of the collision
integral, this relation implies

α = β[d + m − z/2] − 1/2. (115)

Combining Eq. (115) with the scaling relations (37) and (38)
which arise from the global conservation of quasiparticle and
energy density, respectively, yields the exponents α and β de-
scribing the scaling evolution near the respective nonthermal
fixed point

β = (2m − z)−1 (number conservation), (116)

β = (2m − 3z)−1 (energy conservation). (117)

If the scaling function f in the scaling form (36) is
parametrized by Eq. (27), the exponents α [Eq. (115)] and β

[Eqs. (116) or (117)] describe the rescaling of the parameters
f�(t ) = nQ(p�(t ), t ) ∼ tα , p�(t ) ∼ t−β in time.

With the kinetic equation (112) at hand we can now also
infer the momentum exponent κ characterizing the scaling
function (27). Let us assume that either κ̄ = 0 provides an IR
regularization and f (p → ∞) ∼ p−κ , or that κ̄ → ∞ regu-
larizes the scaling function in the UV and f (p → 0) ∼ p−κ .

In both cases, the scaling function must obey, in the region
where f (p) ∼ p−κ , the fixed-point equation (113), i.e.,

(α − βκ ) f (p) = t0I[ f ](p). (118)

If both sides of Eq. (118) are nonzero, they must scale in the
same way in p. This means that the momentum exponent κS

of the self-similarly evolving scaling form is κS = −μκ [cf.
Eqs. (65) and (66)], i.e.,

κS = d + mκ − z/2. (119)

This result is equivalent to the scaling given in Eqs. (2.7) and
(2.11) of Ref. [63], as can be seen with the relations between
the relevant scaling exponents.8

As we will see below, the self-similar scaling evolu-
tion only occurs in the infrared collective-scattering regime.
Hence, we can combine the result (119) with Eqs. (105),
(109), and (115) to obtain

α − β(κS − z + 2 − η) = −1/2. (120)

Note that, for free particles (z = 2, η = 0), Eq. (120) implies
that the left-hand side of Eq. (118) is not identically zero. This
ensures the above derivation of κS to be justified. In Sec. V
we will check numerically that the scaling of f and of the
scattering integral I[ f ] is consistent with the exponent (119).

Bi-directional self-similar evolution. As in Sec. II C 2 we
proceed to the case of a quasiparticle distribution nQ(p, t )
parametrized according to Eq. (28) in terms of the scaling
function (29) with κ� < d and κλ > d + z.

8The exponent α in Ref. [63] translates to d/z − 1 in our work, γ

to 2(d + mκ )/z − 3. Hence, εγ/2+1 ∼ pz(γ /2+1) ∼ pd+mκ−z/2.
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If κ is within the interval (24), (quasi)particles and energy
are concentrated at opposite ends of the scaling region. Recall
that in this case, temporal rescaling can occur according to
Eq. (41), describing a bidirectional transport toward the IR
and the UV. For the momentum exponent κS [Eq. (119)] to
be inside the interval (24), the scaling exponent mκ of the
T matrix must satisfy z/2 � mκ � 3z/2. With Eq. (108) this
gives z/2 � 4 − γκ − 2η � 3z/2 which can be rewritten as

2(4 − γκ − 2η)/3 � z � 2(4 − γκ − 2η). (121)

In the collective-scattering regime, inserting (107) this trans-
lates into

2(2 − η)/3 � z � 2(2 − η). (122)

For η = 0, this is fulfilled, e.g., for z = 2 (free particles) but
not for z = 1 (Bogoliubov quasiparticles).

Recall that global particle and energy conservation during
the evolution lead to two scaling relations between the four
exponents α, β, β ′, and κ [Eqs. (46) and (47)]. Combining
these with Eqs. (119) and (120) one finds

αS = d (2m − z)−1, (123)

βS = (2m − z)−1, (124)

β ′
S = βS (2mκ − z)(2mκ − 3z)−1. (125)

Using furthermore the relations (105) and (109) we find

αS = d/z, (126)

βS = 1/z, (127)

β ′
S = βS (3z − 4 + 2η)(z − 4 + 2η)−1, (128)

κS = d + (3z − 4)/2 + η, (129)

ζS = d + z/2, (130)

where we used Eq. (91) to obtain the particle-number momen-
tum exponent ζ . Note that (122) requires z � 0, η � 2, such
that the scaling relation (129) is consistent with the condition
(100) for the applicability of the universal scaling (107) of the
effective coupling.

The above exponents belong to the main results of this
work and characterize the universal bidirectional self-similar
transport in the regime where collective scattering dominates
and the T matrix must be determined beyond the perturbative
Boltzmann-type approximation. We remark that β = 1/z has
been proposed on the grounds of numerical simulations in
Ref. [87]. An exponent ζS  d + 1 was seen in semiclassical
simulations, during the early-time evolution after a strong
cooling quench, for d = 3 in Refs. [48,75], for d = 2 in
Ref. [52], and for d = 1 in Ref. [92]. In Ref. [89], a numerical
evaluation of the kinetic equation in d = 3 dimensions also
gave κ  4.

2. Wave-turbulent scaling evolution

Within the regime of applicability of the QBE, zeros of
the scattering integral (53) correspond to stationary solutions.
Examples are the constant solution for which the occupation
number is independent of p, as well as the maximum-entropy
thermal equilibrium Bose-Einstein distribution nBE(p). For

these solutions, the scattering integral vanishes due to detailed
balance, and thus nQ(p, t ) is independent of t .

Further nontrivial scaling solutions, with different expo-
nents κ , can be derived with the methods of wave-turbulence
theory [19,20] as summarized in Sec. II C 3. Each such scaling
solution corresponds to a different locally conserved current in
momentum space [see Eqs. (F3) and (F4)]. Combining these
conserved currents with the kinetic equation (55), one can
determine the exponents κ and β ′ from which the remaining
exponents α and β are fixed by global conservation laws (see
Table I).

The wave-turbulent scaling mainly prevails in the per-
turbative regime and has been discussed since the advent
of weak-wave turbulence [19,20]. We present the details of
the derivations in Appendix F and only give the resulting
exponents here.

Perturbative regime. The most relevant case concerns the
perturbative regime. There, a self-similar buildup of an inverse
particle cascade occurs with temporal exponent

β = βQ = (z − 8/3 + 4η/3)−1, (131)

which is negative for weak-wave-turbulent transport of both
free particles and Bogoliubov sound. Therefore (cf. Table I
and the discussion in Sec. II C 3), the buildup of the inverse
quasiparticle cascade occurs in the form of a critically acceler-
ating wave-front evolution with scaling parameter τ = τ ∗ [cf.
Eq. (51)]. This result, with βQ given by Eq. (131), is equivalent
to Eq. (2.22) of Ref. [63] (cf. footnote 8 for the translation
between exponents). The results of semiclassical simulations
[70] corroborate these predictions.

The corresponding momentum exponent κ for the quasi-
particle cascade reads as

κQ = d + z − 8/3 + 4η/3 (perturbative). (132)

Collective-scattering regime. With the scattering T matrix
in the nonperturbative limit, one finds that a similar cascade
solution as for weak-wave turbulence applies for z < 2(2 −
η)/3 [cf. (122)] and, thus, e.g., to Bogoliubov quasiparticles
(z = 1, η = 0). The temporal exponent results as

β = 1/z. (133)

Hence, if z > 0, the scaling parameter is τ = t/t0 and the
evolution is critically slowed at large times. The momentum
exponent κ , for the quasiparticle cascade building up in this
way is obtained as

κQ = d + z − (4 − 2η)/3 (collective scattering, z > 0).

(134)

For η < 2 and z > 0 these scaling relations imply that the
condition (100) for the applicability of the scaling (107) of
the effective coupling is fulfilled.

Note that only for the rather unlikely case of η > 2, z < 0,
the exponent formally obtained in Refs. [44–47] applies:

κq = d + z (collective scattering, z < 0) (135)
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(cf. footnote 5) In a closed system, this κq fulfills the condition
(23) for the buildup of an inverse cascade, behind an acceler-
ated wave front since β = 1/z < 0 for z < 0.

D. Kinetic time

The buildup of wave-turbulent cascades has also been
discussed in terms of kinetic time τkin, a timescale on which
the critically accelerated wave fronts move to a certain mo-
mentum scale p (cf., e.g., Ref. [98]). We point out that the
exponents βQ,P, describing quasiparticle and energy cascades,
respectively, also define the momentum scaling of the kinetic
time (cf. Appendix F 5 for details) as

τ
Q
kin ∼ p−1/βQ ∼ pd−κQ , (136)

τP
kin ∼ p−1/β ′

P ∼ pd+z−κP . (137)

Inserting, e.g., the exponent (131) for the perturbative scat-
tering of modes with z = 2, m = 2, η = 0, one finds that
the kinetic time τ

Q
kin ∼ p2/3 decreases algebraically for p → 0

which illustrates the accelerating character of the wave front.
According to Eqs. (136) and (137), this is the case for κQ < d
and, for energy cascades to the UV, for κP > d + z, consistent
with the constraints from Eqs. (23) and (25), respectively.

The same expression (136) holds for critically slowed
self-similar evolutions at an IR nonthermal fixed point in the
collective-scattering regime, where the scaling is critically
slowed. The kinetic time τ S

kin ∼ p−1/βS expresses the fact
that the time it takes for the distribution nQ(p, t ) to show
momentum scaling ∼p−κ above the momentum scale p� → 0
diverges as τ S

kin ∼ p−2, for the case z = 1, m = 2, η = 0.

V. SUMMARY OF SCALING BEHAVIOR AND
NUMERICAL COMPARISON

In this final section we summarize the different types of
universal dynamics possible in a closed system and the cor-
responding scaling exponents, and we evaluate the scattering
integral numerically to confirm our analytical predictions.

A. Overview of universal scaling exponents

Table II gives an overview of the exponents obtained
for the universal dynamics of a closed system following a
cooling quench, defined by the scaling forms for nQ given in
Eqs. (15), (17), (42), and (44), and depicted in Figs. 2 and
3. The exponents are valid for general d , z, and η, within
the regions of validity indicated, which includes the cases of
free particles (z = 2, η = 0) and Bogoliubov sound (z = 1,
η = 0) in d dimensions, discussed explicitly in Sec. III and
Appendix E 2, respectively. In order to compare to numerical
results we concentrate in the following on the d = 3 case
for vanishing η. We recall that, to obtain nonperturbative
dynamics, one generically needs to apply a strong cooling
quench while weak cooling leads to the perturbative evolution
(cf. Sec. I B).

B. Scaling evolution of free-particle distributions

We begin with the evolution of free particles, i.e., the
high-energy single-particle excitations of the model (3) and,

in the low-momentum regime below the healing-length scale,
its linear relative-phase excitations [90]. Their dispersion (5)
gives the dynamical exponent z = 2 [cf. (16)].

1. Perturbative, wave-turbulent regime

We found that, in the perturbative regime of low occupa-
tion numbers, i.e., for momenta p � p� = (2mgρnc)1/2, with
noncondensate density ρnc [Eq. (19)], the scaling evolution of
a closed system takes the form of a wave-turbulent cascade
toward lower wave numbers (see Fig. 3). This means that the
transport of particles or energy is locally conserved, i.e., the
number distribution n(p, t ) is stationary within the inertial
region p� � p � pλ while the limiting scale p� evolves
algebraically in time. For the closed system, due to number
and energy conservation, this evolution takes the form of a
critically accelerating wave front [Eqs. (50) and (51)]. Such
an evolution is generically induced by a weak quench, as
described in Sec. I B 1 and sketched in Fig. 1(a).

In this regime, the effective many-body coupling equals the
bare coupling geff (p) ≡ g, and thus its scaling [Eqs. (95) and
(94)] and that of the T matrix [Eqs. (64) and (59)] is fixed by
the exponents γ = γκ = m = mκ = 0 (see also Fig. 4). One
then obtains, from Table II, the exponents [46]

αQ = 1 − 3d/2, βQ = −3/2, κQ = d − 2/3. (138)

The exponents for an energy cascade to lower wave numbers
are obtained from Eqs. (F8) and (F20) and read as

αP = −d/2, βP = −1/2, κP = d. (139)

In both cases, α′ = β ′ = 0 vanish, and α = κβ, implying a
cascading evolution which leaves n(p, t ) stationary in the
inertial range p � p�.

To check the validity of the above predictions, we have
numerically determined the zeros of the scattering integral
(54), for fixed values of the external momentum p and the cut-
off scale p�. At these zeros the particle distribution function
at p becomes stationary in time, indicating a wave-turbulent
cascade. In evaluating the scattering integral, we use the bare
T matrix (67) and choose a scaling-function ansatz for the
particle distribution n(p) of the type (31). Specifically, we
choose the form (E8) with IR cutoff scale p�, and map the
integral from p to pλ ∼ p−1

� back onto the interval (p�, p).9

We simplify the 3d-dimensional integral such that two numer-
ical integrations remain (cf. Appendix D 2 a). We checked that
the result was numerically independent of pλ.

In Fig. 6, we show the dependence of the scattering integral
I[n](p), at the momentum p = 1.5p�, on the momentum
exponent κ describing the scaling of the distribution n(p) ∼
p−κ in the inertial range, for three different values of the
infrared cutoff scale p�. The results indicate the way how the
zeros of I[n](p, t ) approach the predicted values κQ = 7

3 and
κP = 3 as the IR cutoff is lowered. The figure also shows the
thermal zero at κ = 2 where the number distribution exhibits
Rayleigh-Jeans scaling n(p) = T/εp ∼ p−2.

9Note that we choose the scaling form (E8) as it is easier to
integrate analytically than the form (27). Sufficiently far away from
the cutoff scale we do not expect this to affect our results.
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FIG. 6. Left panel: dependence of the perturbative Boltzmann scattering integral I[nQ](p) for free particles (z = 2, η = 0; n = nQ) in d = 3
spatial dimensions, at the momentum p = 1.5p�, on the momentum scaling exponent κ characterizing the occupation-number distribution
n(p) ∼ p−κ . The vertical dashed lines mark, from the left, the thermal zero at κT = 2, the particle-cascade exponent κQ = 7

3 , and the energy-
cascade exponent κP = 3. In the figure, the rescaled integral Ĩ[nQ](p/p�) = (2π )3 p3κ−4

� (2m g2�3κ )−1 I[nQ](p) is shown [see Eq. (E8) for the
definition of �]. The different colors (line styles) correspond to different values of the IR cutoff p�, as indicated in the legend. As the cutoff is
lowered, the zeros approach the predicted values. The sign of the slope ∂I[nQ]/∂κ at the zeros determines the direction of the cascade. Right
panel: scaling exponents κ of occupation-number distribution n(p) ∼ p−κ for which the perturbative Boltzmann scattering integral I[n](p) for
free particles (z = 2, η = 0; n = nQ) in d = 3 spatial dimensions has a zero, for different momenta p in units of the IR cutoff scale p�. Lower
line: particle cascade for which κ approaches κQ = 7

3 for p� → 0. Upper line: zeros of the energy cascade, approaching κP = 3. We emphasize
that the two lines represent different physical situations and, as κQ = 7

3 < d = 3, due to constraints from conservation laws, only the inverse
quasiparticle cascade is relevant in an isolated system (cf. Sec. II C 1).

The sign of the slope ∂I[n]/∂κ at the zeros in κ determines
the direction of the cascade, implying a direct cascade for
∂I[n]/∂κ > 0 and an inverse cascade otherwise [19]. Since
a direct cascade requires κ > d + z [Eq. (25)], only the in-
verse particle cascade depicted in Fig. 3 plays a role in the
perturbative dynamics of the closed system considered here
(recall Sec. II C 3). Figure 6 (right panel) shows the depen-
dence of the wave-turbulent zeros of the scattering integral
on the momentum where the integral is evaluated, relative
to the infrared cutoff. Red dots correspond to the particle
cascade for which κ approaches κQ = 7

3 in the scaling limit
p � p�, marked by the lower dashed line and confirming the
analytically predicted value. In the same way, the green dots,
marking the zeros of the energy cascade, confirm the value
κP = 3. Note that the result only depends on the ratio p/p�.

We note that the deviation of the momentum scaling ex-
ponent ζ  3.5 from the predicted value ζ = 3, observed in
the experiment by Navon et al. [64], may be due to the finite
size of the experimental apparatus. Figure 6 (right) shows
that the direct-cascade exponent evaluates to ζ = κ  3.5 if
the observed momentum scale is on the order of 10 times
the infrared cutoff scale, p  10 p�. Considering Fig. 3(a) of
Ref. [64], one estimates p�ξ  0.5 and observes power-law
falloff with κ = 3.5 (γ in their notation) in a momentum
region pξ � 5, consistent with our finite-size estimate.

We furthermore find that the momentum-dependent devia-
tion from the predicted weak-wave-turbulence exponent κP =
3, for p/p� � 102, approximately follows a logarithmic form
κP(p)  3 + κ̄P/ ln(p/p0), with some momentum scale p0.
This is qualitatively similar to the behavior found in Ref. [99]
away from the scale p0 marking the position of the source
which drives the direct energy cascade. As compared to the

value κ̄P = 2
3 predicted in Ref. [99] to quantify the logarithmic

correction of the constant scaling exponent κP = 3, our data
are rather consistent with κ̄P  0.9, and closer to the IR cutoff,
i.e., for p/p� � 10, with κ̄P  2.

Note that according to our general arguments, a direct
cascade should not appear in an isolated quenched system.
This is in accordance with the experimental observation [64]
that the distribution, after an end of the driving, comes to a
halt at pξ  5 after having built up, rather than continuing to
spread toward higher momenta.

2. Nonperturbative, self-similar transport regime

In the collective-scattering regime of high occupation num-
bers, i.e., for momenta p � p� = (2mgρnc)1/2, the scaling
evolution of a closed system describes a bidirectional nonlocal
transport of particles toward the IR and the UV, leading to
a self-similar rescaling of the particle distribution, which is
critically slowed at large times (see the sketch in Fig. 2). Such
an evolution is generically induced by a strong quench, as
described in Sec. I B 2 and sketched in Fig. 1(b).

The occupation number scales according to Eq. (41). In this
regime, for momenta larger than the IR cutoff p � p�, the
effective many-body coupling takes the universal scaling form
(74) with scaling exponent γκ = 2, which is constant in time
as long as the density of noncondensed particles ρnc remains
invariant (see also Fig. 4).

From Eqs. (128) and (129), one obtains the scaling expo-
nents for the bidirectional self-similar transport:

αS = d/2, βS = 1/2, κS = d + 1,

α′
S = −d/2 − 1, β ′

S = −1/2. (140)
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FIG. 7. Left panel: dependence of the nonperturbative scattering integral I[n](p) in the collective-scattering regime, for free particles
(z = 2, η = 0; n = nQ) in d = 3 spatial dimensions, at the momentum p = 0.001p�, on the momentum scaling exponent κ characterizing the
occupation-number distribution n(p) ∼ p−κ . The vertical dashed lines mark, from the left, the inverse particle-cascade exponent κQ = 11

3 and
the direct energy-cascade exponent κP = 13

3 . In the figure, the rescaled integral Ĩ[nQ](p/p�) = (2π )3 p3κ−4
� (2m g2�3κ )−1 I[nQ](p) is shown [see

Eq. (E8) for the definition of �]. The different colors (line styles) correspond to different values of the IR cutoff p�, as indicated in the legend.
As the cutoff is lowered, the zeros approach the predicted values. The sign of the slope ∂I[n]/∂κ at the zeros determines the direction of the
cascade. Note that the slope at κP  13

3 is finite and positive. Right panel: scaling exponents κ of occupation-number distribution n(p) ∼ p−κ

for which the nonperturbative Boltzmann scattering integral I[n](p) for free particles (z = 2, η = 0; n = nQ) in d = 3 spatial dimensions has a
zero. The figure applies to the IR region of large occupation numbers where the effective many-body coupling describing collective scattering
scales with γκ = 2 and modifies the scaling properties. The colors (line styles) mark different choices of the IR cutoff scale p�. The upper
line corresponds to an energy cascade and approaches κP = d + 4/3 for p� → 0, as obtained from Eq. (F8) with γκ = 2, while the lower line
approaches the particle-cascade exponent κQ = d + 2/3 [cf. Eq. (F7)]. The exponent κS = 4 [cf. Eq. (140)], characterizing the scaling function
of the self-similar evolution which is the only one relevant in the isolated system after a quench is marked by the middle dashed line.

As the self-similar evolution does not leave n(p, t ) stationary
within the momentum scaling regime where n(p, t ) ∼ p−κ ,
the transport is nonlocal, and the scattering integral does not
vanish. Figure 7 shows the scattering integral as a function
of κ , at a fixed momentum p = 10−3 p�, for different IR
cutoffs p�, and its zeros as functions of p for the wave-
turbulent exponents κQ = 11

3 and κP = 13
3 (cf. Table II). As

we discussed in the previous section, these zeros, however,
do not play a role in the evolution of a quenched isolated
system. The integral evaluates to negative values in-between
the wave-turbulence zeros shown in Fig. 7 (left panel), in
analogy to the perturbative case in Fig. 6. To allow for the
self-similar scaling solution in this interval of exponents κ ,
the scattering integral, within the momentum scaling region,
needs to show the same power-law dependence as the solution
n(p, t ) ∼ p−κS [recall our discussion leading to Eq. (119)].

Figure 8 shows the respective momentum dependence of
the scattering integral (54) in d = 3 dimensions, where κS = 4
[cf. Eq. (140)]. As one sees, p4I (p) becomes p independent in
the scaling regime, demonstrating the power-law dependence
I[nQ](p) ∼ p−4 predicted by κS = 4 [cf. Eq. (140)].

VI. CONCLUSIONS

We have presented a kinetic-theory description of universal
dynamics at nonthermal fixed points of a near-degenerate
multicomponent Bose gas based on a nonperturbatively ap-
proximated effective action functional. Our work unites
previous treatments which concentrated on wave-turbulent
cascades [44–47,63] and self-similar evolutions [48,49,63],

complements them with a systematic discussion of the global
conservation of energy and particle number, and extends them
to more general cases. These include universal dynamics in

FIG. 8. Momentum dependence of the scattering integral (54)
multiplied by p′4 = (p/p�)4, for free particles (z = 2, η = 0,
n = nQ) in d = 3 dimensions. The integral is evaluated in the
collective-scattering regime, with effective many-body T -matrix,
Eqs. (71), (80), (E6), for different values of the IR cutoff
scale p� (distinguished by color and line style), and the re-
sults are scaled on top of each other by showing p′4 ĨS[nQ](p′) =
(p/p�)4(2π )3 p3κ−4

� (2m g2�3κ )−1 I[nQ](p). The horizontal plateau
demonstrates the power-law dependence I[nQ](p) ∼ p−4 predicted
by κS = 4, cf. Eq. (140).
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general dimensions d , for a general scaling of the dispersion
ω(p) ∼ pz, and including a possible anomalous scaling di-
mension of the density of states η.

We have focused on universal time evolution after a cool-
ing quench which leads to a redistribution of the particle
occupancies toward lower wave numbers, while energy is
deposited by means of a few particles being scattered to higher
momentum modes. We have shown in detail how the initial
quench relates to the type of universal transport dynamics that
can be observed, with special focus on the particle transport.
Weak cooling quenches where only a few of the high-energy
particles are removed and after which kinetic energy still
dominates over interaction energy lead to the buildup of a
quasilocal wave-turbulent cascade behind a wave front. On the
other hand, strong cooling quenches after which interaction
energy dominates over kinetic energy induce transport by
means of a nonlocal self-similar rescaling.

We described both cases using a kinetic equation for mo-
mentum mode occupation numbers with a resummed many-
body effective coupling geff which results from a 1/N ex-
pansion to NLO [44–49], and which accounts for the non-
perturbative suppression of the interactions between highly
occupied field modes in the low-energy collective-scattering
regime. We have analytically and numerically evaluated the
momentum-dependent effective coupling geff (p) and the cor-
responding many-body T matrix. The kinetic equation is still
governed by two-to-two scattering. We have clearly identi-
fied two distinct regimes. For p > p�, we obtain geff ≈ g
as expected and thus recover the usual perturbative form
of the wave-Boltzmann kinetic equation. This corresponds
to the regime of intermediate occupation numbers 1/ζ �
n � 1, with diluteness parameter ζ = ρ1/3a. For p < p�, the
effective coupling is renormalized and becomes frequency
and momentum dependent. Remarkably, we found it to be
given by a simple universal form geff ∼ p2, independent of
the particular scaling of the resulting occupation number and
otherwise depending only on the total particle density and
the mass. This regime corresponds to highly occupied modes
n � 1/ζ .

We have employed the kinetic equation with the effective
coupling geff to search for nontrivial self-similar scaling so-
lutions obeying n(p, t ) = tα f (tβ p), as well as for solutions
with spatial scaling n(p) ∼ p−κ within a given momentum
range. By means of power counting we obtained general
expressions for the exponents α, β, and κ in both perturbative
and nonperturbative regimes as a function of the dynamical
exponent z, and the anomalous dimension η. The results for
particle transport are summarized in Table II. In deriving the
exponents, we explicitly distinguished between particle and
quasiparticle distributions, and we analyzed the dependence
on z and η in a consistent manner. In this way, our results
generalize previous results to arbitrary z and η, and correct
some of the nonperturbative expressions derived in the past.

To corroborate the analytical predictions for κ , we numer-
ically evaluated the kinetic scattering integral for the specific
cases of free-particle modes with quadratic dispersion (z = 2)
and Bogoliubov sound quasiparticles with linear dispersion
(z = 1). In all cases, we found excellent agreement with the
analytical results. Moreover, our numerical evaluation of the
scattering integral shows that the scaling exponent κ = 3.5

observed in the recent experiment [64] for a direct wave-
turbulent energy cascade can be interpreted to deviate from
the predicted value κP = 3 due to finite-size effects in the trap.

From the analysis and results presented in this paper, the
following unifying picture of universal dynamics after cooling
quenches emerges. For a weak cooling quench, the transport
of particles occurs first within the perturbative regime and
is characterized by the buildup of a wave-turbulent cascade
behind an accelerated wave front. The dynamics in this stage
is determined by the exponents β = 1/(z − 8/3) = −3/2 for
z = 2, κ = d − 2/3, and α = βκ = 1 − 3d/2 [63]. Once the
wave has reached momenta on the order of p�, corresponding
to the chemical potential μ = gρnc for the total density ρnc

of noncondensed particles, collective scattering sets in and
brings the wave to a halt. The subsequent stages in the
evolution have been studied in Refs. [63,65–69,75–77] and
will lead to the buildup of a condensate zero mode.

For a strong cooling quench, the transport of particles
toward lower momenta takes place within the nonperturbative
regime of collective scattering. The dynamics during this
stage proceeds in an algebraically slowed manner as a self-
similar shift of the infrared momentum distribution. We find
that the evolution is fully determined by the exponents κ =
d + (3z − 4)/2, α = βd , β = 1/z. For z = 2, this agrees with
the result β = 1

2 of [48] and generalizes it otherwise to general
z in a consistent way. The value of κ = d + 1 obtained differs
from previous results [44–47] due to our careful treatment of
the scaling properties of geff .

The algebraic slowing down of the dynamics reflects the
approach to a nonthermal fixed point and a diverging kinetic
timescale. At the fixed point, the redistribution of the particles
occurs in a bidirectional manner, with particles, and thus po-
tential energy, transported to the infrared while kinetic energy
is shifted toward higher wave numbers. This kind of process
is at the basis of the dynamics of Bose-Einstein condensation.

We expect the exponents derived in this work to be valid
for a Bose gas in d = 3 dimensions as well as in d = 2. How-
ever, the development of nonlinear and topological excitations
together with strong phase coherence is likely to modify our
results, potentially through an appropriate modification of z
and η. The cases considered here apply to quasiparticlelike
excitations, e.g., to the relative phase excitations of a multi-
component Bose gas with z = 2 [90], which are dominant for
a large number of field components. For such cases, our work
provides a unifying approach to universal transport phenom-
ena characterized by self-similar scaling in space and time.
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TABLE III. Scaling exponents. The table lists the scaling expo-
nents appearing in this work and refers to the defining equations.

Occurrence Eq.

Quasiparticle distribution in time and momentum
α IR rescaling, e.g., of f� (36), (42), (84)
α′ UV rescaling, e.g., of fλ (44)
α0 Rescaling of amplitude f1 (39), (41)
αP α for wave-turbulent energy cascade (139)
αQ α for wave-turbulent quasiparticle cascade (138)
αS α for self-similar evolution at NTFP (IR) (123)
α′

S α′ for self-similar evolution at NTFP (UV) (140)

β IR rescaling, e.g., of p� (36), (84)
βP β for wave-turbulent energy cascade (F20)
βQ β for wave-turbulent quasiparticle cascade (131)
βS β for self-similar evolution at NTFP (IR) (124)
β ′ UV rescaling, e.g., of pλ (39), (41)
β ′

P β ′ for wave-turbulent energy cascade (F28)
β ′

Q β ′ for wave-turbulent quasiparticle cascade (F27)
β ′

S β ′ for self-similar evolution at NTFP (UV) (125)

κ Momentum scaling of quasipart. distribution (17)
κ̄ Second momentum scaling of distribution (27)
κ� Momentum scaling, p � p� (31), (33)
κλ Momentum scaling, p � pλ (31), (33)
κp κ for anomalous energy cascade (135)
κP κ for wave-turbulent energy cascade (F8), (F21)
κq κ for anomalous quasiparticle cascade (135)
κQ κ for wave-turbulent quasiparticle cascade (F7), (F21)
κS κ for self-similar evolution at NTFP (119)

Particle distribution in momentum
ζ Momentum scaling of particle distribution (15)
ζS ζ for self-similar evolution at NTFP (130)

Effective coupling geff

γ Scaling in time and momentum (94)
γκ Scaling in momentum at fixed time (76), (95)

T matrix

m Scaling in time and momentum (59)
mκ Scaling in momentum at fixed time (64)

Scattering integral IQ

μ Scaling in time and momentum (62)
μκ Scaling in momentum at fixed time (65)

Other
d Spatial dimension (20)
η Anomalous dimension (86)
z dispersion, dynamical exponent (16), (86)

(SFB 1225 ISOQUANT and Grant No. GA677/8), by the
Helmholtz Association (HA216/EMMI), and by Ruprecht-
Karls-Universität Heidelberg (CQD).

APPENDIX A: INDEX OF SCALING EXPONENTS
AND NOTATION USED

In Table III we provide an index of all scaling exponents
appearing in this work, linking to equations where the expo-
nents are defined in their context.

Choosing the (+ − −−) convention for the metric,
the Minkowski product of (d + 1)-vectors p = (p0,

p1, . . . , pd ) = (p0, p) = (ω, p), etc., reads as px = p0x0 −

p · x. Defining the (d + 1)-dimensional Fourier transform as
F[ f (p)](x) = f (x) = (2π )−(d+1)

∫
dd+1 p exp{−ipx} f (p),

the following convention is used for convolutions:

( f ∗ h)(x) =
∫

dd+1y f (x − y)h(−y), (A1)

( f ∗ h)(p) =
∫

dd+1q

(2π )d+1
f (p − q)h(−q). (A2)

The convolution theorem is then

F[( f ∗ h)](x) = ( f · h)(x) = f (x) h(−x), (A3)

F[( f ∗ h)](p) = ( f · h)(p) = f (p) h(−p). (A4)

APPENDIX B: UNIVERSAL SCALING DYNAMICS
AFTER A COOLING QUENCH

A central aspect of the phenomena discussed in this work
is that the character of the evolution depends very much on
the “strength” of the cooling quench which determines how
far the system can get out of equilibrium. In this Appendix,
we have a closer, more technical look at the weak and strong
cooling quenches depicted in Figs. 1(a) and 1(b), respectively.
While the former typically leads to weak-wave turbulence,
the latter is required to induce an approach to a nonthermal
fixed point. We use estimates on the basis of ideal-gas ther-
modynamic quantities for critical properties as well as on the
dilute-gas approximation for the s-wave interactions between
particles.

1. Weak cooling quench

Consider a three-dimensional thermal dilute alkali-metal
Bose gas for which the gas parameter ζ = a/l , relating the
interparticle distance l = ρ−1/3, given by the density ρ, and
the s-wave scattering length a, is typically on the order of
a few percent, ζ = ρ1/3a � 1. We assume that, before the
quench, the gas is just above the condensation temperature
Tc [see the phase-diagram sketch in Fig. 1(c)]. We assume
the scale set by the chemical potential μ to be below the
temperature T of the gas, i.e., |μ| � h̄2ρ2/3/m ∼ kBTc � kBT
where we use the ideal-gas expression for the critical tem-
perature and assume corrections to this to be small. In this
case, the Bose-Einstein distribution shows, in the energy range
|μ| � ω(p) � kBTc, Rayleigh-Jeans behavior and is much
larger than unity: nBE(ω(p))  kBTc/h̄ω(p) � 1.

Removing, from such a system, a few of the high-energy
particles, the subsequent particle transport in momentum
space toward lower energies is, for sufficiently large mo-
menta, described by the perturbative quantum Boltzmann
equation in the classical-wave limit [63,65,66]. This equation
is valid for modes with energies above the scale set by the
zero-temperature chemical potential μ, and below the scale
∼kBT where mode occupancies fall below 1. Here, μ =
gρ0 ≡ gρ ∼ aρ/m ∼ ζρ2/3/m ∼ ζkBTc is defined in terms
of the density ρ0 of the entirely Bose-condensed gas with
interaction constant g = 4π h̄2a/m. At lower energies, how-
ever, where the near-critical Rayleigh-Jeans distribution is
nBE(ω < gρ) > Tc/(gρ) ∼ ζ−1, phase correlations between
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momentum modes become significant, and a (nonperturba-
tive) description beyond the quantum Boltzmann equation is
needed [63,65,66,71–74].

For higher energies, where the quantum Boltzmann ap-
proach is still viable, Svistunov discussed different trans-
port scenarios based on weak-wave turbulence, in analogy
to similar processes underlying Langmuir-wave turbulence
in plasmas [19,20]. Taking into account that the scattering
matrix elements in the perturbative wave-Boltzmann equation
for such a dilute gas are independent of the mode energies,
he concluded that the initial kinetic transport stage of the
condensation process in momentum space evolves as a weakly
nonlocal particle wave toward lower momenta. Specifically,
he proposed that this particle-flux wave followed the self-
similar form n(p, t ) ∼ p�(t )−α/β f (p/p�(t )), with p�(t ) ∼
(t∗ − t )−β , and scaling function f falling off as f (x) ∝ x−κ

for x � 1. He found the scaling exponents α = − 7
2 , β = − 3

2 ,
and κ = 7

3 .10 Following the arrival of this wave at time t =
t∗  t0 + h̄ω(pq )/μ2, a quasistationary wave-turbulent cas-
cade forms. Within this cascade, particles are transported
locally, from momentum shell to momentum shell, from the
scale ω(pq ) of the energy concentration in the initial state [see
Fig. 1(a)] to the low-energy regime ω � μ where coherence
formation sets in and the description in terms of the wave-
Boltzmann equation ceases to be valid.

This flux-wave- and weak-wave-turbulence stage of con-
densate formation following a cooling quench was investi-
gated in more detail by Semikoz and Tkachev [68,69], who
solved the wave-Boltzmann equation numerically and found
results consistent with the above scenario, albeit with slightly
different power-law exponents α  −2.6 and κ  2.48 for the
wave-turbulence spectrum during the buildup stage. Dynami-
cal classical-field simulations of the condensation process by
Berloff and Svistunov [70] corroborated the above picture.

2. Strong cooling quench

Distinctly different universal dynamical processes are pos-
sible in a dilute Bose gas which is excited by a strong cooling
quench at the initial time t0. An extreme version of such
a quench would be to first tune adiabatically to a chemical
potential 0 < −μ � kBTc and then remove all particles with
energies higher than ω(pq ) ∼ |μ| (gray shaded area in Fig. 9).
This reduces the particle density ρ of the Rayleigh-Jeans
prequench distribution near Tc ∼ ρ2/3/m to a postquench
density on the order of ρq ∼ ρ2/3(m|μ|)1/2. Alternatively,
circumventing the requirement of adiabatic tuning, one can
build up the same boxlike distribution through an instability
or parametric amplification.

For illustration, we discuss the cooling quench in more
detail. Suppose that, by order of magnitude,

|μ| ∼ ε2ζ 2kBTc ∼ ε2ζ 2ρ2/3/m ∼ ε2ζgρ, (B1)

with prequench gas parameter ζ = aρ1/3 and a real positive
number ε < 1. Hence, the postquench distribution is cut off

10Note that in Ref. [63], the formulation was given in terms of
ε1(t ) ∼ p�(t )2, i.e., n(ε, t ) ∼ ε1(t )−7/6 f (ε/ε1(t )), with f (x) ∝ x−α

where α = 7
6 .

FIG. 9. Exemplary momentum distribution at a nonthermal fixed
point [nNTFP(p), solid line] vs prequench thermal Bose-Einstein
distribution in the Rayleigh-Jeans regime |μ| � kBTc (short-dashed
line). All particles to the right of the red long-dashed vertical line
at p = pq are removed in the strong cooling quench pq < ζ pTc

(shaded area, see main text). In d = 3 dimensions, according to
our kinetic theory, the NTFP distribution of modes with frequency
ω(p) ∼ p2 shows power-law scaling as nNTFP(p) ∼ p−4 and evolves
self-similarly in time [see Fig. 1(b)]. The figure shows the special,
transient case of such a distribution with a single momentum power
law (black solid line). As the evolution conserves the total density
ρ = ∫

k n(p), the point [p�(t ), nNTFP(p�(t ))] moves along the gray
fine-dotted arrow nNTFP(p�(t )) ∼ p�(t )−3. The momentum scale
where the prequench distribution is cut off in the UV, corresponding
approximately to the prequench critical temperature pTc ∼ (mTc )1/2,
is outside the graph’s frame. The gray vertical arrows mark the
momenta corresponding to the quench scale pq ∼ εζ pTc , with pre-
quench diluteness parameter ζ and some positive number ε < 1, the
postquench chemical potential scale p� = (gρq )1/2 = ζ 1/2

q pTc,q , with
postquench diluteness parameter ζq and critical temperature scale
pTc,q , and the IR and UV cutoff scales p� ∼ ε3/4 p� and pλ ∼ ε1/4 p�,
at the moment when the scaling function is given by the solid line and
still entirely within the nonperturbative regime. The regime where
the perturbative wave-Boltzmann equation is applicable [n(p) �
(ap)−1, cf. Eq. (B4)] and [98], is marked by the red dashed area.
See Appendices B 2 and B 3 for details.

at the momentum scale given by p2
q/2m ∼ ε2ζgρ, i.e., pq ∼

εζ pTc , with p2
Tc

= 2m kBTc. The remaining density is ρq ∼
ρ2/3(m|μ|)1/2 ∼ εζρ. This implies p2

q/2m ∼ εgρq, and thus
all of the particles end up below the coherence scale of the
postquench density ρq,

pq = ε1/2 p� , (B2)

with p� = [2mgρq]1/2, and thus ε determines how far below.
Such a strong cooling quench leads to an extreme initial

condition for the reequilibration dynamics: the remaining
postquench distribution is strongly overoccupied, at momenta
p < pq, as compared to the final equilibrium distribution, on
the order of nq(p < pq, t0) ∼ nBE(pq ) ∼ (εζq)−3/2 ∼ (εζ )−2,
with postquench gas parameter ζq = aρ

1/3
q . At the cutoff, one

finds the ratio of the interaction to kinetic energy to scale as

[gn(pq)p3
q]/(p2

q/m) ∼ mgnBE(pq )pq ∼ ε−1, (B3)
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which needs to be smaller than the one for the perturbative
wave-Boltzmann equation to yield a valid description of the
subsequent collisional redistribution [98].

In general, occupation numbers fulfilling

n(p) < (mgp)−1 ∼ ζ−3/2
q p�/p (B4)

break the condition for perturbative approaches to be valid and
are marked by the red-dashed area in Fig. 9. Hence, as the oc-
cupation number is constant below the cutoff, nBE(p < pq ) ∼
(εζq)−3/2 (cf. Fig. 9), the perturbative (wave-Boltzmann)
equation, at the time of the quench, turns out to be inapplicable
for the narrow range of momenta εpq < p < pq, which is,
however, strongly relevant as most of the particle density and
energy is concentrated here.

As a consequence, for ε < 1 the subsequent dynamics
requires a description beyond the wave-Boltzmann equation.
In three dimensions, ρq and the postquench kinetic energy
density εq are then concentrated at this highest momentum
scale pq. One finds εq/ρq ∼ ε2ζ 2Tc ∼ ε2ζ 4/3Tc,q, in terms of
the postquench critical temperature Tc,q  h̄2ρ

2/3
q /(mkB). The

same applies to the postquench interaction energy density per
particle uq/ρq ∼ gρq ∼ ε2ζ 2Tc. Hence, the postquench mean
energy per particle (εq + uq )/ρq and thus the expected final
temperature T are far below the postquench critical tem-
perature Tc,q. Therefore, the particles, after reequilibration,
are expected to end up Bose condensed, and μq = gρq well
approximates the chemical potential of the final condensate.
In Fig. 1(c) we have sketched both a weak and a strong
cooling quench which are leading to the same final condensate
density.

3. Universal scaling dynamics after a strong cooling quench

During the evolution starting from the overoccupied distri-
bution introduced above, a much steeper momentum power
law develops at low momenta as compared to the case of
weak-wave turbulence. We sketch such a power-law distri-
bution in Fig. 9 (solid line). As we show in this work [cf.
Sec. V B 2 and Eq. (140)], in three dimensions, for particle
modes with frequency ω(p) ∼ p2, this distribution scales as
nNTFP(p) ∼ p−4. This power law develops below the mo-
mentum scale p� = [2mgρq]1/2 = 1/� corresponding to the
healing length � for the total postquench density. Figure 9
shows the special case where the distribution contains par-
ticles with momenta predominantly within the region p <

ε1/4 p� < p� where the perturbative approximation breaks
down.

The sketch further demonstrates that one only needs a
sufficiently small ε < 1 to allow the overoccupied initial
distribution to build up a distribution nNTFP(p) of the type
shown in the figure, with a single power-law falloff ∼p−4

in-between the IR and UV limiting scales, entirely within
the nonperturbative region above the red solid line. As the
total density ρ = ∫

k n(p) is conserved during the transport, the
point [p�(t ), nNTFP(p�(t ))] moves along the gray fine-dotted
arrow nNTFP(p�(t )) ∼ [p�(t )]−3 where the IR cutoff scale
evolves as p�(t ) ∼ t−β , with β = 1

2 . At the same time, energy
conservation causes the UV scale pλ of the distribution to
grow as pλ(t ) ∼ t−β ′

, with β ′ = − 1
2 [cf. Eqs. (39), (127),

(128)], with z = 2, η = 0.

The maximum momentum pnp up to which the perturbative
wave-Boltzmann equation remains invalid is found from the
constraint (B4) to scale as

pnp ∼ ε1/4 p�, (B5)

as illustrated in Fig. 9. As the IR scale p� decreases further,
this scale will shrink, too, according to the limit set by the
red line. Once the UV scale pλ exceeds pnp, the transport
of energy toward higher momenta is described by the per-
turbative wave-Boltzmann equation, the power law in this
part of the tail changes, leading to the buildup of a direct
weak-wave-turbulent cascade and eventually a thermal tail as
sketched in Fig. 1(b).

The distribution evolves universally in time, in the sense
that it becomes largely independent of the precise initial
conditions set by the quench as well as of the precise values
of the parameters of the theory, indicating the approach to a
nonthermal fixed point of the time evolution [48].

APPENDIX C: 2PI EFFECTIVE ACTION APPROACH
TO KINETIC THEORY

In this Appendix, we summarize the most relevant el-
ements of the description of the universal dynamics of a
dilute ultracold Bose gas on the basis of the two-particle
irreducible (2PI) effective action [100–106] approach in a
semiclassical approximation [107]. We aim at a compro-
mise between rendering the article compact and, at the same
time, sufficiently self-contained. For more details, we refer to
Ref. [46].

1. Real-time 2PI effective action approach

a. Effective action and dynamical correlators

The 2PI effective action �[φ, G] [100–102] is defined as
the double Legendre transform of the generating functional
for connected correlation functions (cumulants). Applied to
real-time dynamics, the latter is defined, up to a factor i,
as the logarithm of the Schwinger-Keldysh functional in-
tegral Z [108–110]. The 2PI action is a functional of the
field expectation value φ(x) = 〈�(x)〉 as well as of the full
Green’s function G(x, y) = 〈TC�†(x)�(y)〉, time ordered on
the Schwinger-Keldysh closed-time path (CTP) C [here, we
use four-vector notation x = (x0, x)]. As in classical Hamilto-
nian mechanics, one derives, from this action, the equation of
motion for the field φ by means of the variational principle
δ�/δφ = 0, and the Dyson-type, Kadanoff-Baym dynamic
equations for G(x, y) from δ�/δG = 0. The 2PI approach
ensures that the dynamic equations conserve energy and
particle number irrespective of the approximation chosen for
the effective action � [111,112]. For the model (3), the 2PI
effective action �[φ, G] is typically written as a sum of loop
integrals involving the bare coupling g, the field φ(x), and the
Green’s function G(x, y).

To be more specific, we define the correlator matrix

Gab(x, y) = 〈T �a(x)�b̄(y)〉 = G†
ba(y, x), (C1)

where the indices are a, b ∈ {1, 2}, with ā = 3 − a
and �1(x) ≡ �(x), �2(x) ≡ �†(x). Hence, G11(x, y) =
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〈T �(x)�†(y)〉, etc. Wherever indices are suppressed in the
following the full matrix is meant. The time ordering in G is
conveniently treated by decomposing it into

G(x, y) = F (x, y) − i

2
sgnC (x0 − y0) ρ(x, y), (C2)

where the signum function sgnC (x0 − y0) evaluates to 1 (−1)
for x0 later (earlier) on the CTP than y0. Here, the statistical
and spectral parts

Fab(x, y) = 〈{�a(x),�b̄(y)}〉/2, (C3)

ρab(x, y) = i〈[�a(x),�b̄(y)]〉 (C4)

are defined in terms of the anticommutator and commutator of
the bosonic fields, respectively.

b. Model and dynamic equations for correlation functions

We consider the evolution of a dilute interacting bosonic
quantum gas described by the complex-valued field operators
�(t, x), in d spatial dimensions, obeying the commutation
relations [�(t, x),�†(t, y)] = δ(x − y), [�(t, x),�(t, y)] =
0. The action functional of the system reads as (in units where

h̄ = 1)

S[�] = 1

2

∫
xy

�†
a(x) iD−1

ab (x, y) �b(y)

− g

8

∫
x
�†

a(x)�a(x)�†
b(x)�b(x), (C5)

where we use the notation
∫

x ≡ ∫
dx0

∫
dd x with (x0, x) =

(t, x), and g denotes the interaction strength. Note that, as
compared to [46], we here use the standard notation with field
components �1 ≡ �, �2 ≡ �†. The free inverse propagator

iD−1
ab (x, y) = δ(x − y)

[
iσ 3

ab∂x0 − δabH1B(x)
]
, (C6)

with σ 3 the Pauli 3-matrix, involves the single-particle Hamil-
tonian H1B(x) = −∑d

j=1 ∂2
j /2m + V (x), and we choose, in

the following, the external potential V (x) to vanish.
We use the two-particle-irreducible effective action for the

above model [46,112] to obtain coupled evolution equations
for the field expectation value φa = 〈�a(x)〉 and for the time-
ordered two-point correlation function (C1). For this, it is
advantageous to decompose G according to Eq. (C2) into
the statistical (Keldysh) function F [Eq. (C3)] and the spec-
tral function ρ [Eq. (C4)]. The resulting integrodifferential
dynamic equations for F and ρ, assuming Gaussian initial
conditions, have the form of Schwinger-Dyson (or Kadanoff-
Baym) equations

[
iσ 3

ab∂x0 − gFab(x, x)
]
φb(x) −

{
H1B(x) + g

2
[φc(x)φ∗

c (x) + Fcc(x, x)]

}
φa(x) =

∫ x0

t0

dy �
ρ

ab(x, y; φ ≡ 0) φb(y), (C7)[
iσ 3

ac∂x0 − Mac(x)
]
Fcb(x, y) =

∫ x0

t0

dz �ρ
ac(x, z; φ)Fcb(z, y) −

∫ y0

t0

dz �F
ac(x, z; φ)ρcb(z, y) , (C8)[

iσ 3
ac∂x0 − Mac(x)

]
ρcb(x, y) =

∫ x0

y0

dz �ρ
ac(x, z; φ)ρcb(z, y), (C9)

where
∫ t ′

t dz = ∫ t ′

t dz0
∫

dd z. The “mass” matrix M contains
the free Hamiltonian and mean-field shifts

Mab(x) = δab

{
H1B(x) + g

2
[φc(x)φ∗

c (x) + Fcc(x, x)]

}
+ g[φa(x)φ∗

b (x) + Fab(x, x)]. (C10)

The self-energy � is obtained as the derivative of the 2PI
part �2 of � which consists of two-loop and higher-order
graphs built of field expectation values φ, full correlators G,
and bare vertices (see Fig. 10 and, for more details, Ref. [106])

�ab(x, y; φ, G) = 2i
δ�2[φ, G]

δGba(y, x)
. (C11)

In analogy to F and ρ, the two-point function � is decom-
posed into a local mean-field part �

(0)
ab (x) adding to the mass

matrix, and nonlocal “statistical” and “spectral” parts

�ab(x, y) = �
(0)
ab (x)δ(x − y) + �F

ab(x, y)

− i

2
sgn(x0 − y0)�ρ

ab(x, y). (C12)

The nonlocal parts appear as kernels in the memory integrals
on the right-hand sides of the integrodifferential dynamic
equations (C7)–(C9).

2. Resummed self-energy and effective coupling

The dynamic equations (C7)–(C9) are closed within any
approximation of the self-energy �. In practice, this requires
choosing a specific approximation of �2. The leading-order
truncation of �2 in an expansion in g includes the two-loop
diagrams, i.e., the first diagram shown in Fig. 10(a) and leads
to the self-consistent Hartree-Fock-Bogoliubov mean-field
dynamic equations [112]. To describe kinetic transport pro-
cesses in momentum space such as wave turbulence requires
approximations beyond the mean-field order which account
for collisional redistribution processes.

The next step is to include the three-loop, “basketball”
diagram [second diagram in Fig. 10(a)] which constitutes the
next-lowest perturbative order accounting for elastic “two-to-
two” scattering processes. This leads to dynamic equations
which, in the kinetic-theory limit, reduce to the quantum
Boltzmann equation (QBE) (52). When going beyond the
perturbative order of the QBE, we employ an expansion of �2

in powers of the inverse number of field degrees of freedom
N [103–105]. We expand up to next-to-leading order (NLO),
i.e., include the contribution corresponding to an s-channel
resummation of all bubble chains [58]. This 1/N expansion
at NLO is equivalent to replacing the vertex in the one-loop
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FIG. 10. Diagrams which are contributing to �2[G] and are
relevant in this work. (a) The two lowest-order diagrams of the
loop expansion which lead to the quantum-Boltzmann equation and
thus to the coupling geff = g in the perturbative region. Black dots
represent the bare vertex ∼gδ(x − y), solid lines the propagator
G(x, y). (b) Diagram representing the resummation approximation
which, in the IR, replaces the diagrams in (a) and gives rise to the
modified scaling of the T matrix. (c) The wiggly line is the effective
coupling function which is represented as a sum of bubble-chain
diagrams. Summation of the geometric series gives the expression
in Eq. (E1).

leading-order term in Fig. 10(a) by a bubble-resummed vertex
[46,58,104,107,112] [see Figs. 10(b) and 10(c)].

As we focus on the semiclassical region of large occupa-
tion numbers where Tr(F 2) � Tr(ρ2) and the self-energies
derived from the 2PI effective action shown in Fig. 10(b), in
position space, reduce to [107]

�F
ab(x) = −gFab(x)IF (−x),

�
ρ

ab(x) = −g[ρab(x)IF (−x) − Fab(x)Iρ (−x)], (C13)

where we shorten our notation to Fab(x − y) ≡ Fab(x, y), as-
suming translation invariance and suppressing the dependence
on the evolution time t = (x0 + y0)/2. Note that, in the fol-
lowing derivation of the effective coupling a leading-order
gradient expansion in t of the integrals appearing in the self-
energy is implied [97]. In Eq. (C13), we use

IF (x) = g{�F (x) − [�F ∗ (θ− · Iρ )](x) − (�R ∗ IF )(−x)},
Iρ (x) = g{�ρ (x) − [�ρ ∗ (θ− · Iρ )](x) − (�R ∗ Iρ )(−x)},

(C14)

with the retarded and advanced functions

�R(x) = −(θ · �ρ )(x), �A(x) = (θ− · �ρ )(x). (C15)

In the classical limit, the functions �F,ρ are

�F (x) = Tr[F · F ](x)/2,

�ρ (x) = Tr[ρ · F − F · ρ](x)/2, (C16)

which, in momentum space, read as

�F (p) = Tr[F ∗ F ](p)/2,

�ρ (p) = Tr[ρ ∗ F − F ∗ ρ](p)/2. (C17)

The trace of the product and convolution is defined as Tr[F ·
ρ](x) = Fab(x)ρba(−x). Finite integration limits in time in

the above convolutions are taken into account by the theta
function θ (x) ≡ θ (x0), with θ−(x) ≡ θ (−x).

The recursive equations (C14) for IF and Iρ , after a gra-
dient expansion in time, can be solved explicitly. Using the
convolution theorem one obtains, in momentum space,

gIF (p) = (
�F · g2

eff

)
(p),

gIρ (p) = (
�ρ · g2

eff

)
(p), (C18)

where

g2
eff (p) = g2 1 − (θ− ∗ Iρ )(p)

1 + g�R(p)
= g2

[1 + g�A(p)][1 + g�R(p)]

= g2

|1 + g�R(p)|2 . (C19)

Here, we used the symmetry relation �A(p) = �R∗(p) =
�R(−p), showing that the effective coupling g2

eff (p) is real
and symmetric. The second equality in Eq. (C19) follows from

[1 + g�A(p)][1 − (θ− ∗ Iρ )(p)] = 1 (C20)

which in x space reads as

g{�R(−x) − [(θ− · Iρ ) ∗ �R](x)} − (θ− · Iρ )(x) = 0.

(C21)

This identity is proven by substituting the expression (C14)
for Iρ (x) into the third term giving (after some cancellation)

{[(θ− · Iρ ) ∗ �ρ] · θ}(x) + [(�R ∗ Iρ ) · θ ](x)

−[�R ∗ (θ− · Iρ )](x) = 0 (C22)

which can be verified by rewriting all terms in the integral
form and combining the integrals.

Summarizing, the momentum-space self-energies read as,
in the semiclassical limit,

�F
ab(p) = −[

Fab ∗ (
�F · g2

eff

)]
(p), (C23)

�
ρ

ab(p) = −[
ρab ∗ (

�F · g2
eff

) − Fab ∗ (
�ρ · g2

eff

)]
(p),

(C24)

with the statistical and spectral parts of the loop integral given
in Eqs. (C17).

3. Particle and quasiparticle correlation functions

Deriving, from the Kadanoff-Baym equations (KBE) (C7)–
(C9), a Boltzmann-type kinetic equation (52) requires the
definition of a set of quasiparticles. The spectral properties
of these quasiparticles are encoded in the spectral function
ρ while F accounts for the occupation of the respective
quasiparticle modes.

We assume our system to be translationally invariant, such
that the correlation functions depend on a single momen-
tum p only. From the Kadanoff-Baym dynamic equations
for F (x0, x; y0, y) and ρ(x0, x; y0, y), by means of a gradient
expansion in evolution time, kinetic equations for their Fourier
transforms with respect to the relative space-time dependence

F (ω, p; t ) =
∫

dτ dr F (τ, r; t, 0) exp[i(ωτ − pr)], (C25)
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can be derived, where τ = x0 − y0, r = x − y, and t = (x0 +
y0)/2 (see, e.g., Ref. [97]).

a. Spectral functions ρ(ω, p)

The Boltzmann-type equation determining the time evolu-
tion of the quasiparticle occupancies is obtained by formally
solving the obtained kinetic equation for ρ(ω, p; t ) and insert-
ing the result into the kinetic equation for the statistical func-
tion F (ω, p; t ). We note that, to leading order of the gradient
expansion, the spectral function is found to be independent
of time ρ(ω, p; t ) ≡ ρ(ω, p) (cf., e.g., Ref. [97]). Hence, at
leading order, the spectral function is approximated to be that
of free quasiparticles. Between the scattering processes, these
quasiparticles evolve freely.

Free particles. The relevant information contained in the
spectral function is the dispersion relation ω(p) defining the
quasiparticle frequencies in terms of the mode momentum p.
In the case of free bosons, the matrix elements of the spectral
function read as

ρ11(ω, p) = ρ∗
22(−ω,−p)=−ρ22(−ω,−p)=2π i δ(ω − εp),

ρ12(ω, p) = ρ∗
21(ω, p) = 0, (C26)

with free dispersion εp = p2/2m [cf. Eq. (5)].
Bogoliubov sound waves. In a dilute Bose gas with a

macroscopic condensate fraction, linear excitations are de-
scribed in terms of Bogoliubov quasiparticles as summarized
in Sec. II A. The matrix elements of the spectral function
of these quasiparticles, in the basis of the fundamental Bose
fluctuation field �̃ (cf. Sec. II A) read as

ρB,11(p) = 2π i
[
u2

pδ(p0 − ωp) − v2
pδ(p0 + ωp)

]
,

ρB,22(p) = 2π i
[
v2

pδ(p0 − ωp) − u2
pδ(p0 + ωp)

]
,

ρB,12(p) = 2π i upvp[δ(p0 − ωp) − δ(p0 + ωp)]

= ρ∗
B,21(−p), (C27)

with Bogoliubov dispersion (7) and mode functions (8). In
the sound-wave limit |p| � pξ [cf. Eqs. (9)–(11)], the spectral
function simplifies to

ρB(p)= iπgρ0

ωp
(1 + σ 1) [δ(p0 − ωp) − δ(p0 + ωp)]. (C28)

b. Relations between F and ρ

In thermal equilibrium, F and ρ are related by a
fluctuation-dissipation relation which, for the example of an
ideal uniform Bose-Einstein gas, takes the Callan-Welton
form

Fab(ω, p) = −i [nBE(ω) + 1/2] ρab(ω, p), (C29)

where the Bose-Einstein function

nBE(ω) = {exp[β(ω − μ)] − 1}−1 (C30)

depends explicitly on frequency and chemical potential only.
Based on this, mode occupation numbers for particles

[Eq. (4)] and quasiparticles [Eq. (12)] are obtained from
the statistical correlator F (ω, p; t ) as defined in Eqs. (88)
and (89), where we included a time dependence for use in
dynamics and emphasize that the integrals run over positive

frequencies only. Inserting (C29), with spectral function
(C26), into (88) gives the thermal mode occupation for free
particles n(p) = nBE(εp). Using, instead, the spectral func-
tion (C27) for Bogoliubov quasiparticles, one obtains the
single-particle spectrum n(p) = (u2

p + v2
p) nBE(ωp) + v2

p [cf.
Eq. (13)].

To obtain a kinetic description of nonequilibrium dy-
namics of stable (quasi)particles one assumes, based on the
fluctuation-dissipation relation, that the time-evolving statisti-
cal function F (p; t ) is related to ρ(p) by

Fab(p; t ) = −i fneq(p0; t )ρab(p). (C31)

This takes the form of a standard equilibrium Callan-Welton
fluctuation-dissipation relation where fneq(p0; t ) is a time-
dependent quasiparticle frequency spectrum. As the quasi-
particle eigenfrequencies entering the kinetic description are
assumed to be real and thus quasiparticles to be stable, an
explicit p dependence of fneq can be neglected. Furthermore,
restricting ourselves as before to the classical-wave limit
| fneq| � 1, we have neglected, in Eq. (C31), the quantum
ground-state fluctuation term −iρab/2 adding to Fab, as com-
pared to Eq. (C29) which still includes it.

Since the definitions (C3) and (C4) imply the symme-
tries Fab(p; t ) = Fb̄ā(−p; t ) and ρab(p) = −ρb̄ā(−p), the real-
valued quasiparticle frequency distribution must obey

fneq(−p0; t ) = − fneq(p0; t ). (C32)

c. Scaling hypotheses for F, ρ, fneq, n, and nQ

We emphasize that in the case of universal scaling dy-
namics considered here, fneq is not an equilibrium distribu-
tion function. We will rather assume that fneq shows, for
p0 > 0, universal power-law behavior such that the quasipar-
ticle occupancies (88) and (89) show scaling according to
Eqs. (90)–(93), while for p0 < 0 the values of fneq follow from
Eq. (C32).

To obtain the scaling forms one introduces, within the
respective scaling regimes, the following scaling hypothesis
for the spectral correlator (C4):

ρab(ω, p) = s2−ηρab(szω, sp), (C33)

where s is a positive scaling factor and we included a possible
anomalous dimension η. For the statistical correlator (C3),
there are two scaling hypotheses, one in space and time and
one for fixed time,

Fab(ω, p; t ) = s2−η+α/βFab(szω, sp; s−1/βt ), (C34)

Fab(ω, p; t0) = s2−η+κFab(szω, sp; t0). (C35)

From the relation (C31), one obtains the scaling of fneq:

fneq(ω; t ) = sα/β fneq(szω; s−1/βt ), (C36)

fneq(ω; t0) = sκ fneq(szω; t0). (C37)

Here, we furthermore point to the important implication that,
in a kinetic approximation, with the dispersion scaling as
ω(p) ∼ pz, the transformation coefficients up and vp take
up the anomalous scaling defined by (C33). For example, a
spectral function matrix which, in the basis of the fundamental
Bose fields �, takes the form (C27) with mode functions
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scaling for |p| → 0 as

u2
p ∼ v2

p ∼ upvp ∼ p−2+η+z, (C38)

satisfies Eq. (C33). This is consistent with both the free
(z = 2, η = 0) [Eq. (C26)] and the sound-wave dispersion
(z = 1, η = 0) [Eq. (C28)]. For n(p, t ) [Eq. (88)], the
scaling form (C34) can be used to deduce the IR scaling
(90): n(p, t ) ∼ ∫

dω Tr [F (ω, p; t )] ∼ ∫
dω fneq(ω; t )(u2

p +
v2

p)[δ(ω − ωp) − δ(ω + ωp)] ∼ fneq(ωp; t ) p−2+η+z. Hence,
using (C36), one obtains (90). Analogously, Eqs. (C35) and
(C37) imply the momentum scaling (91) at a fixed moment of
time [cf. also Eq. (18)].

Note, however, that the Pauli matrix inside the trace in
Eq. (89) leads to a cancellation of the leading-order terms
nQ(p, t ) ∼ ∫

dω Tr[σ 3F (ω, p; t )] ∼ ∫
dω fneq(ω; t )(u2

p − v2
p)

[δ(ω − ωp) − δ(ω + ωp)] ∼ fneq(ωp; t ), where we use the in-
variance of the commutator under the symplectic canonical
transformation between the particle and quasiparticle alge-
bras, which requires that u2

p − v2
p = 1. Then, Eq. (C36) is

identical to the scaling (92) of the quasiparticle distribution
[cf. also Eq. (58)]. Analogously, one derives the stationary
scaling (93).

d. Relation to near-equilibrium critical scaling

We would finally like to add a few remarks concerning
the relation between the nonequilibrium scaling behavior
discussed in this paper and standard equilibrium scaling as
well as near-equilibrium dynamical critical phenomena. To
make this comparison, we consider the special case that the
system is situated precisely at a nonthermal fixed point such
that the momentum distribution n(p, t ), which corresponds to
the (time-dependent) structure factor of the fundamental Bose
field, obeys IR scaling behavior according to Eqs. (90) and
(91), the latter for momenta above the inverse “correlation
length” scale p > p� ≡ 1/ξ�. From Eq. (91) one obtains the
spatial scaling of the first-order correlation function in space
g(1)(r, t ) = ∫

p exp(i pr) n(p, t ), at a fixed time:

g(1)(r, t0)=sd−ζ g(1)(sr, t0)=sd+z−κ−2+ηg(1)(sr, t0). (C39)

In comparison, the standard definition of equilibrium scal-
ing exponents at a critical point is given by g(1)(r) =
sd−2+ηg(1)(sr) where η is the equilibrium anomalous scaling
dimension of the field operator at the fixed point. One ob-
serves that, in our formulation, ηneq = η + z − κ is a nonequi-
librium variant of the anomalous dimension η.

For an equilibrium Bose gas just above the critical point,
the exponent κ is set by the Rayleigh-Jeans power-law scaling
nQ(p) ∼ T/ω(p) of the Bose-Einstein distribution between
the scales set by the chemical potential and the temperature
−μ � ω(p) � T . Hence, κ = z, such that ηneq ≡ η.11

The scaling evolution in time and space at a nonthermal
fixed point which is to be compared to the above equilibrium
critical correlations is defined by the self-similar transport

11Alternatively, one could look at a T = 0 quantum critical point
where the equilibrium scaling reads as g(1)(r) = sd+z−2+ηg(1)(sr) and
ηneq = η − κ . In this case, the equilibrium momentum exponent is
κ = 0, consistent with a vacuum distribution.

toward lower momenta in the far infrared. This fixed point
is characterized by κS = d + (3z − 4)/2 + η [cf. Eq. (129)],
such that ηneq = 2 − z/2 − d which is defined in terms of
canonical exponents and appears being unrelated to η. To
clarify such relations further is an interesting task beyond the
scope of this work.

One can take this comparison one step further, to the
scaling of the correlation length which, in equilibrium, is
related to the inverse gap or mass parameter of the action.
It can be expressed as ξ (τ ) ∼ τ−ν where τ is the tuning pa-
rameter, e.g., τ = (T − Tc)/Tc near a finite-temperature phase
transition, and ν is the related critical exponent which is ν = 1

2
in mean-field approximation. We compare this with ξ� ∼ t β

at a nonthermal fixed point which plays the role of the inverse
gap parameter of the statistical correlator F−1(p = 0) ∼ pκ

�.
This suggests that β = 1/z at a nonthermal fixed point could
be considered to be a nonequilibrium analog of ν at a thermal
fixed point.

Finally, we point out that the dynamics at a nonthermal
fixed point goes beyond the well-discussed initial-slip dynam-
ics and aging phenomena [10–14], which relate to the surface
critical dimension [9] of the relevant operator in time and
manifest as scaling, both in the relative-time direction t − t ′ of
two-point correlators C(r; t, t ′), and in t/t ′. The difference to
nonthermal fixed points is that the spectral function ρ and the
statistical correlator F , in aging, are assumed to show the same
scaling [14]. It is an interesting question beyond the scope of
this work how initial-slip scaling manifests in the context of a
nonthermal fixed point.

APPENDIX D: DERIVATION OF THE KINETIC EQUATION

1. Transport equations

From the Kadanoff-Baym dynamic equation for F (ω, p; t ),
time-evolution equations for the particle and quasiparticle
numbers can be derived. Here, we are interested in scaling
solutions for the low-energy, strongly populated modes, with
nQ(p; t ) � 1. In this semiclassical regime, quantum fluctua-
tions can be neglected, Tr(F 2) � Tr(ρ2), and thus the − 1

2 on
the right of Eqs. (88) and (89) can be neglected.

Therefore, the kinetic equation for the quasiparticle num-
ber takes the form

∂t nQ(p, t ) =
∫ ∞

0

dω

2π
∂tσ

3
abFba(ω, p; t ) = I (p, t ), (D1)

with the scattering integral being obtained in a leading-order
gradient expansion of the Kadanoff-Baym dynamic equations
(cf., e.g., Ref. [97])

I (p, t ) = −i
∫ ∞

0

dω

2π
Tr[�ρ (p; t )F (p; t ) − �F (p; t )ρ(p)].

(D2)

Here, we use again 4-vector notation p ≡ (p0, p) = (ω, p).
Where not explicitly stated, we will suppress the time ar-
gument t in the following. �ρ and �F are the spectral and
statistical components of the self-energy (cf. Appendix C 2).
Through the 2PI effective action, �ρ and �F are fully de-
termined by the functions F and ρ, and the resulting kinetic
equation is closed.
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2. Kinetic scattering integral

Next, we derive the kinetic scattering integral within the nonperturbative s-channel or next-to-leading order 1/N approxima-
tion. Substituting the self-energies (C23) and (C24) into Eq. (D2) gives

I (p) = −i
(2π )3

2

∫
kqr

d p0 δ(p + k − q − r) θ (p0) g2
eff (p + k)[Fab(p)Fba(−k)Fcd (q)ρdc(−r)

− Fab(p)Fba(−k)ρcd (q)Fdc(−r) − Fab(p)ρba(−k)Fcd (q)Fdc(−r) + ρab(p)Fba(−k)Fcd (q)Fdc(−r)], (D3)

where
∫

k ≡ ∫
dd+1k/(2π )d+1, etc. Inserting the relation (C31) we rewrite the scattering integral (D3) as

I (p) = (2π )3

2

∫
kqr

d p0 δ(p + k − q − r) θ (p0) g2
eff (p − r)ρab(p)ρba(r) ρcd (q)ρdc(k)

×{[ f (p0) + f (k0)] f (q0) f (r0) − f (p0) f (k0) [ f (q0) + f (r0)]}, (D4)

where we have interchanged the integration variables r ↔ −k, and suppressed the time arguments. For ease of notation we also
shorten, in this Appendix, fneq(p0; t ) → f (p0). It is now useful to rewrite the integrals to range over positive frequencies only,

I (p) = (2π )3

2

∫ ∞

0
d p0 dk dq dr δ(p + k − q − r)

∑
s,s′∈{−1,1}

[I1sss′ + I1s(−s)s′ ], (D5)

where
∫ ∞

0 dk = (2π )−d−1
∫ ∞

0 dk0
∫

dd k, and

Isσσ ′s′ = δ(sp0 + σk0 − σ ′q0 − s′r0)g2
eff (sp0 − s′r0, p − r)ρab(sp0, p)ρba(s′r0, r) ρcd (σ ′q0, q)ρdc(σk0, k)

×{σ ′s′[s f (p0) + σ f (k0)] f (q0) f (r0) − sσ f (p0) f (k0) [σ ′ f (q0) + s′ f (r0)]}. (D6)

a. Kinetic scattering integral for free particles

Inserting the free spectral function (C26), only the first integrand in Eq. (D5) contributes, with s = 1, I1ss1, which can be
written as

I (0)
1ss1 = (2π )4δ(p0 + sk0 − sq0 − r0)δ(p0 − εp)δ(k0 − εk )δ(q0 − εq)δ(r0 − εr )s g2

eff (p0 − r0, p − r)

×{[ f (p0) + s f (k0)] f (q0) f (r0) − f (p0) f (k0) [s f (q0) + f (r0)]}. (D7)

Integrating over the frequencies p0, k0, q0, and r0 we obtain

I (p) = (2π )4
∫

kqr
δ(p + k − q − r)g2

eff (εp − εr, p − r) δ(εp + εk − εq − εr )

×{[ f (εp) + f (εk )] f (εq) f (εr ) − f (εp) f (εk ) [ f (εq) + f (εr )]}. (D8)

Hence, Eq. (D1) takes the form of the quantum Boltzmann equation (52) for nQ(p, t ) ≡ n(p, t ) = fneq(εp, t ) � 1, with the
scattering integral in the classical-wave approximation (54). Comparing (D8) to (54), one obtains the expression for the T
matrix

|Tpkqr|2 = (2π )4g2
eff (εp − εr, p − r), (D9)

given in Eq. (71), which depends on the particle distribution n(p, t ) themselves. Making a scaling ansatz for n(p, t ), we calculate,
in Appendix E 1, the dependence of these matrix elements on the energy and momentum arguments explicitly.

To evaluate the scattering integral, we eliminate the q integration by means of the momentum-conservation delta distribution,
define r = p − r′ and q = k + r′, choose the k orientation such that r′ is parallel to the z component of k. Then, θk = �(r′, k),
and we can replace the integral over d cos θk by an integral over dq, giving

I (p) = (2π )−1
∫

r′

1

r′ g
2
eff (εp − εp−r′ , r′)

∫ ∞

0
dk k

∫ |k+r′ |

|k−r′ |
dq q δ(εp + εk − εq − εp−r′ )

×{ f (εp) f (εp−r′ ) [ f (εq) − f (εk )] + [ f (εp−r′ ) − f (εp)] f (εq) f (εk ) }. (D10)

We insert f (p0), Eq. (E8), and the dispersion ε(p) = p2/2m, change r′ back to r = p − r′, and define q = p − r before replacing
the integration over dθr by one over dq. This gives

I (p) = 2m

(2π )3

�3κ

p

∫ ∞

0
dr r

∫ p+r

|p−r|
dq g2

eff (εp − εr, q)

×
{

I free
1 (p, q)(

p2 + p2
�

)κ/2(
r2 + p2

�

)κ/2 +
[

1(
r2 + p2

�

)κ/2 − 1(
p2 + p2

�

)κ/2

]
I free
2 (p, q)

}
,
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I free
1 (p, r′) =

∫ ∞

0
dkk

∫ |k+r′|

|k−r′ |
dq q δ(p2+k2 − q2−|p−r′|2)

[
1(

q2 + p2
�

)κ/2 − 1(
k2 + p2

�

)κ/2

]
,

I free
2 (p, r′) =

∫ ∞

0
dkk

∫ |k+r′ |

|k−r′ |
dq q δ(p2+k2 − q2−|p−r′|2)

1(
q2 + p2

�

)κ/2(
k2 + p2

�

)κ/2 . (D11)

It is convenient to introduce new variables u and v,

u = (k2 + q2)/
√

2, v = (k2 − q2)/
√

2, (D12)

such that the delta distributions depend on a single variable v. The integral I free
1 becomes

I free
1 (p, r′) = 1

4

∫ ∞

−∞
dv δ(p2 − |p − r′|2 +

√
2v)

∫ ∞

u(v)
du

{[
(u − v)/

√
2 + p2

�

]−κ/2 − [
(u + v)/

√
2 + p2

�

]−κ/2}
, (D13)

where u(v) = r′−2(v2 + r′4/2)/
√

2. Here, the integration domain is bound by a parabola in the variables u, v: For the upper
bound q = k + r′, one has (−v − r′2/

√
2)2 = (v + r′2/

√
2)2 = √

2r′2(u + v) and for the lower bound q = |k − r′|, that (v −
r′2/

√
2)2 = √

2r′2(u + v). By expanding and rearranging the terms, one finds the parabolic form of u(v). The integration over
du can be done directly before that over dv is evaluated with the delta distribution, giving

I free
1 (p, q) = 2κ/2

4(κ − 2)

[(
(p2 − r2 + q2)2

2q2
+ 2p2

�

)1−κ/2

−
(

(p2 − r2 − q2)2

2q2
+ 2p2

�

)1−κ/2]
, (D14)

where we have replaced r′ by p − r and defined q = p − r. q = |q| is used instead of the polar angle between r and p.
The same variable transformation and the same strategy is applied to I free

2 :

I free
2 (p, r′) =

√
2

4

∫ ∞

−∞
dv δ(p2 − |p − r′|2 +

√
2v)

∫ ∞
√

2u(v)
du

[(
u + p2

�/
√

2
)2 − v2

]−κ/2
, (D15)

where A = √
2u(v) + 2p2

� is positive. The integral over u can be written in terms of a hypergeometric function [113]∫ ∞

A
dx(x2 − y2)−α = A1−2α

2

∫ ∞

1
dx′x′−1/2

(
x′ − y2

A2

)−α

= A1−2α

2α − 1
2F1(α, α − 1/2; α + 1/2; [y/A]2). (D16)

With this and integrating over dv, I free
2 becomes

I free
2 (p, q) = 2F1

(
κ

2
,
κ − 1

2
;
κ + 1

2
;

[
2(p2 − r2)q2

(p2 − r2)2 + q4 + 4p2
�q2

]2) 2κ−1

4(κ−1)

[
(p2−r2)2+q4

2q2
+ 2p2

�

]1−κ

. (D17)

Inserting (D13) and (D17) into (D11) and using (E1), (E13), and (E14) for geff allows the numerical evaluation of the scattering
integral (D11), which gave the results in Sec. V B.

b. Kinetic scattering integral for Bogoliubov sound waves

Alternatively, we consider the case of a macroscopic zero-mode population with Bogoliubov quasiparticle excitations. In the
regime where the dispersion is linear, Eq. (10), the Bogoliubov excitations are sound waves. Inserting the spectral function (C27)
into the integrand (D6) gives

Isσσ ′s′ = (2πgρ0)4

ωpωkωqωr
δ(sp0 + σk0 − σ ′q0 − s′r0)g2

eff (sp0 − s′r0, p − r)

× δ(p0 − ωp)δ(k0 − ωk )δ(q0 − ωq)δ(r0 − ωr ){[σ f (p0) + s f (k0)] f (q0) f (r0)

− f (p0) f (k0) [s′ f (q0) + σ ′ f (r0)]}. (D18)

Only a subset of these integrands carries a nonvanishing contribution to the scattering integral (D5). To identify this, we integrate
out the frequencies and the momentum q, and shift r = p − r′. We then rewrite the integral over k into an integral over k and
one over the angle �(r′, k) which we replace by an integral over q = |r′ + k|. Omitting the prime of the transfer momentum r′,
and taking into account that ωp ≡ ωp is isotropic, we get

I (p) = (2π )1−3d

2

∫
dd r

r

∫ ∞

0
k dk

∫ |r+k|

|r−k|
q dq

∑
s,s′∈{−1,1}

[Ĩ1sss′ + Ĩ1s(−s)s′ ], (D19)

where

Ĩsσσ ′s′ = (2πgρ0)4

ωpωkωqω|p−r|
g2

eff (sωp − s′ω|p−r|, r)δ(sωp + σωk − σ ′ωq − s′ω|p−r|)

×{[σ fp + s fk] fq f|p−r| − fp fk [s′ fq + σ ′ f|p−r|]} , (D20)
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and fp ≡ f (ωp). In order to reduce the set of integrands, we analyze the energy conservation delta function for the case of the
Bogoliubov dispersion (7): δ(sωp + σωk − σ ′ωq − s′ω|p−r|) = const × δ(|p − r| − ss′[p + sσ (k − σσ ′q)]). Since |k − q| � r
and k + q � r we find that the argument of the delta distribution can vanish only if σσ ′ = 1 and ss′ = 1 or if σσ ′ = −1 and
ss′ = −1 and s = −σ . This leaves us with the following terms:

I (p) = (2π )1−3d

2

∫
dd r

r

∫ ∞

0
k dk

∫ |r+k|

|r−k|
q dq[Ĩ1111 + Ĩ1(−1)(−1)1 + Ĩ1(−1)1(−1)], (D21)

where Ĩsσσ ′s′ ≡ Ĩsσσ ′s′ (p, k, q, r).
Turning back to the full integral (D5) and keeping only the nonvanishing contribution results in

I (p) = (2π )4
∫

kqr

(gρ0)4

ωpωkωqωr

[
g2

eff (ωp − ωr, p − r) + 1

2
g2

eff (ωp − ωk, p + k)

]
× δ(p + k − q − r) δ(ωp + ωk − ωq − ωr )

×{[ f (ωp) + f (ωk )] f (ωq) f (ωr ) − f (ωp) f (ωk ) [ f (ωq) + f (ωr )]}. (D22)

Exchanging, finally, in each summand the spatial integration variables suitably, one recovers the Boltzmann equation (52) for
nQ(t, p) = f (t, ε(p)) � 1, with the scattering integral (54) in the classical-wave approximation, and the T -matrix elements

|Tpkqr|2 = (2π )4 (gρ0)4

ωpωkωqωr

[
g2

eff (ωp − ωr, p − r) + 1

2
g2

eff (ωp − ωk, p + k)

]
. (D23)

The T -matrix elements depend on the quasiparticle distribution nQ(p, t ). We evaluate these matrix elements in Appendix E 2.
For the details of the evaluation of the scattering integral in the Bogoliubov case, which proceeds in the same way as in the

free case, we refer to [114] and here quote the resulting expression:

I (p) = (gρ0)4

(2π )c5
s

�3κ

p

( ∫
r′

1

|p − r′|r′ g
2
eff (ωp − ωp−r′ , r′)

{
Ibog
1 (p, r′)

(p + p�)κ (|p − r′| + p�)κ

+
[

1

(|p − r′| + p�)κ
− 1

(p + p�)κ

]
Ibog
2 (p, r′)

}
+

∫
k′

1

2k′|k′ − p| g2
eff (ωp − ωk′−p, k′)

×
{

− Ibog
3 (p, k′)

(p + p�)κ (|k′ − p| + p�)κ
+

[
1

(p + p�)κ
+ 1

(|k′ − p| + p�)κ

]
Ibog
4 (p, k′)

})
,

Ibog
1 (p, q) = 1

κ − 1

[(
q + p − r

2
+ p�

)1−κ

−
(

q − p + r

2
+ p�

)1−κ]
, (D24)

Ibog
2 (p, q) = (2q + 4p�)2κ−1

2κ − 1
2F1

(
κ, κ − 1

2
, κ + 1

2
;

(
p − r

q + 2p�

)2)
,

Ibog
3 (p, q) = 2

κ − 1

[(
p + k − q

2
+ p�

)1−κ

−
(

p + k + q

2
+ p�

)1−κ]
,

Ibog
4 (p, q) = q

(
p + k

2
+ p�

)−2κ

2F1

(
κ,

1

2
;

3

2
;

(
q

p + k + 2p�

)2)
.

APPENDIX E: EFFECTIVE MANY-BODY COUPLING FUNCTION geff (p)

In this Appendix we discuss in detail the structure of the effective, momentum-dependent coupling geff (p) in both the
perturbative and collective-scattering regimes. We assume the momentum distribution to assume a general scaling form as
defined in Eq. (27), and will discuss the whole regime of possible exponents κ , including for nonthermal fixed points, weak-wave
turbulence, and thermal distributions. This Appendix complements the discussion of the effective coupling in Sec. III C in the
main text, providing, among other things, details of the derivation of Eqs. (74) and (E49).

geff (p), which defines the T -matrix elements [Eqs. (71) and (E50)], is the result of the s-channel loop resummation and can
be written as

geff (p) = g

|1 + g�R(p)| (E1)

(see Appendix C for details of the field-theoretical formalism, as well as Fig. 10). Here, �R(p) = −(θ ∗ �ρ )(p) [cf. Eq. (C15)]
is the retarded loop integral. Within the kinetic approximation introduced in Appendix C 3, �ρ (p) can be written in terms of the
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quasiparticle frequency spectrum f (t, p0) and the spectral function ρ(p) [cf. Eqs. (C17) and (C31)] as

�ρ (p) = 1

2
(ρab ∗ Fba − Fab ∗ ρba)(p) = 1

2

∫
k

[ρab(p − k)Fba(−k) − Fab(p − k)ρba(−k)]

= − i

2

∫
k

[ f (−k0) − f (p0 − k0)]ρab(−k)ρba(p − k), (E2)

where
∫

k = (2π )−d−1
∫

dd+1k and, here and in the following, we suppress the time argument t of f (p0; t ).
In the following, we will derive the coupling function geff (p) within the kinetic approximation, for given spectral functions

of both free and Bogoliubov quasiparticles in d = 3 dimensions, and assuming a particular scaling form for the quasiparticle
distribution function.

1. Universal geff (p) for free particles

a. 2PI loop resummation

We first discuss the case of free particles. The retarded one-loop function �R includes the spectral function which contains
the eigenfrequencies of the (quasi)particle modes, as well as their occupation defined by the distribution function f ≡ fneq

[Eq. (C31)]. Inserting the spectral function (C26) into Eq. (E2), one obtains

�ρ (p0, p) = −2π i
∫

dd k

(2π )d
f (εk )[δ(p0 − εk + εp−k ) − δ(p0 + εk − εp−k )]. (E3)

Inserting this into �R [Eq. (C15)], we obtain, in d = 2, 3 dimensions,

�R(E , p) =
∫ ∞

−∞

dq0

2π

i

q0 + iε
�ρ (q0 − p0,−p)

=
∫

dd k

(2π )d
f (εk )

[
1

p0 − εk + εp−k + iε
− 1

p0 + εk − εp−k + iε

]
= 2mSd−2

(2π )d

∫ ∞

0
dk kd−1

∫ 1

−1

d cos θ

sin3−d θ
f (εk )

[
1

E − k2 + |p − k|2 + iε
− 1

E + k2 − |p − k|2 + iε

]
, (E4)

where we defined E = 2mp0, θ is the angle between p and k, and

Sd−1 = 2πd/2

�(d/2)
(E5)

is the surface area of the unit sphere in d dimensions. Integrating out the angular part of the spatial convolution, one obtains, in
d = 3 dimensions, the energy and momentum dependence

�R(E , p) = 1

(2π )2

m

p

∫ ∞

0
dk k2

∫ 1

−1
dz f (εk )

[(
E + p2

2p
− kz + iε

)−1

−
(

E − p2

2p
+ kz + iε

)−1]
= 1

(2π )2

m

p

[
�̃ f

(
E + p2

2pp�

)
− �̃ f

(
E − p2

2pp�

)]
, (E6)

where we defined E = 2mp0, p = |p|. We factor out the infrared cutoff p� such that the remaining momentum integral in the
one-loop function can be written as

�̃ f (x) = p2
�

∫ ∞

0
dy y f (εyp�

) ln

(
x + y + iε

x − y + iε

)
, (E7)

with εk = k2/2m. To proceed, make an ansatz for the particle distribution f (εk ). We assume it to take a scaling form

f (p0) = θ
(
εpλ

− p0
)

sgn(p0)

(
ε�

p0 + εp�

)κ/2

, (E8)

where p� takes the role of an infrared cutoff, pλ > p� is a sharp UV cutoff, and ε� = �2/2m defines a further scale �

parametrizing the amplitude. This ansatz interpolates in a smooth way between a constant in the infrared limit and a power-law
falloff f (εp) ∼ p−κ , with crossover scale p�, and thus has the same momentum scaling as the form in Eq. (27). For simplifying
the following derivations, it has a different crossover behavior at p0  εp�

. While the precise form at and below the crossover
scale can be different we are, here, primarily interested in the analytical structure of �R and seeing its (in)dependence (of) on
the power-law exponent κ . The signum function is introduced to account for the antisymmetry of f in p0 [cf. Eq. (C32)].
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We insert the ansatz (E8) for the quasiparticle distribution f (εk ) into Eq. (E7), and obtain

�̃ f (x) = �κ

pκ−2
�

∫ yλ

0

dy y

(1 + y2)κ/2
ln

(
x + y + iε

x − y + iε

)
. (E9)

The scale � is fixed by the normalization of the particle distribution to the density ρnc of noncondensed particles

ρnc = Sd−1�
κ pd−κ

�

2(2π )d

∫ y2
λ

0

du ud/2−1

(1 + u)κ/2
= �κ pd

λ p−κ
�

2dπd/2 �(d/2 + 1)
2F1

(
κ

2
,

d

2
;

d

2
+ 1; −

[
pλ

p�

]2)
, (E10)

and thus the normalization factor reads as, for d = 3,

�κ

pκ−2
�

= (2π )2Cκ (yλ)
ρnc

p�

(E11)

with

C−1
κ (y) = 2y3

3
2F1

(
κ

2
,

3

2
;

5

2
; −y2

)
≈ 1

3 − κ

[
2y3−κ −

√
π �

(
κ−1

2

)
�

(
κ
2

) ]
(for y � 1). (E12)

We see that, while the integral (E9) is UV convergent for κ > 2 = z, the integral (E10) defining the normalization is UV divergent
for κ � d . This implies that, as κ approaches d from above, the density ρnc becomes dominated by the occupation number at the
UV end of the scaling form and thus the normalization �, for a given total density ρnc becomes sensitive to the UV cutoff pλ.
To take this effect into account is crucial for understanding the crossover behavior of the effective coupling as κ is varied from
κ � d to κ = z = 2.

In the main text we derive κ = d + 1 at a nonthermal fixed point, for z = 2, η = 0 [cf. Eq. (129)], such that κ > d is fulfilled,
which turns out to be also the case for exponents κQ = d + 2/3, κP = d + 4/3 characterizing strong-wave-turbulent cascades
[cf. Eq. (134)]. For these solutions, fulfilling κ > d , the effective coupling will become insensitive to the UV cutoff pλ and thus
represent a universal quantity characteristic for critical scaling phenomena.

Inserting (E11) into (E9), and this into (E6), we obtain

�R(E , p) = p2
�

2gpp�

[
π̃κ

(
E + p2

2pp�

)
− π̃κ

(
E − p2

2pp�

)]
, (E13)

where p� = √
8πaρnc is the momentum scale corresponding to the healing length set by the density ρnc of noncondensate

particles [see the discussion following Eq. (72)]. π̃κ contains the integral over y which can be expressed in terms of Gaussian
hypergeometric functions as [113]

π̃κ (x) = −Cκ (yλ)
∫ yλ

0
dy

y

(1 + y2)κ/2
ln

(
x + y + iε

x − y + iε

)
= Cκ (yλ)

κ − 2

{√
π

x

�
(

κ−1
2

)
�

(
κ
2

) 2F1

(
1,

1

2
;
κ

2
; 1 + [(1 ± iε)x]−2

)
+ x y1−κ

λ

�
(

κ−1
2

)
�

(
κ+1

2

)
× 2F1

(
1,

κ − 1

2
;
κ + 1

2
;

[
(1 ± iε)

x

yλ

]2)
− (

1 + y2
λ

)1−κ/2
ln

(
1 + yλ/x ± iε

1 − yλ/x ± iε

)}
. (E14)

Here, the + (−) sign of the infinitesimal imaginary shift applies in the case x > 0 (x < 0). In the second line we sent the UV
cutoff to infinity, resulting in the hypergeometric function, and subtracted the integral from yλ to ∞ which gives the third and
fourth lines.

If x � 1, i.e., for momenta and energies sufficiently far above the infrared cutoff, we can simplify π̃κ (x) using the analytic
continuation of the hypergeometric function [114] and from this derive a simple approximate scaling form of the effective
coupling geff (p). Assuming that κ is not an integer, 12 and that 1 � x � yλ, one finds the leading behavior

π̃κ (x)  Cκ (yλ)

[ √
π �

(
κ−1

2

)
(κ − 3) �

(
κ
2

) 1

x
− 2

κ − 1
x y1−κ

λ − iπ

κ − 2

(|x|2−κ − y2−κ
λ

)]
, (E15)

where the yλ-dependent terms arise from the subtraction. The last, x-independent term drops out when inserting π̃κ into (E13),
such that �R is UV divergent for κ < 1 while π̃κ diverges already for κ < 2.

12The case of an integer κ requires further discussion due to the nonsimple pole structure of the integral representation of the hypergeometric
function in the form of a Mellin-Barnes integral. As our numerical results presented in Sec. V demonstrate, there is no discontinuity in the
transition from noninteger to integer values of κ . We therefore use the expressions for noninteger κ and take the limit to an integer value.
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Far below the IR cutoff, for x � 1 � yλ, one obtains

π̃κ (x)  Cκ (yλ) x

{√
π �

(
κ−1

2

)
�

(
κ
2

) − 2

κ − 1
y1−κ

}
+ const. (E16)

Using the approximation (E12) of Cκ (yλ) for large yλ = pλ/p� � 1, we need to distinguish the cases κ > 3 and κ � 3.

b. Scaling of geff (p) for κ > 3

For κ > 3, the first term in Eq. (E12) can be neglected, as
well as the yλ-dependent terms in Eqs. (E15) and (E16) and
obtain the leading behavior as

π̃κ (x)  1

x
− i

√
π

�
(

κ−2
2

)
�

(
κ−3

2

) |x|2−κ , (E17)

noting the exact limit limx→∞[x π̃κ (x)] = 1. In the opposite
limit x � 1, i.e., far below the IR cutoff, one finds, for κ � 3,

π̃κ (x)  (κ − 3)x ∓ i
√

π
�

(
κ−2

2

)
�

(
κ−3

2

)(
1 − κ − 2

2
x2

)
+ O(x3),

(E18)

where the − (+) sign of the imaginary part applies for x >

0 (x < 0). This suggests that for κ ↘ 3, the function π̃κ (x),
evaluated at a finite x, vanishes. This is, however, an effect of
having sent the UV cutoff to ∞ and is counterbalanced by the
neglected yλ-dependent terms.

From Eq. (E17) one finds that, for κ � 4, the real part
dominates above the infrared cutoff such that

g�R(E , p)  2p2
� p2

p4 − E2
− i

√
π

p2
�

2pp�

�
(

κ−2
2

)
�

(
κ−3

2

)
×

(∣∣∣∣E + p2

2p p�

∣∣∣∣2−κ

−
∣∣∣∣E − p2

2p p�

∣∣∣∣2−κ
)

. (E19)

As a result, for |E ± p2| � 2p� p, the loop integral scales as
�R(s2E , sp) = s−2�R(E , p). Inserting this into Eq. (E1), we
find that, in the momentum region p� � |E ± p2|/p � p�,
the effective coupling assumes the universal scaling form (74)
quoted in the main text,

geff (p0, p) 
∣∣ε2

p − p2
0

∣∣
2ρnc εp

, (E20)

independent of both the microscopic interaction constant g,
and the scaling exponent κ of f . Moreover, it is scaling as
Eq. (76). Together with Eqs. (71) and (95), this gives the
scaling exponents (78) and (79) of the many-body T matrix
γκ = mκ = 2.

At larger energy and momentum scales, above the healing-
length scale, |E ± p2|/p � p�, the one-loop function (E19)
falls below 1, and the effective coupling (E1) saturates at the
microscopic interaction constant geff  g, recovering γκ = 0
and the perturbative Boltzmann T -matrix [Eq. (67)] with
scaling exponent mκ = 0. We emphasize that, while the tran-
sition scale from the microscopic coupling g to the universal
scaling form (E20) is set by p� and thus by the microscopic
coupling g, the particular value of the universal coupling geff

is independent of g but only depends on ρnc.

c. Universality of geff (p) for κ > 3

The independence of κ for steep scalings, κ > 3, stems
from the fact that the integrals entering the effective coupling
are all dominated by the IR end of the momentum range
such that the coupling becomes universal in the sense that
it is independent of the details in the UV, and in particular
does not depend on a possible UV cutoff pλ. Moreover, the
dependence on the remaining IR scale p� is replaced, using
the constraint that the integral over the distribution must give
the total density of particles ρnc, by the scale p� [Eq. (72)],
which depends on g and ρnc. As a result, also the dependence
on the microscopic coupling g disappears, which underlines
the universality.

The above results belong to the most central ones of
this work. They show that, for a given coupling constant g
(i.e., scattering length a), nonperturbative universal scaling to
occur at a certain energy-momentum transfer (E , p) requires
a sufficiently strong noncondensate density

ρnc � 1

2πa

(E + p2)2

p2
. (E21)

Alternatively, for a given ρnc and (E , p), nonperturbative cor-
rections become important for a sufficiently large coupling g.
Note that the effective coupling becomes universal in a similar
sense as in the unitary limit of g → ∞, as at a Feshbach
resonance, where the quantum corrections to �R which have
been neglected here lead to a UV scaling |geff |2 ∼ p−2 as
p → ∞.

Far below the IR cutoff, for x � 1, the one-loop function,
according to (E18), approaches, for κ � 3,

g�R(E , p)  p2
�

2p2
�

(κ − 3). (E22)

Hence, in the IR limit, for |E ± p2|/p � p� � p�, the effec-
tive coupling saturates at the constant value

geff (p0, p)  2εp�

ρnc
(κ − 3)−1. (E23)

Figure 5 shows the effective coupling constant in the
E -p plane, on a double-logarithmic scale. Cuts through this
graph, for E = 0.5p2 and 1.5p2, are shown in Fig. 4, for
three different values of the infrared cutoff p�. These figures
demonstrate the scaling of geff (E , p) ∼ p2 within the regime
p� � p � p� and the saturation to geff (E , p) = g for p �
p�.

Depending on the momentum p = |p|, a maximum appears
(see Fig. 5) at the Bogoliubov-type energies

E0(p) = ±[
2p2

� p2 + p4
]1/2

. (E24)

On this line, the real part of 1 + g�R vanishes [cf. Eq. (E19)]
and the denominator of the effective coupling is dominated by
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FIG. 11. Effective coupling geff (E , p) as a function of momen-
tum p. Shown are cuts in the p-E plane, with E = 0.99p2 (red
solid, green dotted-dashed, and blue double-dotted-dashed lines),
E = 0.999p2 (blue dashed), E = 0.9999p2 (blue dotted). Different
colors refer to different infrared cutoff scales p� as listed in the
legend.

the imaginary part

geff (E0(p), p) = 1/|Im�R(E0(p), p)|, (E25)

meaning that the coupling shows a sort of many-body scat-
tering resonance at the Bogoliubov-type energy-momentum
transfer (E24). According to our numerical evaluation, how-
ever, these maxima do not appear to influence the scattering
integral.

Note that the on-shell effective coupling geff (εp, p) ∼ p
scales linearly in p, seen as a narrow bright line in Fig. 5.
This can be seen in Fig. 11 which shows cuts in the p-E
plane at E = (1 − ε)p2, with ε = 10−2, 10−3, and 10−4.
However, at any finite deviation ε �= 0, this scaling gives way
to the off-shell quadratic scaling geff (εp, p) ∼ p2 in the scaling
limit p� → 0, below the transition scale p < pon-shell,�(ε) ∼
ε−1/2 p�.

d. Scaling of geff (p) for κ � 3

In contrast to the case κ > 3 discussed so far, the integral
(E10) is UV divergent for κ � 3, and the physical cutoff needs
to be taken into account. Also, the integral (E9) becomes UV
divergent for κ ↘ 2. With the sharp cutoff at p = pλ inserted,
the subtraction in the third and fourth lines of (E14) becomes
relevant. Analogously to above, neglecting the second term in
(E12), one finds, for 1 � x � yλ, the leading behavior

π̃κ (x)  iπ

2

κ − 3

κ − 2
yκ−3
λ |x|2−κ . (E26)

Far below the IR cutoff, x � 1 � yλ, one finds

π̃κ (x)  3 − κ

2

√
π

�
(

κ−1
2

)
�

(
κ
2

) xyκ−3
λ . (E27)

Inserting Eq. (E26) into (E13) gives, for κ < 3,

g�R(E , p)  iπ

4

κ − 3

κ − 2

p2
�

(ppλ)3−κ

× (|E + p2|2−κ − |E − p2|2−κ ). (E28)

Inserting this into Eq. (E1), we find that for

p� � |E ± p2|
p

� pnp = (
p2

� pκ−3
λ

)1/(κ−1)
(E29)

the effective coupling assumes the scaling form

geff (p0, p)  2

π

κ − 2

κ − 3

ppλ

mρnc

(∣∣∣∣E + p2

ppλ

∣∣∣∣2−κ

−
∣∣∣∣E − p2

ppλ

∣∣∣∣2−κ
)−1

(κ < 3). (E30)

The effective coupling (E30) depends on pλ and thus is no
longer universal. Furthermore, the IR cutoff must be suffi-
ciently small p� � pnp for the IR suppression to occur.

This effectively lowers the momentum scale pnp of the
onset of the nonperturbative part of geff (at p � pnp) from (73)
to

pnp = p�(p�/pλ)(3−κ )/(κ−1) (κ < 3). (E31)

Far below the IR cutoff, for |E ± p2|/p � p�, the one-
loop function, according to (E27), approaches

g�R(E , p)  3 − κ

4

√
π

�
(

κ−1
2

)
�

(
κ
2

) p2
�

p2
�

(
pλ

p�

)κ−3

, (E32)

resulting in the coupling

geff (p0, p)  4

3 − κ

�
(

κ
2

)
�

(
κ−1

2

)√
π

εp�

ρnc

(
pλ

p�

)3−κ

. (E33)

The simple form (E30), valid for κ < 3, is, e.g., relevant
for the equilibrium Bose-Einstein distribution in d = 3 di-
mensions just above the critical point, with 0 < −μ � T 
Tc. It shows Rayleigh-Jeans scaling with κ = z = 2 within
the regime p� � p � pλ, where the IR cutoff is given by
the chemical potential p�  (2m|μ|)1/2, the UV cutoff by
the temperature pλ  (2mkBTc)1/2, and the density is approxi-
mately ρnc  (2mkBTc)3/2. From Eq. (72) it follows that p� 
ζ 1/2 pλ with gas parameter ζ = ρ1/3a � 1. Inserting this into
(E31), the condition p� � pnp requires that the chemical
potential be lowered to the point that p� � ζ 1/2 p� = ζ pλ.
Taking into account typical gas parameters on the order of
ζ ≈ 10−2, one thus needs to cool the gas to |μ|/(kBTc) �
ζ 2 ≈ 10−4 to see the nonperturbative rescaling of the coupling
described above.

e. Numerical evaluation of geff (p) for 0 � κ � 4

Figure 12(a) shows the momentum dependence of the
effective coupling geff (E , p), along E = 1.5p2, for p� =
10−3 p�, for different 2 � κ � 4. As can be inferred from
Eq. (E32), the nonperturbative IR suppression of geff below
pnp [cf. (E29)], where the coupling scales approximately as
pκ−1 (dotted lines), disappears, depending on the UV cutoff

pλ, when

κ � 3 − 2
ln(p�/

√
2p�)

ln(pλ/p�)
 2.2. (E34)

The dependence of geff (1.5p2, p) on κ , for p = 10−2 p�, p� =
10−3 p�, and pλ = 105 p�, is shown in Fig. 12(b). The dashed
line indicates the approximation (E33), while the dotted line
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FIG. 12. Effective coupling geff (E , p) for E = 1.5p2, p� =
10−3 p�. The panels show the coupling as a function of (a) p, for
different 2 � κ � 4 (see legend), pλ → ∞; (b) of κ , for p = 10−2 p�

and pλ = 105 p� [dashed line: approximate scaling (E33)]; (c) of pλ,
for p = 10−2 p�, κ = 0, 1, and 2 (see legend); (d) of p, for κ = 0 and
different pλ as labeled; (e) of p, for κ = 2 and different pλ as labeled.

marks the behavior (E23) for κ � 3. The perturbative limit
geff/g = 1 is reached at the value of κ estimated in Eq. (E34).
These results depend strongly on the UV cutoff pλ as shown
in Fig. 12(c) for the same p and p� for three different κ . Note
that κ = 0 is relevant for the overpopulation initial condition
marked as a dashed line in Fig. 1(b), while κ = 2 = z rep-
resents the case of a thermal Rayleigh-Jeans distribution [cf.
Fig. 1(a)].

In Figs. 12(d) and 12(e) we show respective examples
of the momentum dependence of geff (1.5p2, p) for p� =
10−3 p�, for κ = 0 [Fig. 12(d)] and κ = 2 [Fig. 12(e)], com-
paring different UV cutoffs pλ. As Fig. 12(b) indicates, the
case κ = 0 is outside the regime of exponents where Eq. (E29)
determines the scaling region. We find, however, that for
pλ � p�, the coupling is suppressed for p < p�, saturat-
ing to a constant value geff (1.5p2, p) ∼ p2

λ/(2mρnc) [dotted
line in Fig. 12(c)] at p � pλ. The coupling scales approx-
imately as geff (1.5p2, p) ∼ p2 above p � pλ (dotted line),
showing also intervals of linear scaling in p (dashed line).
Finally, Fig. 12(e) shows the same dependence for a thermal

distribution, κ = 2 = z, for different pλ as indicated in the
legend. As seen already in Fig. 12(c), the IR suppression sets
in for pλ � p2

�/p�. The coupling scales as geff (1.5p2, p) ∼
p for p � p�. Once pλ � p�, this scaling changes over to
geff (1.5p2, p) ∼ p2.

2. Universal geff (p) for Bogoliubov quasiparticles

We finally consider the case of a macroscopic zero-mode
population such that Bogoliubov quasiparticles represent the
elementary excitations of the system, corresponding to sound
waves in the linear regime of the dispersion (10). For these, the
spectral function, in the basis of the fundamental fields �̃a, is
given in Eq. (C27). Inserting this into Eq. (E2) we obtain, in
d = 3 dimensions,

�ρ (p0, p) = −i

(
gρ0

2π

)2 ∫
d3k

1

ωkω|p−k|
f (ωk )

× [δ(p0 + ωk + ω|p−k|) − δ(p0 + ωk − ω|p−k|)

− δ(p0 − ωk − ω|p−k|) + δ(p0 − ωk + ω|p−k|)],

(E35)

where we have replaced the integral over the angle �(p, k) by
an integral over r = |p − k|, and defined p0 = csE . Inserting
this into �R [Eq. (C15)] gives

�R(E , p) = 1

(2π )2ωp

(
gρ0

cs

)2 ∫ ∞

0
dk

∫ p+k

|p−k|
dr f (ωk )

×
[

1

E + k + r + iε
− 1

E + k − r + iε

− 1

E − k − r + iε
+ 1

E − k + r + iε

]
= p� pξ

(2π )2
√

2

m

p

[
�̃′

f

(
E + p

2p�

)
−�̃′

f

(
E − p

2p�

)]
.

(E36)

The angular part of the spatial momentum convolution can be
performed, giving, in d = 3 dimensions,

�R(E , p) = p�

(2π )2

(gρ0)2

c3
s p

[
�̃′

f

(
E + p

2p�

)
− �̃′

f

(
E − p

2p�

)]
,

(E37)

where, again, p� has been factored out, g is the bare coupling,
ρ0 the density of condensed particles, and cs = √

gρ0/m the
speed of sound. �̃′

f is defined as

�̃′
f (x) =

∫ ∞

0
dy f

(
ωyp�

)
ln

(
x + y + iε

x − y + iε

)
. (E38)

To proceed, we need to specify the quasiparticle distribu-
tion f (ωk ). We choose again the infrared cutoff to be p�, and
assume f to have the scaling form

f (p0) = sgn(p0)

(
ω�

|p0| + ωp�

)κ

, (E39)

where the signum function accounts for the symmetry (C32),
and the scale � is fixed by the normalization of n(p, t ) to
the density ρnc = ρtot − ρ0 of noncondensed particles [see
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Eq. (E41)]. Equation (E39) scales in the same way with κ as
(E8) for the free case. For brevity, we only consider the case
κ > d − 1 = 2 relevant for nonthermal fixed points, where
the integrals above are UV convergent and we can neglect the
dependence on pλ.

Inserting the quasiparticle distribution (E39) into Eq. (E38)
gives [113], for κ > d − 1 = 2,

�̃′
f (x) =

(
�

p�

)κ 1

(κ − 1)2x
[2F1(1, 1; κ; 1 − [(1 ± iε)x]−1)

+ 2F1(1, 1; κ; 1 + [(1 ± iε)x]−1)], (E40)

where the + (−) sign of the infinitesimal imaginary shift
applies for x > 0 (x < 0) (see [114]). In the main text we
derive κ = d − 1/3 [cf. Eq. (G3)] such that κ > d − 1 is
fulfilled. Again, the factor �κ is fixed by the normalization of
the single-particle distribution to the noncondensate density
ρnc = ρtot − ρ0:

ρnc =
(

�

p�

)κ gρ0

cs

pd−1
�

(2π )d
Sd−1

∫ ∞

0
du ud−2(u + 1)−κ

=
(

�

p�

)κ gρ0

cs

pd−1
�

(2π )d

2πd/2

�(d/2)

�(κ − d + 1)�(d − 1)

�(κ )
.

(E41)

For d = 3, we then have(
�

p�

)κ

=
√

2ρnc

pξ

2π2

p2
�

(κ − 1)(κ − 2), (E42)

where we used cs = (gρ0/m)1/2 = pξ /(
√

2m), with inverse
healing length pξ = √

2gmρ0. Using Eq. (E42) to fix the scale
�, we obtain, from Eqs. (E37) and (E40),

�R(E , p) = 1

2g

p2
�

pp�

[
π̃ ′

κ

(
E + p

2p�

)
− π̃ ′

κ

(
E − p

2p�

)]
(E43)

with

π̃ ′
κ (x) = 1

2x

κ − 2

κ − 1
[2F1(1, 1; κ; 1 − [(1 ± iε)x]−1)

+ 2F1(1, 1; κ; 1 + [(1 ± iε)x]−1)]. (E44)

If |x| � 1, i.e., sufficiently far above the infrared cutoff,
and assuming that κ is not an integer (see footnote 12), the
hypergeometric functions are approximated, in leading order,
by

π̃ ′
κ (x) ≈ 1

x
− iπ

2|x|κ−1
(κ − 2), (E45)

while below the cutoff |x| � 1, one gets

π̃ ′
κ (x) ≈ − iπ

2
(κ − 2) − [C(κ )

+ (κ − 2)(κ − 1) ln x]x + O(x2) , (E46)

with a κ-dependent constant C(κ ) [114]. The resulting form
of �R depends on the relative size of E and p. Here, we
only quote the form applying in the regions where E > p and
E < |p| as the scattering integral will receive its dominating
contributions there. Inserting Eq. (E45) into Eq. (E43) one

finds that, for κ > 2 as assumed above, the real part dominates
above the infrared cutoff such that

g�R(E , p)  2p2
�

p2 − E2
− iπ (κ − 2)

p2
� pκ−2

�

4p

×
(∣∣∣∣E + p

2

∣∣∣∣1−κ

−
∣∣∣∣E − p

2

∣∣∣∣1−κ
)

. (E47)

Below the cutoff, the retarded loop approaches

g�R(E , p)  − p2
�

2p2
�

C(κ ) + log. corrections. (E48)

As a result, for p, |E ± p| � p� and κ > 2, the loop
integral scales as �R(s2E , sp) = s−2�R(E , p). Inserting this
into Eq. (E1), we find that, in the momentum region p� �
|E ± p2|/p � p� < pξ (with p� < pξ ensuring that sound
waves are the relevant quasiparticles) the effective coupling
assumes the universal scaling form

geff (p0, p)  |p2 − (p0/cs)2|
4mρnc

(κ > d − 1), (E49)

which is, again, effectively independent of the microscopic
interaction constant g. In the IR limit, the coupling saturates
to the same constant (E23) as for the free case, but, due to the
logarithmic terms in a much slower manner.

This result enters the T -matrix elements describing the
kinetic scattering of strongly occupied IR sound modes. In this
case, direct and exchange terms are accounted for by separate
terms, such that the T -matrix elements are parametrized, in
terms of the effective coupling function for the z = 1 case, as

|Tpkqr|2 = (2π )4 (gρ0)4

ωpωkωqωr

[
g2

eff (ωp − ωr, p − r)

+ 1
2 g2

eff (ωp − ωk, p + k)
]
, (E50)

where the effective coupling function (E49) enters.
The function (E49) scales according to (76), with z = 1 and

γκ , in the respective momentum regions, identical to what one
finds in the case z = 2 [cf. Eqs. (77) and (78)]. Together with
Eq. (E50) this gives the scaling exponent

mκ = 0 (Bogoliubov sound; nonperturbative) (E51)

of the many-body T matrix.
At larger energy and momentum scales, above the healing-

length scale |E ± p2|/p � p�, the effective coupling satu-
rates at the microscopic interaction constant geff  g, recov-
ering the perturbative Boltzmann T matrix [Eq. (E50)] with
scaling exponent mκ = m = −2. We again emphasize that,
while the transition scale from the microscopic coupling g to
the universal scaling form (E49) is set by p� and thus by the
microscopic coupling g, the particular value of the universal
coupling geff in the scaling regime is independent of g.

Figure 13 shows the effective coupling constant in the
(p, E ) plane, on a double-logarithmic scale. While the cou-
pling is constant at large momenta and energies, it falls off
as power laws in the infrared. To illustrate this, cuts through
Fig. 13, for E = 0.5 p and 1.5 p, are shown in Fig. 14, for three
different values of the infrared cutoff p�. The curves again
show the saturation to g at momenta above the healing-length
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FIG. 13. Contour plot of geff (E , p)/g defined in Eq. (E1), for
interactions of Bogoliubov quasiparticles, with �R(E , p) given in
Eq. (E37), for κ = 3.5 and p� = 10−3 p�. In leading-order approxi-
mation the coupling function does not depend on κ .

scale p�, the power-law scaling below, and a weaker scaling
below the infrared cutoff scale p�.

Note that, similar to the case of free particles, the real part
of 1 + g�R(E , p) vanishes at the energy-momentum transfer

FIG. 14. Effective coupling g2
eff (E , p) as a function of momen-

tum p. Shown are different cuts in the p-E plane, with (a) E = 0.5p
and (b) E = 1.5p. Different colors (line styles) refer to different
infrared cutoff scales p� as listed in the legends.

(E , p) defined by the now gapped sound-wave energy E (p) =
±[p2 + 2p2

�]1/2, where a peak in the effective coupling ap-
pears.

APPENDIX F: WAVE-TURBULENT SCALING EVOLUTION

Within the regime of applicability of the QBE, zeros of
the scattering integral (53) correspond to stationary solutions.
Examples are the constant solution for which the occupation
number is independent of p, as well as the maximum-entropy
thermal equilibrium Bose-Einstein distribution nBE(p). For
these solutions, the scattering integral vanishes due to detailed
balance, and thus nQ(p, t ) is independent of t .

Consider the wave-classical limit, where the occupation
number is nBE(p) � 1. The Bose-Einstein distribution in the
Rayleigh-Jeans regime [ω(p) � T ] is also a zero of the
scattering integral (54) of the WBE. For a scaling dispersion
[Eq. (16)] ω(p) ∼ pz, the distribution has a scaling form qual-
itatively like (29), with κ� = 0, κλ → ∞, p� ∼ −μ/T and
the UV scale pλ regularizing the Rayleigh-Jeans divergence
at the temperature scale. The exponent κ equals κ = z in the
Rayleigh-Jeans region of momenta −μ � ω(p) � T .

Further nontrivial scaling solutions, with different expo-
nents κ , can be derived with the methods of wave-turbulence
theory [19,20].

1. Stationary turbulent flows

According to Boltzmann, stationarity of the maximum-
entropy state is related to detailed balance between the col-
lision processes [115]. In contrast, out-of-equilibrium station-
ary states generally do not require detailed balance. In partic-
ular when considering driven open systems, stationary states
can exist on the basis of a balanced but directed flow through
the momentum shells or energy levels. This is possible when,
e.g., kinetic energy is inserted into the system predominantly
at one length scale while being ejected or dissipated at a
different length scale.

A well-known example is turbulence in a three-
dimensional incompressible fluid driven continuously at a
particular length scale, e.g., by a stirrer [18]. Fully developed
turbulence is characterized by a stationary energy distribution
within an extended “inertial range” of wave numbers. The
limiting scales of the inertial range are typically set, on the
low-energy side, by the size of eddies stirred into the fluid,
and, at the opposite end, by viscosity, dissipating kinetic
energy into heat.

Within the inertial range, on average and per unit of time,
the same amount of energy is transported unidirectionally
through each momentum shell, from large to small charac-
teristic length scales, or vice versa, as is the case in Kraichnan
turbulence in two dimensions [116]. This turbulent transport
is in general quasilocal in momentum space.

The dilute Bose gas [Eq. (3)] is compressible such that also
quantities other than the energy can be locally conserved in
their transport through momentum space. As the interactions
are spatially isotropic, these local conservation laws can be
expressed in the form of one-dimensional transport equations
for either the radial quasiparticle number

NQ(p) = (2p)d−1πnQ(p) (F1)
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(for d = 1, 2, 3) or the energy distribution

EQ(p) = (2p)d−1πεQ(p). (F2)

Here, εQ(p) = ω(p)nQ(p), and as quasiparticles we again
consider free particles or Bogoliubov sound waves using the
same notation. The respective transport equations are written
as

∂t NQ(p, t ) = −∂pQ(p, t ), (F3)

∂t EQ(p, t ) = −∂pP(p, t ), (F4)

with radial quasiparticle current Q and energy current P.
These continuity equations relate the temporal change of a
density to the momentum divergence of a current. Hence, they
describe local transport in momentum space. Given the in
general local interactions in position space which correspond
to nonlocal interactions in momentum space, such a local
transport appears somewhat unintuitive at first sight and in
general is weakly violated by subleading scaling terms.

2. Wave-turbulent cascades

Consider the one-dimensional transport equations (F3) and
(F4) for the radial distributions of the quasiparticle number,
Eq. (F1), and the energy, Eq. (F2), respectively. According
to Eq. (55), the current gradients are related to the wave-
Boltzmann scattering integral (56) by

∂pQ(p, t ) = −(2p)d−1π I[nQ](p, t ), (F5)

∂pP(p, t ) = −(2p)d−1π ω(p) I[nQ](p, t ). (F6)

For wave-turbulent stationary distributions nQ(p) or
ω(p)nQ(p), both gradients vanish.

The different constant local fluxes Q and P require, how-
ever, different values of the scaling exponent κ of the sta-
tionary quasiparticle distribution nQ(p) entering the scattering
integral. These exponents can be determined, to a first approx-
imation, by power counting, assuming the scattering T matrix
to scale according to Eqs. (64) and thus the integral I[nQ] as
given in Eqs. (65) and (66). The relative scaling of Q and
I[nQ], Eq. (F5), implies that for a quasiparticle cascade, where
∂pQ = 0, the integral

∫
d p pd−1I[nQ](p) must scale as p0.

Counting all powers of p in I[nQ](p) ∼ p3+[2(d+mκ )−3]−z−3κ

[cf. Eq. (56)], this requires κ = κQ,

κQ = (3d + 2mκ − z)/3

= d + z + 2(γκ − 4 + 2η)/3, (F7)

confirming Eq. (2.21) of Ref. [63] (cf. footnote 8). Analo-
gously, one infers the scaling with κ = κP,

κP = κQ + z/3, (F8)

as a condition to find a stationary energy distribution E and an
energy cascade [cf. Eq. (2.13) of [63]]. The above exponents
can also be explicitly derived by determining the zeros of the
scattering integral by means of Zakharov integral transforma-
tions [19]. We confirm, in Sec. V, the above power-counting
results by explicitly evaluating the scattering integral.

3. Buildup of the wave-turbulent flux toward the IR

As discussed in Sec. II C 3, a wave-turbulent cascade can
not build up instantaneously but as a wave front, either
critically slowing or accelerating in time [63]. During this
transient buildup, the locality of the transport [Eqs. (F3) and
(F4)] is weakly broken due to global quasiparticle and energy
conservation. The wave front evolves according to the scaling
form (49) or (48).

Let us consider the case κ < d in which quasiparticles and
energy are concentrated at the UV end of the scaling region
and an inverse cascade can build up toward the IR. In this
case, we find, for the quasiparticle cascade, κ = κQ [Eq. (F7)]
that the scaling exponent mκ of the T matrix must satisfy

mκ < z/2. (F9)

Note that this condition corresponds to the lower bound of the
inequality (2.8) of Ref. [63] (cf. footnote 8). Since mκ = γκ +
2z − 4 + 2η [cf. Eq. (108)], the inequality (F9) is fulfilled for
z < 2(4 − γκ − 2η)/3. Among the cases considered here, this
is fulfilled, for η = 0, for Bogoliubov quasiparticle transport
(z = 1) in the IR collective-scattering regime (γκ = 2) and
for free particles (z = 2) in the perturbative regime (γκ = 0).
Analogously, the quasiparticle energy cascade, with κ = κP,
requires

mκ < 0, (F10)

which is fulfilled for the perturbative weak-wave-turbulent
transport of Bogoliubov sound waves (mκ = −2).

Since, for κ < d , α′ = β ′ = 0, the scaling form (49) reads
as

nQ(p, t ) = τ α f�(τ β p/p�; τ β pλ/p�) (F11)

and obeys the kinetic equation

τ α−1(α + β [x ∂x + y ∂y]) f�(x; y)|x=τβ p/p�;y=τβ pλ/p�

= (∂tτ )−1τ−βμI[ f�](τ β p/p�; τ β pλ/p�), (F12)

where

α = βκ (F13)

(cf. Table I), and μ is given in Eq. (63).
The wave-turbulent transport is weakly nonlocal such that

even in the inertial regime the scattering integral is nonzero.
Hence, for Eq. (F12) to hold at different times during the
scaling evolution, the exponents α, β, and μ must obey
Eq. (114) as in the self-similar case. Combining Eq. (114) with
Eqs. (F13) and (63) one obtains

β = (κ + μ)−1 = [2(d + m − κ ) − z]−1. (F14)

Collective-scattering regime, z > 0. Here, γκ = 2 − η, and
the cascade solution applies for z < 2(2 − η)/3 [cf. (122)],
and thus, e.g., to Bogoliubov quasiparticles (z = 1, η = 0).
The T -matrix exponent m is then given by Eq. (106), which
gives

β = 1/z, (F15)

independent of whether one considers a quasiparticle or an
energy cascade, and exactly as for the self-similar evolution
[cf. Eq. (127)]. Hence, if z > 0, the scaling parameter is τ =
t/t0 and the evolution is critically slowed at large times.
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The momentum exponents κ , for the quasiparticle and
energy cascades, are obtained from Eqs. (107), (F7), and (F8):

κQ = d + z − (4 − 2η)/3 (collective scattering, z > 0),

κP = d + (4z − 4 + 2η)/3 (collective scattering, z > 0).
(F16)

Note that, for η < 2 and z > 0 these scaling relations imply
that the condition (100) for the applicability of the scaling
(107) of the effective coupling is fulfilled.

Collective-scattering regime, z < 0. For the rather unlikely
case of η > 2, z < 0, the scaling (111) of the T matrix leads
to the exponents formally obtained in Refs. [44–47]:

κq = d + z (collective scattering, z < 0),

κp = d + 2z (collective scattering, z < 0)
(F17)

(cf. footnote 5). In a closed system, κq fulfills the condition
(23) for the buildup of an inverse cascade, behind an acceler-
ated wave front since β = 1/z < 0.

Perturbative regime. In contrast, for sufficiently large mo-
menta one has γκ = γ = 0, η = 0, and thus m = mκ = 2(z −
2 + η) [cf. Eqs. (103) and (108)]. Inserting the momentum
exponent for the inverse quasiparticle cascade, Eq. (F7), into
Eq. (F14) gives

βQ = 3(2m − z)−1 = (z − 8/3 + 4η/3)−1. (F18)

Hence, for weak-wave-turbulent transport of both free parti-
cles and Bogoliubov sound,

β−1
Q < 0. (F19)

Therefore (cf. Table I and the discussion in Sec. II C 3), the
buildup of the inverse quasiparticle cascade occurs in the
form of a critically accelerating wave-front evolution with
scaling parameter τ = τ ∗ [cf. Eq. (51)]. This result, with βQ

given by Eq. (F18), is equivalent to Eq. (2.22) of Ref. [63]
(cf. footnote 8) for the translation between exponents. The
results of semiclassical simulations [70] corroborate these
predictions.

Analogously, inserting κP, Eq. (F8), into Eq. (F14) gives

βP = (2m/3 − z)−1 = 3(z − 8 + 4η)−1. (F20)

Hence, also for a weak-wave-turbulent energy cascade, βP is
negative such that only a wave-front scaling with τ = τ ∗ is
possible.

The momentum exponents κ , for the quasiparticle and
energy cascades, are obtained from Eqs. (77) and (F7):

κQ = d + z − 8/3 + 4η/3 (perturbative),

κP = d + 4(z − 2)/3 + 4η/3 (perturbative). (F21)

4. Buildup of the wave-turbulent flux toward the UV

Finally, in the case that κ > d + z, where particle and
energy densities are concentrated in the IR, one has α = β =
0, such that the scaling form (48) reads as

nQ(p, t ) = τ α′
fλ(τ β ′

p/pλ; τ β ′
p�/pλ) (F22)

and obeys the kinetic equation

τ α′−1(α′ + β ′ [x ∂x + y ∂y]) fλ(x; y)|x=τβ′ p/pλ;y=τ β′ p�/pλ

= (∂tτ )−1τ−β ′μI[ fλ](τ β ′
p/pλ; τ β ′

p�/pλ), (F23)

where

α′ = β ′κ (F24)

(cf. Table I), and μ is given in Eq. (63). As before, we obtain

β ′ = (κ + μ)−1 = [2(d + m − κ ) − z]−1. (F25)

In the collective-scattering regime, Eq. (106) implies that

β ′ = 1/z, (F26)

independent of the local conservation law applying in the cas-
cade. Hence, if z > 0, then β ′ > 0, and the scaling parameter
is τ = τ ∗, i.e., the evolution is accelerated at large times.

In the perturbative regime, inserting the exponents (F7) and
(F8) into Eq. (F25) gives

β ′
Q = 3(2m − z)−1, (F27)

β ′
P = (2m/3 − z)−1. (F28)

As γκ = γ = 0, one has m = mκ = 2(z − 2 + η) [cf.
Eqs. (103) and (108)]. The condition κQ > d + z, however,
implies mκ > 2z for direct particle cascades [see Eq. (F7)],
which means that β ′−1

Q > z and thus β ′
Q is positive for z > 0.

Analogously, κP > d + z requires mκ > 3z/2 which implies
β ′−1

P > 0, for direct energy cascades. Hence, direct cascades
build up with τ = τ ∗ and thus are critically accelerated at
large times (cf. [63]). However, for the cases considered here,
neither mκ > 2z nor mκ > 3z/2 are fulfilled. As a result,
transport of particles and energy toward the UV can not occur
in the perturbative regime in the form of a direct cascade
but rather involves the self-similar evolution discussed in
Sec. IV C 1.

5. Kinetic time

The distinction between wave-turbulent cascades and self-
similar evolution at a nonthermal fixed point can be also made
clear using the concept of kinetic time (see, e.g., [98]). A
scaling analysis of the quantum kinetic equation (52) and the
wave-Boltzmann scattering integral (54) [see Eqs. (62) and
(63)] allows to estimate the kinetic timescale from integrating
Eq. (52) to τkin as

τ−1
kin ∼ p2(d+m)−z n2

Q(p, τkin ), (F29)

if ∂t nQ(p, t ) �= 0 as it is the case in self-similar evolutions.
Using the scaling (58) of nQ and the result (125) for the scaling
exponent β for a self-similar particle transport to the IR, we
find that the kinetic time scales as

τ S
kin ∼ p−1/βS . (F30)

Since βS > 0, the kinetic time thus diverges in the scaling
limit p → 0, reflecting critical slowing down in time in the
system approaching the nonthermal fixed point.

Analogously, using the argument given in Ref. [98], one
derives the kinetic times for the buildup of wave-turbulent
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FIG. 15. Left panel: dependence of the perturbative wave-Boltzmann scattering integral I[nQ](p) for Bogoliubov sound (z = 1, η = 0)
in d = 3 spatial dimensions, at the momentum p = 0.1p�, on the momentum scaling exponent κ characterizing the occupation-number
distribution nQ(p) ∼ p−κ . The vertical dashed lines mark, from the left, the thermal zero at κT = 1, the inverse quasiparticle-cascade exponent
κQ = 4

3 , and the direct energy-cascade exponent κP = 5
3 . In the figure, Ĩ[nQ](p/p�) = 23/2 (2π )3 p3κ−1

� [m g2 (pξ �κ )3]−1 I[nQ](p) is shown.
The different colors (line styles) correspond to different values of the IR cutoff p�, as indicated in the legend. As the cutoff is lowered, the
zeros approach the predicted values. The sign of the slope ∂I[nQ]/∂κ at the zeros determines the direction of the cascade. Note that the slope
at κP  5

3 is finite and positive. Right panel: scaling exponents κ of the quasiparticle distribution nQ(p) ∼ p−κ for which the perturbative
wave-Boltzmann scattering integral I[nQ](p) in d = 3 spatial dimensions has a zero, for different momenta p in units of the IR cutoff scale
p�. As in Fig. 6, the lower data correspond to the particle cascade, with the zeros approaching κQ = 4

3 , the upper data to the energy cascade,
approaching κP = 5

3 as labeled.

quasiparticle and energy cascades, using the integrals

∂t

∫ ∞

p
NQ(p, t ) = Q0, ∂t

∫ p

0
EQ(p, t ) = P0, (F31)

over the transport equations (F3) and (F4), respectively. These
lead to the estimates of kinetic time

τ
Q
kin ∼ pd−κQ , τP

kin ∼ pd+z−κP , (F32)

which, together with Eqs. (F7) and (F8), prove the relations
(136) and (137), respectively. Here, the kinetic time τ

Q
kin

decreases, for κQ < d , with decreasing momentum and, while
τP

kin, for κ > d + z, decreases with increasing momentum.

APPENDIX G: NONPERTURBATIVE SCALING
EVOLUTION OF BOGOLIUBOV SOUND

Finally, we summarize the results for Bogoliubov quasi-
particles in the sound-wave regime of momenta p � pξ =
(2mgρ0)1/2, with condensate density ρ0. Their eigenfre-
quency, Eq. (10), exhibits the dynamical exponent z = 1.

In the perturbative regime of low occupation numbers,
i.e., for momenta p � p� = (2mgρnc)1/2, with nonconden-
sate density ρnc, Eq. (19), the scaling evolution of a quasipar-
ticle distribution takes the form of a wave-turbulent cascade
toward lower wave numbers. Within the cascade the transport
of quasiparticles or energy is also locally conserved, i.e., the
number distribution nQ(p, t ) is stationary within the inertial
region p� � p � pλ while the limiting scale p� evolves
algebraically in time.

As before, we consider the elastic two-to-two scattering
processes between quasiparticle modes which conserve the
total quasiparticle density. For the closed system, as number
and energy are concentrated at the same end of the distribution
in momentum space and since both need to be conserved, the

scaling evolution takes the form of a critically accelerating
wave front [Eqs. (50) and (51)] (cf. also our discussion in
Sec. IV C 2).

The effective many-body coupling equals again the bare
coupling geff (p) ≡ g, such that γκ = 0, m = mκ = −2. Anal-
ogously to the free case one obtains, from Table I and
Eqs. (F7), (F13), and (F18), the exponents

αQ = 1 − 3d/5, βQ = −3/5, κQ = d − 5/3 (G1)

for the quasiparticle cascade, and, for the energy cascade,

αP = (4 − 3d )/7, βP = −3/7, κP = d − 4/3. (G2)

As above, we have numerically evaluated the wave-
Boltzmann scattering integral (54), with bare T matrix (69)
and a scaling ansatz of the type (31) for the quasiparticle-
number distribution nQ(p, t ). Specifically, we choose the
ansatz (E39). Figure 15 shows the dependence of the scat-
tering integral I[nQ](p) on κ , at the momentum p = 0.1p�,
for three different values of the infrared cutoff p�. The
results indicate the way how the zeros of I[nQ](p, t ) approach
the predicted values κQ = 4

3 and κP = 5
3 as the IR cutoff

is lowered. Also, the thermal zero at κT = z = 1 is seen,
where the number distribution exhibits Rayleigh-Jeans scaling
nQ(p) = T/ωp ∼ p−1. Again, because κP < d + z = 4, the
sign of the slope ∂I[nQ]/∂κ at the zeros in κ shows that
only the inverse quasiparticle cascade should play a role in
the perturbative dynamics of the closed system considered
here.

The right panel of Fig. 15 shows the dependence of the
wave-turbulent zeros of the scattering integral on the momen-
tum where the integral is evaluated, relative to the infrared
cutoff. Again, the red dots correspond to the particle cascade
while green dots mark the zeros corresponding to the energy
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FIG. 16. Left panel: dependence of the nonperturbative scattering integral I[nQ](p) for Bogoliubov sound (z = 1, η = 0) in d = 3 spatial
dimensions, at the momentum p = 0.002 p�, on the momentum scaling exponent κ characterizing the occupation-number distribution nQ(p) ∼
p−κ . The vertical dashed lines mark, from the left, the quasiparticle-cascade exponent κQ = 8

3 and the energy-cascade exponent κP = 3. In the
figure, Ĩ[nQ](p/p�) = 23/2 (2π )3 p3κ−1

� [m g2 (pξ �κ )3]−1 I[nQ](p) is shown. The different colors (line styles) correspond to different values of
the IR cutoff p�, as indicated in the legend. As the cutoff is lowered, the zeros approach the predicted values. The sign of the slope ∂I[nQ]/∂κ

at the zeros determines the direction of the cascade. Right panel: scaling exponents κ of the quasiparticle distribution nQ(p) ∼ p−κ for which
the nonperturbative wave-Boltzmann scattering integral I[nQ](p) in the IR collective-scattering region, in d = 3, has a zero, for different
momenta p in units of the IR cutoff scale p�, for three different p�. As in Fig. 15, the lower data mark the quasiparticle cascade, with the zeros
approaching κQ = 8

3 , while the upper data mark the energy cascade, approaching κP = 3 as labeled.

cascade, confirming the analytically predicted cascade expo-
nents κQ and κP are reached in the scaling limit. As for the
free-particle case, the figure shows that this limit requires a
rather large quotient p/p�.

In the collective-scattering regime of high occupation num-
bers, i.e., for momenta p � p� = (2mgρnc)1/2, the scaling
evolution of a closed system with z = 1 still represents a cas-
cade, with a stationary distribution in the inertial range where
the distribution scales as nQ(p) ∼ p−κ . However, the rescaling
in time occurs in a self-similar manner and is critically slowed
at large times. Hence, the occupation number scales according
to Eq. (41). In this regime, for momenta larger than the IR
cutoff, p � p�, the effective many-body coupling takes the
universal scaling form (E49) with scaling exponent γκ = 2.

Note that, in general, a rescaling of the quasiparticle dis-
tribution does not leave the total particle content invariant
and thus the density of noncondensed particles ρnc changes
in time. This is because the two quantities scale differently if
z �= 2. Hence, exchange of particles with, e.g., a thermal bath
or a condensate mode is required.

The scaling exponents, in the collective-scattering regime
(γκ = 2, mκ = 0), read as

αQ = d − 1/3, βQ = 1, κQ = d − 1/3 (G3)

for the quasiparticle cascade, and

αP = d, βP = 1, κP = d (G4)

for the energy cascade. In all cases, α′
Q = β ′

Q = 0.
As in Sec. V B, we have evaluated the dimensionally

reduced scattering integral numerically and show, in Fig. 16,
its dependence on κ . Note that only the exponent of the inverse
quasiparticle cascade is safely within the region κ < d = 3
where inverse-cascade dynamics is expected. Hence, only this
non-perturbative inverse quasiparticle cascade is expected to
play a role, recall the discussion in Sec. II C 3. In analogy to
the perturbative wave-turbulent cases, Fig. 16 (right) shows
the zeros of the scattering integral in the p-κ plane.

We finally recall that the above analysis applies to a con-
densate with strongly occupied sound-wave modes (z = 1), in
the low-energy limit. It gives a self-similar, critically slowed
transport toward lower energies, with β = 1/z, as for the
free case with z = 2. The concomitant momentum exponent
is κ = d + z − (4 − 2η)/3 = d − (1 + 2η)/3. Note that, for
η = 0, this exponent has been found in related contexts, de-
scribing sound-wave excitations (rarefaction pulses) induced
by vortex-antivortex annihilations [52] as well as scaling
solutions of the Kardar-Parisi-Zhang equation [60].
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