
PHYSICAL REVIEW A 99, 043618 (2019)

Many-body quantum metrology with scalar bosons in a single potential well
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We theoretically investigate the possibility of performing high precision estimation of an externally imposed
acceleration using scalar bosons in a single-well trap. We work at the level of a two-mode truncation, valid
for weak to intermediate two-body interaction couplings. The splitting process into two modes is in our model
entirely caused by the interaction between the constituent bosons and is hence neither due to an externally
imposed double-well potential nor due to populating a spinor degree of freedom. The precision enhancement
gained by using various initial quantum states using a two-mode bosonic system is well established. Here we
therefore instead focus on the effect of the intrinsic dynamics on the precision, where, in a single well, the
Hamiltonian assumes a form different from that of the typical double-well case. We demonstrate how interactions
can significantly increase the quantum Fisher information maximized over initial states as well as the quantum
Fisher information for a fragmented or a coherent state, the two many-body states that can commonly represent
the ground state of our system.
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I. INTRODUCTION

Within quantum theory, it has been possible to apply—and
extend—results from classical statistics to what is now known
as quantum parameter estimation theory, whose aim is to in-
vestigate questions related to the estimation of a deterministic
parameter—say λ—using a quantum system [1]. The main
paradigm is, having ν copies of a λ-dependent quantum state
ρλ at our disposal, to find what the best possible precision is,
according to quantum mechanics, for the estimation of λ. The
quantum Cramér-Rao bound answers this question by relating
the variance of any unbiased estimator λest to the quantum
Fisher information (QFI) [2–4]:

Var[λest] �
1

ν Iλ
. (1)

Crucially, this bound can always be saturated in the limit of
large ν, therefore making the QFI Iλ a proper figure of merit
for the precision which can in principle be attained.

In general, a dynamical protocol for quantum metrology is
four steps: the preparation of an initial state, the imprinting
of the parameter during the evolution, the measurement of the
final state, and eventually—after repeating these three steps ν

times—the estimation of the parameter from the measurement
results [5]. An important class of quantum protocols are based
on interferometry, and many interferometers can be modeled
as a Mach-Zehnder interferometer (MZI), which is a two-
mode interferometer. In the optical case—the original one—
the two modes correspond to the two arms of the interferom-
eter. Light is sent to one or both input ports, goes through a
first beam splitter, accumulates a phase in one arm, and goes
through a second beam splitter. Eventually a measurement at
the output of the arms is made to collect the data from which
the parameter is inferred. Using a classical state at the input
the QFI is at most equal to Nt2, the shot noise limit, while by
using properly designed states one can reach a QFI equal to
N2t2, known as the Heisenberg limit [6–8].

In this optical scenario, the parameter λ is imprinted by
a phase-shift Hamiltonian, i.e., a Hamiltonian λĜ in which
the parameter λ is an overall multiplicative factor, and where
Ĝ is the generator of the transformation. For a long time
the study of quantum metrology has been focusing on such
Hamiltonians. Recently, a lot of attention has been devoted
in quantum metrology to Hamiltonians which, having a more
complex dependency on the parameter, are not phase-shift
Hamiltonians [9–21]. For example, while λ(Ĵz + χ Ĵx ) and λĴ2

z

are phase-shift Hamiltonians with respect to λ, cos(λ)Ĵx +
sin(λ)Ĵy and λĴz + Ĵx are not phase-shift Hamiltonians. No-
tice, in particular, that nonlinear Hamiltonians can be phase-
shift Hamiltonians (see, e.g., [22–24]). It turns out that when
considering complex Hamiltonians, not all of them allow the
same precision in quantum metrology. Also the question of the
time behavior (which is trivial for a phase-shift Hamiltonian)
becomes more intricate here. Such studies show the impor-
tance of the dynamics, and demonstrate that it is insufficient
to only discuss the influence of the initial state to assess the
precision attainable.

Beyond the optical case, quantum metrology can be based
on atomic systems as well [25–30], and in particular on
cold quantum gases [31–35]. For example, using two-mode
bosonic atomic systems it is also possible to design an MZI,
where the beam splitting process depends on the particular
system. These systems can be represented by an assembly of
qubits in a symmetric state, the internal states of spinor gases,
or cold gases in a double-well trap; see for a selection of the
extensive literature [21,36–46]. We notice that metrology with
cold atoms has already been implemented experimentally,
e.g., in Refs. [47–50]. Formally, all these two-mode systems
can be mapped to a spin system using the SU(2) representa-
tion. Then, a priori, results obtained for a specific system can
be directly applied to another system, in particular regarding
the enhancement offered by a given initial state. Nevertheless
this is true only as long as the dynamics governing the systems
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are identical. Hence we focus in our study below on the role
of the dynamics for the estimation precision.

In this paper we investigate how scalar bosons in a single-
well trap can be used for estimating an external force (an
acceleration) applied to the bosons (the estimation of the
intrinsic coupling parameters of the Hamiltonian has been
considered in [51]), and in particular to assess the effect of
interaction. We work in a regime of weak to intermediate
interaction couplings, for which the two-mode truncation ap-
proximately applies. Contrary to the double-well case where
the splitting into two modes corresponds to a spatial splitting,
in our scenario the splitting is purely coming from interac-
tions. It is also distinct from a spinor gas in a single trap
where the “splitting” is performed internally, and the particles
occupy two hyperfine states (with the usual approximation
that they share the same spatial mode). For a double well,
the natural description by two modes is established by a
sufficiently large barrier, and the dynamics is represented
by the competition of the single-particle tunneling between
these modes and the interactions in each well. The single-
well geometry imparts definite parity to the modes, thus the
system has pair tunneling dominating over the negligible
single-particle tunneling. In addition, there occurs a term
involving the product of occupation numbers in the modes;
both of the latter two terms are exponentially small in the
double-well geometry. Therefore the dynamics of our system
in particular as regards the crucial interplay between the mode
occupations, is fundamentally different from the one obtained
in the double-well scenario.

Our paper is organized as follows. In Sec. II we intro-
duce the physical system, its Hamiltonian, discuss the main
differences between single- and double-well geometries and
present the different scenarios for metrology. In Sec. III we
first introduce the tools to study quantum metrology in the
presence of a nontrivial dynamics, in particular the maximal
QFI and an upper bound to it. We then use these tools to
analyze the effect of the interaction on the precision of the
estimation of the external force, and show how, in the most
realistic (within our model) regime of the parameter (small
accelerations), interactions are needed to reach a high QFI.
In Sec. IV, to explore more realistic scenarios, we look at
the performance of a fragmented and a coherent state on a
protocol resembling an MZI. The analysis shows again how
interaction couplings can enhance the estimation precision of
the acceleration.

II. SCALAR BOSONS IN A SINGLE WELL

A. System Hamiltonian and ground states

We consider a harmonically trapped ultracold 1D bosonic
gas with short-ranged two-body interactions of coupling
strength g1D. Introducing a rescaled coupling constant

g = Ng1D, (2)

the Hamiltonian can be written

Ĥsys = 1

2

N∑
α=1

[
− ∂2

∂x2
α

+ x2
α

]
+ g

2N

∑
α,β

δ(xα − xβ ), (3)

setting h̄ and atomic mass m both to unity, and where
the coordinates of atoms are denoted by xα . For notational
convenience, we rescale energies by l−2 and lengths by l ,
which represents the harmonic oscillator length. All quantities
in what follows are thus dimensionless (given in units of
powers of l). Introducing the bosonic field operator ψ̂ (x) that
satisfies the commutation relations [ψ̂ (x), ψ̂†(x′)] = δ(x −
x′) and [ψ̂ (x), ψ̂ (x′)] = [ψ̂†(x), ψ̂†(x′)] = 0 gives the field-
quantized form of Ĥsys:

Ĥsys = 1

2

∫
dx ψ̂†(x)

[
− ∂2

∂x2
+ x2

]
ψ̂ (x)

+ g

2N

∫
dx ψ̂†(x)ψ̂†(x)ψ̂ (x)ψ̂ (x). (4)

We work at the level of a two-mode truncation. Writing
the two-mode truncated field operator as ψ̂ (x) = ψ0(x)â0 +
ψ1(x)â1 with annihilation operators â0 and â1, we obtain [52]

Ĥsys =
1∑

i=0

εiâ
†
i âi + A1

2
â†

0â†
0â0â0 + A2

2
â†

1â†
1â1â1

+
[

A3

2
â†

0â†
0â1â1 + H.c.

]
+ A4

2
â†

0â0â†
1â1, (5)

where the single-particle energies are given by
εi = 1

2

∫
dx ψ∗

i (x)[− ∂2

∂x2 + x2]ψi(x), and the interaction
couplings read A1 = V0000, A2 = V1111, A3 = V0011,
and A4 = V0101 + V1010 + V1001 + V0110, where Vi jkl =
(g/N )

∫
dx ψ∗

i (x)ψ∗
j (x)ψk (x)ψl (x). A1 (respectively, A2)

is the interaction energy of atoms in ψ0(x) [respectively,
ψ1(x)], A3 is the amplitude for pair tunneling, and A4 is the
intermode density-density interaction coupling. We stress
again that both A3 and A4 are exponentially smaller than A1

and A2 in a double well. The orbitals ψ0(x) and ψ1(x) are
assumed to be real for the simplicity of our discussion, which
in turn renders all Ai also real. Due to the symmetry of the trap
potential (e.g., of the above specified harmonic type) ψ0(x)
and ψ1(x) have a spatial parity: ψ0(x) is even while ψ1(x) is
odd. Then, terms corresponding to particle exchange (e.g.,
∝ â†

0â1) or occupation number-weighed particle exchange
(e.g., ∝ â†

0â†
0â0â1) do not contribute to the Hamiltonian.

For scalar bosons in a single-well trap, the justification
of the two-mode truncation is not as straightforward as for
bosons in a double well, where it is the spatial separation that
at least suggests the use of a two-mode truncation, by simply
using the respective ground-state orbitals of left and right well
[53]. A more refined variant of the two-mode approximation
uses properly chosen effective modes; see [54] for a detailed
analysis and further references. However, one should realize
that the two-mode truncation has its limits of validity also in
a double well, cf. the self-consistent analysis of [55]. In a har-
monic trap, for very weak interaction—the single-condensate
regime—the system is well described using a single mode
(that is, by single-orbital mean-field theory), while for very
strong interaction—the Tonks-Girardeau regime—the system
is fermionized and its description requires a very large number
of modes [56]. In this context, the two-mode truncation is
the first step to take into account the effect of interaction
beyond the mean-field regime. To obtain an estimate regarding
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the regime of validity of our model we use some existing
results concerning our model. In [57] the authors characterize
the single-condensate and the Tonks-Girardeau regimes. A
Lieb-Liniger-type parameter γ = g1D/n may be introduced
to identify and discriminate both regimes. Here, n represents
the central density. With our choice of units the Lieb-Liniger–
type parameter approximately reads γ � 1.5 × g4/3

1D N−2/3. In
the single-condensate regime the parameter γ � 1 while in
the Tonks-Girardeau regime γ � 1. Here we consider the
two-mode truncation to be valid in the intermediate regime,
that is, for values of γ of the order (or below) one, so that
g4/3

1D � N2/3, which translates as g � N3/2. We emphasize that
this simple analysis does not thoroughly justify the two-mode
truncation of the field operator expansion. A more complete
analysis determining in particular the energy level occupa-
tion statistics must involve self-consistent many-body calcu-
lations, cf., e.g., the multiconfigurational Hartree approach
utilized in [56,58].

B. SU(2) representation and parameter regimes

There exists an important connection between a spin sys-
tem and a two-mode bosonic system. Namely, the latter is for-
mally equivalent to a spin of size J = N/2. In the Schwinger
representation, we define the SU(2) operators as Ĵx = (â†

0â1 +
â†

1â0)/2, Ĵy = (â†
0â1 − â†

1â0)/2i, Ĵz = (â†
0â0 − â†

1â1)/2, and
Ĵ0 = (â†

0â0 + â†
1â1)/2 = N̂/2. Then, the Hamiltonian of the

bosons in a single trap within the two-mode truncation is
recast as

Ĥsys = −δε Ĵz + g

[
N − 1

2N
δÃĴz + η

N

(
Ĵ2

x + ξ Ĵ2
y

)]
. (6)

In terms of the parameters introduced in Eq. (5), we have

δε = ε1 − ε0, (7)

δÃ = Ã1 − Ã2, (8)

η = Ã4 + 2Ã3 − σÃ

2
, (9)

ξ = σÃ + 2Ã3 − Ã4

σÃ − (2Ã3 + Ã4)
, (10)

with σÃ = Ã1 + Ã2, Ãi = Ai/g1D, and where δε corresponds to
the energy difference between the single-particle modes while
η, ξ , and δÃ characterize the interaction terms. We see that
the interaction Hamiltonian has two contributions: a nonlinear
term and a renormalization of the single-particle term. To
make this last point more apparent we write the Hamiltonian
as

Ĥsys = qĴz + η
g

N

(
Ĵ2

x + ξ Ĵ2
y

)
, (11)

with

q = g
(N − 1)

N

δÃ

2
− δε (12)

the renormalized energy difference.
The assumed reality of the mode functions implies that

Ãi � 0, Ã4 = 4Ã3, and σÃ � 2Ã3. Further, these relations im-
ply that

(i) η and ξ have opposite signs,

sgn(η) = −sgn(ξ ), (13)

(ii) ξ is negative or larger than unity,

ξ � 0 or ξ � 1, (14)

where ξ = 0 is achieved for ψ0(x) = ψ1(x) and ξ = 1 is
achieved for ψ0(x)ψ1(x) = 0. No restrictions apply a priori
to δÃ. Note that in a double well, to exponential accuracy in
the overlap of the two modes in the left and right wells, we
always have ξ = 1 and η < 0.

While the value of g is restricted by physical considerations
(see introduction) on the regime of validity of our model
(g � N3/2), the situation is less transparent for the parameters
η, ξ , and δÃ. They purely depend on the spatial integral of
the mode functions. As we need to be specific in order to
perform numerical calculations, we choose the values of these
parameters in agreement with the values obtained when using
the ground and first excited state mode functions of a single
particle in a harmonic oscillator potential. In particular this
choice of mode function implies that Ã2 = 3

4 Ã1, Ã3 = 1
2 Ã1,

and Ã4 = 2Ã1 [52]. With Ã1 = 1 we obtain η = 0.625, δÃ =
0.25, and ξ = −0.6, which are the values we use in the rest
of the paper if not specified otherwise. As observed above,
these η and ξ have signs opposite to those of a double well
and |ξ | �= 1. Because we later on use the fact that the ground
state of the system is fragmented, we restrict our analysis to
a small number of particles (N = 50), because the two-mode
fragmentation degree approximately decreases as N−1/2, all
other parameters fixed [59].

C. Two-mode metrology with a Bose gas

Our metrological protocol is designed to estimate the value
of an externally imposed acceleration which generates the
Stark-type potential χ

∑N
α=1 xα in the Hamiltonian, where χ

is the force. Its field-quantized form is

Ĥacc = χκ (â†
0â1 + â†

1â0), (15)

with κ = 〈0|x̂|1〉 = 〈1|x̂|0〉 = ∫
dx ψ∗

0 (x)xψ1(x). Also, the
SU(2) representation of Ĥacc is

Ĥacc(λ) = λĴx, (16)

with λ = 2χκ . In the following λ will be the parameter we
want to estimate and is referred to as the acceleration. To
estimate the value of the acceleration, one starts by preparing
an initial state |ψ0〉, lets it evolve unitarily with Hamiltonian
Ĥsys + Ĥacc(λ), and eventually performs a measurement on
the final state in order to infer the value of λ from the mea-
surement results. To quantify the precision of the protocol, we
base our analysis on the QFI and therefore do not consider the
question of the measurement itself.

It is important at this point to discuss the differences be-
tween our system and the more frequently studied double-well
system. The typical Hamiltonian studied in the double-well
case is [14–16,45]

Ĥdw = δε Ĵz + �Ĵx + uĴ2
z , (17)

where δε is also the level difference, � is the tunneling rate,
and u is the interaction strength. In the double-well Hamilto-
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nian, the terms A3 and A4 present in the single-well Hamilto-
nian [see Eq. (4)] are negligible and A1 = A2 which means
that no renormalization of the single-particle term occurs
(δÃ = 0). On the other hand, in the single-well Hamiltonian,
there is no tunneling � due to the definite parity of the modes.
In the absence of interaction, the double-well Hamiltonian has
exactly the same form as our Hamiltonian in the presence
of the acceleration. Formally the metrological analysis would
go through identically. The crucial differences appear in the
presence of interaction. While in the double-well system
interaction produces only a nonlinear term of fixed form, in
our system we obtain a renormalization of the single-particle
term plus a nonlinear term, whose form depends on the mode
functions. Notice also that many authors [14–16,45] have been
focusing on the estimation of δε in the Hamiltonian (17). Then
the generator Ĵz commutes with the interaction Ĵ2

z . In our sys-
tem the situation is more complex as in general the interaction
term (Ĵ2

x + ξ Ĵ2
y ) does not commute with the generator (Ĵx).

In terms of protocol, different situations have been
considered within the double-well scenario. In what we call
the ideal protocol (or ideal interferometer), which requires
a full control of the parameter δε and �, no interactions are
present, and the beam splitting is performed by applying only
the Ĵx operator, while the phase accumulation is performed
by applying only the Ĵz operator (for the estimation of δε)
[42]. This is formally the exact equivalent of the optical
MZI. One can also consider a more complex dynamics, still
assuming no interactions. Then the relevant Hamiltonian for
phase accumulation is δε Ĵz + �Ĵx [45]. In general, Ĵx has
a detrimental effect in terms of precision. Finally one can
consider the full dynamics using the Hamiltonian (17) to
assess the effect of interactions [15].

Can these three different scenarios be reproduced within
our model for the estimation of an acceleration? The ideal
scenario is not actually realistic since we cannot set δε = 0
in a single potential well. It is neither realistic to consider
the regime δε � λ which would effectively realize an ideal
interferometer. It is more appropriate to consider the regime
λ � δε when we take into account that the value of λ plays
also a role when discussing the regime of validity of the
two-mode truncation: For large λ comparative to δε , we may
expect a third mode to get populated.

The noninteracting scenario is a priori accessible. There
one would prepare an initial state in the presence of interaction
and later on turn off the interaction using a Feshbach reso-
nance. However, the interacting scenario is the most realistic,
as it is the natural configuration of the system. Furthermore,
even when using a Feshbach resonance to reduce interactions,
it is not guaranteed that there is no residual interaction remain-
ing between the bosons.

III. CHANNEL QFI

We start the analysis by using the channel QFI (cQFI),
which is nothing else but the QFI optimized over the set of
initial states—that is why we also call it maximal QFI. The
interest of this figure of merit is to keep the focus on the dy-
namics, on the Hamiltonian, as the explicit state dependency
of QFI is cleared out. Indeed, the cQFI is an upper bound
to the QFI: If the cQFI is low, then, independent from the
initial state, the QFI will be low. When considering the cQFI

the main problem for achieving high quantum metrological
precision lies in the dynamics and not in the initial state.
Consequently, for an increase of the QFI the dynamics must be
modified. This makes the cQFI a figure of merit that suits our
purpose particularly well, as we want to investigate how the
dynamics affects the quantum enhancement in the precision
of the estimation of the force.

A. Hamiltonian parameter estimation

Consider a generic Hamiltonian H (λ) depending on a
parameter λ that we want to estimate. We define the cQFI as
the QFI maximized over all possible initial states [60]:

Cλ = max
|ψ0〉

Iλ(e−it Ĥ (λ)|ψ0〉), (18)

where Iλ(e−it Ĥ (λ)|ψ0〉) is the QFI for the state e−it Ĥ (λ)|ψ0〉.
The cQFI can be expressed conveniently introducing the
dynamical generator Ĥ [5,18] defined as

Ĥ = iÛ †∂λÛ , (19)

where Û is the evolution operator Û = e−it Ĥ (λ). The dynam-
ical generator has also been introduced in the context of
double-well metrology [15], and a closed form of it depending
on the spectral decomposition of the Hamiltonian has been
found [18], allowing one to infer some properties especially
in terms of time scaling (see for a detailed discussion below).
Using the dynamical generator we have

Cλ = ‖Ĥ ‖2
SN, (20)

with the seminorm ‖ • ‖SN defined as the difference between
the maximal and the minimal eigenvalues of the operator
[9,20].

It is important to notice that the cQFI is upper bounded as
follows:

Cλ � t2‖∂λĤ (λ)‖2
SN. (21)

Such an upper bound can be generalized to time-dependent
Hamiltonians [19]. The exact conditions for the saturation
of the bound have been given in [20]. In particular, these
conditions are fulfilled when the Hamiltonian commutes
with its first derivative, which is the case for a phase-shift
Hamiltonian.

B. Noninteracting system

In our model, the relevant Hamiltonian during the phase
accumulation stage is Ĥ (λ) = Ĥsys + Ĥacc(λ), and its deriva-
tive is simply Ĵx. Therefore the upper bound of the cQFI
takes the form Cλ � t2N2, which is the Heisenberg limit.
This upper bound is nothing else than the cQFI for an ideal
interferometer. Therefore with respect to the cQFI the ideal
interferometer has an optimal dynamics.

But as we discussed in the above, the ideal protocol cannot
be realized using scalar bosons in a single-well trap. There is
always the single-particle term remaining, and in the absence
of interaction the Hamiltonian is Ĥ (λ)|g=0 = λĴx − δε Ĵz, with
δε the energy difference. This configuration was thoroughly
studied in the context of the double well [45]. As it is possible
to diagonalize the Hamiltonian, we can explicitly write down
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FIG. 1. Maximal QFI (cQFI) [Eq. (22)] for a noninteracting
system (the left plot has t = 1 and the right plot has λ = 1). The
dynamics is λĴx − δε Ĵz and the parameter to be estimated is λ. The
plots illustrate the detrimental effect of the presence of the δε Ĵz term
during the phase accumulation (for large δε the cQFI becomes very
small).

the dynamical generator Ĥ |g=0 and calculate its seminorm to
obtain the maximal QFI:

Cλ = N2

{
t2λ2

λ2 + δ2
ε

+
(

2δε

λ2 + δ2
ε

)2

sin2

(
t

2

√
λ2 + δ2

ε )

)}
.

(22)

We can check in Eq. (22) that by taking δε = 0 we retrieve
the result for the ideal protocol (the Heisenberg limit). For
small δε (keeping in mind that for too low values of δε

the two-mode approximation in our model becomes unreal-
istic) the cQFI is equal to N2(t2 − μδ2

ε ) + O(δ4
ε ) with μ � 0,

demonstrating the detrimental effect of the Ĵz operator. This is
illustrated by the left-hand plot in the Fig. 1, where we see how
near the origin the cQFI decreases for increasing δε . For larger
δε values the cQFI is not a monotonous function of δε anymore
(see the black straight line corresponding to λ = 1). Such a
nonmonotonic behavior—meaning that far from the limiting
point, we do not know if it is better to increase or reduce
the detrimental term in the Hamiltonian—has been observed
previously in [17,20].

Finally an interesting point as regards the cQFI is its time
scaling. The time scaling of the cQFI is well understood in the
context of Hamiltonian parameter estimation. It is composed
by a quadratic term and an oscillating one [18]. The quadratic
term finds its origin in the parameter dependence of the
eigenvalues of the Hamiltonian while the oscillating term has
its origin in the parameter dependence of the eigenvectors.
In particular a phase-shift Hamiltonian has only a parameter
dependence on its eigenvalues, and its QFI scales as t2. In
the nonideal interferometer, the presence of the Ĵz term in
the Hamiltonian results in an oscillating time behavior of the
cQFI, as illustrated in the right-hand plot of Fig. 1.

Overall, we have thus found that the presence of the Ĵz

term in the dynamics has a detrimental effect on the precision.
As we commented above, within the two-mode truncation
one should keep δε larger than λ, and Eq. (22) demonstrates
that under this condition the cQFI is highly suppressed. The
cQFI being an upper bound to the QFI, it follows that in this
parameter regime it is not possible to fully exploit the quantum
enhancement, irrespective of the choice of the initial state. To
restore quantum enhancement, it is necessary to modify the

FIG. 2. Maximal QFI (cQFI) in the presence of interaction. The
magenta dotted line displays the upper bound N2t2 (obtained by
using an ideal interferometer). We see in the upper left plot (λ = 1
and t = 1) how a large enough interaction strength helps to achieve a
high cQFI, almost reaching its upper bound. On the upper right plot
(λ = 1, t = 1, and δε = 10) we illustrate how for larger values of δÃ

only near q = 0 the cQFI saturates its upper bound. On the bottom
plots we investigate how the behavior as a function of δε (left plot,
t = 1 and g = 20) and t (right plot, λ = 1 and δε = 10) is modified
by the presence of interactions (compare with Fig. 1).

dynamics, for example by including the two-body interaction
between the bosons.

C. Effect of interactions on the channel QFI

We will now study the effect of the interactions on the
channel QFI. Such a study has previously also been realized
in a double well for an estimation of δε [15]. Notice that
then the interaction term commutes with the generator (Ĵ2

z and
Ĵz, respectively). In the limit of large interaction the authors
of [15] showed that the cQFI saturates its upper bound. In
our case the situation is more complex as the interaction
introduces a renormalization of the single-particle energy as
well as a nonlinear term which does not commute with the
generator. As we mentioned in Sec. II B, we use the values
obtained for the harmonic oscillator mode functions for our
parameters η, ξ , and δÃ, and keep g as a free parameter.

In the upper left-hand plot in Fig. 2 we represented the
cQFI as a function of g for different values of δε . For
δε = 1 the cQFI is already high without interactions, grows
somewhat for low values of g and then decreases slightly.
The most interesting results are found with higher δε values
which, importantly, corresponds to the most realistic regime—
in terms of the acceleration—for the validity of the two-mode
truncation. Then we already know that in the absence of inter-
action the cQFI is very low. Here we see that interaction helps
to tremendously increase the cQFI, and to almost saturate the
upper bound (dotted magenta line). This result is similar to
the one obtained for the double well, although our situation is
a priori less favorable (as the nonlinear term does not com-
mute with the generator).
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In our model, the ratio η/δÃ is important as it controls
[assuming that |ξ | � O(1)] the relative weight between the
single-particle and nonlinear terms. With our choice of mode
function we have η/δÃ = 2.5, so the nonlinear term domi-
nates. To get an idea of the effect of a deviation from this ratio
we plotted in the top right of Fig. 2 the cQFI as a function of
g again for different values of δÃ. For large values of δÃ, the
cQFI reaches its upper bound for lower values of g, but then
decreases (and the larger is δÃ, the faster it decreases). The
point where the cQFI reaches its maximum corresponds to the
point were the single-particle term vanishes, q = 0, which is
achieved roughly at g equal to 2δε/δÃ. As we see from this
formula, the higher δÃ is, the lower is the optimal g.

Finally, in the bottom row of Fig. 2 we plotted the cQFI as
a function of δε (left) and t (right) to directly compare with
the noninteracting case (see Fig. 1). Regarding δε , we again
see how, near the point q = 0, the cQFI almost saturates its
upper bound (here at δε � 2.5). We also observe in which
way the dynamics can produce some nontrivial result, as for
low values of δε , increasing λ does not necessarily lead to a
higher cQFI (e.g., at δε = 5). Regarding the t dependence, we
witness how the presence of interaction reduces the oscillating
behavior, and increases the quadratic part.

IV. METROLOGY WITH GROUND STATES

We now turn our attention to a more realistic (that is,
practically realizable) scenario, and look at the performance
of the ground state of the system for the estimation of the
acceleration λ. In the spin language, the ground state |ψg(θ )〉
of the scalar bosons in a single trap is a superposition, for
sufficiently large N , of two spin coherent states:

|ψg(θ )〉 = 1√
2

(∣∣∣∣θ,
π

2

〉
+ i

∣∣∣∣θ,
3π

2

〉)
, (23)

with |θ, φ〉 a spin coherent state where θ is the azimuthal angle
and φ the polar angle [52,61,62]. In terms of bosonic algebra
we have |θ, φ〉 = 1√

N!
[ cos(θ/2)â†

0 + eiφ sin(θ/2)â†
1]N |0, 0〉

with |0, 0〉 the vacuum state. Superposition of spin coherent
states has already been studied in the context of quantum
metrology (see, for example, [63]), but not for the particular
dynamics of interacting scalar bosons in a single trap we
consider here.

Physically, the angle θ parametrizes the degree of fragmen-
tation according to F = 2 sin2(θ/2) for 0 � θ � π/2 or F =
2 − 2 sin2(θ/2) for π/2 � θ � π . The degree of fragmenta-
tion F is defined as F = 1 − |λ0 − λ1|/N where λ0 and λ1 are
the two eigenvalues of the single-particle density matrix [64].
In [52,61] the exact form of θ depending on the parameters
of the Hamiltonian (6) was calculated. However, the values
of θ obtained only using the Hamiltonian parameters and the
harmonic oscillator ground and first excited states as orbitals
are unrealistically high (cf. the fully self-consistent results
of [59]). Therefore we assume an arbitrary value of θ that
corresponds to a low degree of fragmentation, namely θ = 0.5
(F � 0.12). We also consider a coherent state obtained by
setting θ = 0 (and F = 0 as well) as a representative of an
almost vanishing degree of fragmentation.

The full protocol would thus be represented by the follow-
ing sequence.

FIG. 3. QFI for a fragmented (left) and coherent (right) initial
state as a function of the interactions strength (λ = 1, t = 1). The
magenta dotted line corresponds to the QFI for a multiplicative
Hamiltonian λĴx (ideal protocol regarding the maximal QFI), and
helps to visualize how the natural dynamics of the system improves
the estimation of the acceleration.

(1) Prepare the system in its ground state.
(2) Turn off the interaction during a time π/(2δε ) (beam

splitting).
(3) Apply the acceleration and tune the interaction to the

value g, during a time t .
(4) Apply the beam splitter again and perform the measure-

ment.
As we use the QFI, the last step is not relevant in our

analysis. Formally we are interested in the calculation of the
QFI of the state e−it (Ĥsys+Ĥacc(λ))e−i π

2 Ĵz |ψg(θ )〉. The QFI can be
calculated using the dynamical generator:

Iλ = 4(〈ψ̃g(θ )|Ĥ 2|ψ̃g(θ )〉 − 〈ψ̃g(θ )|Ĥ |ψ̃g(θ )〉2), (24)

with |ψ̃g(θ )〉 = e−i π
2 Ĵz |ψg(θ )〉.

We represented in Fig. 3 the QFI for both initial states as a
function of the interaction strength. Regarding the fragmented
state (left plot) the global behavior is similar to the behavior
of the cQFI (compare plot in top left, Fig. 2). Still, we
see that the maximum QFI achieved here is only half of
the maximal cQFI. Moreover, the QFI reaches high values
only for relatively large interaction strength: For δε = 10 we
need g � 100 to reach the same order of magnitude as the
maximal cQFI. Notice that at g = 200 we are still in the
expected regime of validity of the two-mode approximation;
see Sec. II A. In this plot, we also represented the QFI
for an ideal interferometer (dotted magenta line). We see
that owing to the presence of interaction in the dynamics
the QFI can reach values roughly two times higher than
the one obtained for an ideal interferometer with the same
state.

On the right-hand plot we represented the QFI for the
coherent state. There the behavior is much more erratic,
especially for δε = 1 and δε = 5. For δε = 10, we retrieve
a behavior similar to what we already observed, meaning
that at a given threshold the QFI increases steeply and then
reaches what resembles a plateau. Importantly, we see that at
its maximum the QFI is still one order of magnitude lower
than the one obtained for the fragmented state. However, if
we compare with the QFI obtained in an ideal interferometer
(magenta dotted line), we see that the relative gain is high,
reaching a factor six for values of g � 100.
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V. CONCLUSION

We have investigated the possibility of estimating an ex-
ternal force applied to scalar bosons in a single potential
well. Our analysis, using the model assumption of a two-
mode truncation, which is expected to be valid for weak to
intermediate interaction strength, suggests a novel way to
use cold atoms to perform quantum-enhanced metrology. For
scalar bosons in a single trap the splitting process into two
modes is solely due to the interaction between the elementary
constituents of the scalar Bose gas, and not due to external
splitting (double well) or internal splitting (spinor gas).

In terms of metrology, the crucial difference to other two-
mode models lies in the dynamics. In particular, the presence
of interactions in our system leads in the Hamiltonian to both
a renormalization of the single-particle term as well as to a
nonlinearity whose detailed form depends on the mode func-
tions. Therefore, we have started by using the QFI maximized
over the initial state (cQFI) to characterize the system. We
showed analytically that in the absence of interaction and
in the regime where the two-mode truncation is expected to
work (small accelerations), the cQFI—and therefore the QFI
based on any initial state—is very far from its optimal value.
We then verified numerically that the presence of interaction
helps to increase the QFI to a large degree. This demonstrates,
independently from the initial many-body state, the necessity

of finite interactions to benefit from a substantial quantum
enhancement within our setup.

In a second part, we focused on realistic quantum many-
body ground states. Namely we considered a fragmented
state [a superposition of two spin-coherent states in SU(2)
language] and a coherent state, two states that can in principle
be obtained as ground states of our system. For both states, in-
creasing the QFI requires a larger value of interaction strength,
which is, however, still weak enough such that the two-mode
truncation is expected to approximate the ground state. With
the coherent state, the highest QFI observed is roughly equal
to half the cQFI, while for the coherent state the ratio is closer
to one tenth.

The present results, which should be complemented by a
fully self-consistent many-body approach, make a significant
step towards exploring the possibility of quantum-enhanced
estimation of an external force using scalar bosons in a single
potential well.
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