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Experimental realization of a momentum-space quantum walk
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We report on a discrete-time quantum walk that uses the momentum of ultra-cold rubidium-87 atoms as
the walk space and two internal atomic states as the coin degree of freedom. Each step of the walk consists
of a coin toss (a microwave pulse) followed by a unitary shift operator (a resonant ratchet pulse). We carry
out a comprehensive experimental study on the effects of various parameters, including the strength of the shift
operation, coin parameters, noise, and initialization of the system on the behavior of the walk. The walk dynamics
can be well controlled in our experiment; potential applications include atom interferometry and engineering
asymmetric walks.
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I. INTRODUCTION

The idea that quantum computational devices can be more
powerful than their classical versions has been the incentive
for research in the last three decades to adopt classical al-
gorithms in quantum computation [1–4]. In this respect, the
quantum walk (QW) has been a workhorse in devising new
quantum algorithms that are more effective than their classical
counterparts [5]. This includes, for instance, an algorithm
which can search an unsorted database quadratically faster
than any classical version [6], or a quantum walk on a hy-
percube with exponentially faster hitting time as compared to
a classical random walk [7–9].

QWs are, in principle, the extension of the idea of classical
random walks in quantum mechanics, describing the propa-
gation of quantum particles on periodic potentials [10–12].
The QW we present here is an adoption of the discrete-
time classical walk into the quantum regime, and hence it
consists of two degrees of freedom: a space in which the
walk takes place, and a “coin” which selects the path of the
system through the walker’s space [10,12,13]. While the basic
procedure for producing a QW is outwardly analogous to
its classical counterpart, the propagation dynamics are totally
different.

Unlike in classical walks, a quantum walker can be in a
superposition of two (or more) states that can take all possible
paths through the walk space simultaneously, see Fig. 1. Thus,
there exists an interference between the multitude of paths
and an entanglement between the two degrees of freedom in
a QW [14,15], leading to faster propagation and enhanced
sensitivity to initial conditions [16]. These features have
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raised considerable interest in using QWs as building blocks
in probabilistic algorithms for universal quantum comput-
ing [5,17–22] and for quantum information processing [9,23].

In contrast to several other QWs experimentally imple-
mented in an assortment of walk spaces with a variety of
possible walkers species [4,16,24–37], we realize our walks
in momentum space with a spinor Bose-Einstein condensate
(BEC) of 87Rb atoms. We demonstrate one of the character-
istic signatures of a QW, with peaks in the walk distribution
which propagate ballistically away from the origin, leading
to a standard deviation of the walk distribution growing
proportionally to the number of steps as the walk proceeds.
This feature proves the quantum nature of the walk as com-
pared to a classical diffusive walk [9,12]. We conduct several
experiments to investigate the effects of various parameters
on the dynamics of our discrete-time QW. This includes
looking at the effects of the kick strength responsible for the
shift operation, coin choice, phase adjustment, and the BEC
characteristics on the behavior of this walk. By introducing
an engineered noise to the system, we also show how the
classical effects start to emerge and dominate the walk toward
the expected classical distribution.

An advantage of implementing a QW in momentum space
is that one can have a robust control on both internal and
external degrees of freedom of the walker. This stability arises
naturally from the creation and control of a BEC, which is
typically done in momentum space [38,39]. In our system
these degrees of freedom are atomic hyperfine states and the
center-of-mass momentum of the atoms in a pulsed optical
lattice. By manipulating either degree of freedom we show
how the walk can be steered or even reversed as desired.

The paper is organized as follows: The next two sections
briefly review the theory of the discrete-time QWs (Sec. II)
and details on their experimental implementation (Sec. III).
Section IV presents our results, with all the aspects of control
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FIG. 1. Sketch of the difference between a classical Galton board
walk (left) and its quantum version (right). In the latter all paths
interfere to give the final distribution at the end of the walk that
typically shows two characteristic peaks moving ballistically with
the number from the center [12].

on the QW given in the corresponding subsections. Section V
concludes the paper.

II. DISCRETE-TIME QUANTUM WALKS IN
MOMENTUM SPACE

Each step of our QW, Ûstep = T̂M̂, consists of a coin
operator M̂ which produces a superposition of two internal
states, followed by a unitary shift operator T̂, which entangles
the internal and external degrees of freedom. We realize
the coin operator using resonant microwave (MW) radiation
that addresses the walker’s internal degree of freedom, i.e.,
the two ground hyperfine levels of the 87Rb atoms. These
two levels are the F = 1, mF = 0, and the F = 2, mF = 0,
states, hereafter denoted by |1〉 and |2〉 respectively. The coin
operator is represented by the unitary rotation matrix

M̂(α, χ ) =
[

cos (α/2) e−iχ sin (α/2)
−eiχ sin (α/2) cos (α/2)

]
, (1)

in which α and χ are the polar and azimuthal precessions on
the Bloch sphere. A 50:50 coin operation corresponds to a
π/2 (α = π/2) pulse of the MWs. To make the step direction
of our walk contingent upon the result of each coin toss, we
apply the unitary shift operator

T̂ = exp (iqθ̂ )|1〉〈1| + exp (−iqθ̂ )|2〉〈2|, (2)

which shifts the momentum by ±q depending on whether the
atom resides in the internal state |1〉 or |2〉. This produces
a strong mixing between internal and external degrees of
freedom at each step of the walk. In Eq. (2), q is an integer
in units of two-photon recoils h̄G (G = 2π/λG with λG being
the spatial period of the standing wave implementing the walk
space in our setup), and θ̂ = x̂ mod (2π ) where x̂ is the
dimensionless position operator. In a standard walk, q = 1,
corresponding to nearest-neighbor coupling in momentum
space. This gives the ideal shift operator in matrix representa-
tion as

T̂ =
[|n + 1〉〈n| 0

0 |n − 1〉〈n|
]
, (3)

which can shift the external (momentum) eigenstates
{|n〉}, n ∈ Z by +1 or −1 unit when applied on either |1〉 or
|2〉 internal state.

Our shift operator is a quantum resonant ratchet [40–42]
based on the atom-optics kicked rotor (AOKR), which has
been used extensively in quantum chaos experiments (see, for

example, [43–45]). AOKR experiments work with ultra-cold
atoms subject to a series of short pulses of a 1D off-resonant
optical lattice (standing wave). In contrast to previous work,
here we adjust the frequency of our lattice laser to be halfway
between the |1〉 and |2〉 levels at the ground state to the
52P3/2, F = 3 level at the excited state. Thus these internal
states see a lattice detuning of equal size but with opposite
signs. Using dimensionless variables, the dynamics of the
AOKR are described by the Hamiltonian [43],

Ĥ (x̂, p̂x, t ) = p̂2
x/2 + k[1 + cos(x̂)]

∑
j∈Z

δ(t − jτ ), (4)

where j counts the number of pulses, t and τ are the di-
mensionless time and pulse period, and p̂x is the rescaled
momentum operator. The pulse strength is k = 	2τp/
, in
which τp(�τ ) is the pulse length, 	 is the Rabi frequency,
and 
 is the detuning of the laser light from the atomic transi-
tion. The factor 1 + cos(x̂) represents the spatial periodicity
of the potential due to the interference of the lattice laser
beams. Using Bloch theory [46], the dynamics of an AOKR
is described in the Raman-Nath regime [47] by a one-period
evolution operator called the Floquet operator [45]

Û p̂x,k = Û f Ûk = e−iτ p̂2
x/2e−ik[1+cos(θ̂ )] . (5)

Here, Û f signifies the free evolution between two pulses, and

Ûk = e−ik
∑

m

(−i)mexp(−imθ̂ )Jm(k), (6)

with J’s being Bessel functions of the first kind, represents
the “kick” by each pulse that leads to a symmetric diffraction
of the wave function in the space spanned by the momentum
eigenstates [48]. The prefactor e−ik , which originates from the
dc component of the lattice potential, introduces a “global”
phase to the atoms at each kick [49,50]. As will be shown
later, we can compensate for this phase in our experiments.

The formula from Eq. (6) shows that in our walk various
momentum classes are, in principle, coupled to each other
in one step or kick. By carefully choosing the argument
of the Bessel function (the kick strength), these couplings
can be controlled to some extent. The result is an effective
nearest-neighbor coupling in the momentum classes, or a
diffraction mainly into the first-order peaks when the kick
strength is approximately 1. From previous studies [15,51]
and our experimental results to be shown below we understand
that the values for realizing a walk with ballistically moving
peaks, and hence a standard deviation proportional to the
number of steps, lie in the range k ∈ [1.4, 2]. The optimal
value for maximized nearest-neighbor coupling and most
similarity with a standard quantum walk is k ≈ 1.5, as then the
first-order diffraction starts to dominate the zeroth order, while
the second order still remains relatively weak. A sketch of
the diffraction into the different momentum classes by suc-
cessive applications of the kick is found in Fig. 2.

While the AOKR itself can also produce ballistic ex-
pansion, the quantum resonant motion in its case would be
symmetric and equal for both internal states [45,48,52]. We
implement one of the requirements of a discrete-time QW
by a quantum resonance ratchet effect [40–42], such that the
two internal states move in opposite directions during the kick
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FIG. 2. Sketch of diffraction into various momentum classes
by the application of two successive optical lattice kicks from an
initial state consisting of a single momentum state. The various lines
represent the different couplings produced when k is changed.

evolution. The use of two internal degrees of freedom in the
AOKR evolution was previously proposed in Refs. [53,54]
and also in the context of QWs [55,56]. However, as will
be demonstrated in Sec. IV, our implementation gives ex-
ceptional experimental control over the initial conditions and
system parameters. To realize the simplest quantum resonant
ratchet, we should meet the quantum resonance condition
so that the effect of the free evolution due to the kinetic
energy of the atoms (i.e., Û f in the Floquet operator) [45] is
eliminated. This can be seen in the AOKR as the Talbot effect
(in the time domain) for atomic matter waves diffracted from
a phase grating induced by a pulsed optical lattice [45]. We
fulfill this condition by choosing τ = 4π (Talbot time) for our
dimensionless pulse period, which is also experimentally long
enough to allow the delivery of the coin-toss MW radiation
between the ratchet pulses.

The quantum resonant ratchet effect requires breaking
the spatial-temporal symmetry of the problem [44,45,57,58]
to direct the dynamics of the AOKR in momentum space
accordingly. Experimentally, this is achieved by the choice
of an initial state 1/

√
2(|n = 0〉 + eiφ|n = 1〉) created by a

long pulse of the off-resonant standing wave (Bragg pulse)
on the original BEC (|n = 0〉) [44,59]. Applying the AOKR
to this state results in a change in the average momentum by
an amount 
〈p̂〉 = −k sin (φ)/2 after each pulse [45]. The
key point to understanding our walk is that, since k ∝ 1/
,
the two internal states undergo ratchets in opposite directions
(the detuning has opposite signs for each state). Thus by
choosing φ = π/2 and |k|∼1.5, one can increase or decrease
(depending on the sign of k) the average momentum of either
internal state at each step of the ratchet by one unit.

III. EXPERIMENTAL PROCEDURE

To conduct the QW experiments, a BEC of about 70 000
87Rb atoms in the 52S1/2, F = 1, mF = 0 state is created
by evaporative cooling of optically trapped atoms in a fo-
cused CO2 laser beam. This procedure, including details of
our magneto-optical trap, optical molasses, and evaporative
cooling, is described elsewhere [60]. A schematic of our

FIG. 3. (a) Schematic of our experiment for the realization of
a QW in momentum space, adapted from [15]. The optical lattice
is applied periodically in a quantum resonance ratchet scheme to
implement the momentum shifts. The internal states |1〉 and |2〉 of
the 87Rb BEC atoms are addressed by ∼6.8 GHz MW pulses out
of a C-band horn antenna. The standing wave was created by two
laser beams with a wavelength of ∼ 780 nm, ∼ 3.4 GHz red detuned
from the 52S1/2, F = 1 → 52S3/2, F ′ = 3 D2 transition, to address
the internal states with equal |k|. (b) Timing scheme of the Bragg,
ratchet, and MW pulses in our QW experiments. Duration of the
Bragg pulse and the time between ratchet pulses are adjusted to be
103 μs. This (Talbot) time satisfies the quantum resonance ratchet
conditions in our experiments and is also sufficiently long to allow
the application of π/2 MW pulses.

experimental setup is shown in Fig. 3(a). Immediately after
the BEC is released from the dipole trap, the QW sequence
is applied on the atoms as shown in Fig. 3(b). To carry
out a standard walk with j steps, we apply the sequence
(Ûstep) j = [T̂M̂(π/2,−π/2)] j−1[T̂M̂(π/2, π )] to the initial
state |ψ0〉 = |1〉 ⊗ 1/

√
2(|n = 0〉 + i|n = 1〉) prepared by a

Bragg pulse. Note that in the first step, we use a different
coin toss, the so-called Hadamard gate, to prepare the internal
state as M̂(π/2, π )|1〉 = 1√

2
(|1〉 + |2〉) which accommodates

a symmetric walk. We repeat the entire process, from cre-
ating a new BEC to applying as many step operators as
necessary to implement each step of the walk. After each
realization, the atomic distribution of the corresponding step
is absorption imaged in a time-of-flight scheme, and finally all
images are programmatically attached side-by-side to obtain
the entire walk pattern. Our experimental observable is the
momentum distribution, represented by the atomic population
of momentum states P(n) that we obtain from the walk
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FIG. 4. Experimental momentum distributions of the standard
QWs with ratchet strengths |k| = 1.2 (a), 1.45 (b), and 1.8 (c). Each
time (kick No.) represents one step of the walk, i.e., one realization
of the experiment. The case |k| = 1.45 best matches the ideal QW by
coupling neighboring momentum states. Panel (d) shows experimen-
tal (E.) and simulated (S.) mean energy growth of the walk vs kicking
strength. The walk with |k| = 1.8 has only been performed up to
10 steps because its width is larger than the momentum detection
window of the imaging system.

images. Thus for an arbitrary state of the full system |ψ ( j)〉 =∑
n cn( j)|n〉, after the jth step of the walk, we measure the

momentum distribution as P(n, j) = P|1〉(n, j) + P|2〉(n, j) =
|cn,1( j)|2 + |cn,2( j)|2, which contains the population distri-
butions of both internal states. Experimentally, we capture
both internal states in a single image by applying a short
repump laser pulse to transfer the atoms at state |1〉 to state
|2〉 before the imaging pulse. In principle, in this type of
experiment both internal states could be measured indepen-
dently, giving the two momentum distributions independently.
This option may be interesting from a measurement the-
oretical perspective, to detect topological phases [61], and
in practice to give more options for a directional steering
of the walk.

IV. RESULTS AND DISCUSSION

Figures 4(a)–4(c) show experimental results for the mo-
mentum distribution of the quantum walks realized with three
different kick or ratchet strengths |k| = 1.2, 1.45, and 1.8.
These values are, in essence, the strengths of the AOKR,
adjusted by varying the intensity of the optical standing
wave. As can be seen, the characteristic standard deviation
of the walk (spacing between the maxima) grows linearly
with time (number of steps) for all three cases. However,
as discussed in Sec. II, the case |k| = 1.45 best matches the
ideal QW [with q = 1 in Eq. (2)] by coupling neighboring

momentum states. Although the walk with |k| = 1.2 is as-
sociated with less fluctuation in the momentum distribution
and hence in the mean energy [see Fig. 4(d)], the growth
rate of these parameters are the lowest in this walk. On the
other hand, the case |k| = 1.8 shows a faster splitting of the
walk peaks and hence a faster growth of momentum and
energy. However, there are hints that in this case the walk
has begun to suffer from decoherence and dephasing induced
by the more intense light [note the saturation of the energy
for this case in Fig. 4(d)]. Thus, we employ the strength
|k| = 1.45 for investigating different aspects of our QWs in
the subsequent experiments. We also draw attention to the
fact that, regardless of the ratchet strength, all three walks
have some diffusion between the diverging momentum peaks.
However, since our shift operator works based on the quantum
ratchet, we should be able to achieve walks with less diffusion
through the manipulation of the initial state; by increasing the
number of components contributing to the initial momentum
state, we can achieve narrower spatial wave functions that
result in “cleaner” ratchets [44,59] and hence “purer” walk
distributions.

A. Effects of quasimomentum

In all of our QW images, there appears to be an “amor-
phous” population signal about the center of the momentum
distribution. This is due to the near-resonant quasimomentum
and a residual atomic thermal cloud that remains after the
BEC is formed. In fact, a nonresonant quasimomentum can
follow the resonant AOKR only for a few steps until the
dephasing induced by the offset from the resonant values
becomes strong enough to freeze its distribution into a broad
Gaussian which is no longer affected by the ratchet pro-
cess [15,48,49]. By changing the evaporation sequence, we
created atomic populations with varying amounts of thermal
cloud. Figure 5 shows the adverse effects of increasing the
quasimomentum on the momentum distribution [Figs. 5(a)
and 5(b)] and the corresponding mean energy of the walk
[Fig. 5(d)]. The thermal cloud includes a wide range of
quasimomenta which are mostly off-resonant and thus do
not respond to the optical pulses. We checked this point
by applying a strong Bragg pulse on the BEC with var-
ious thermal cloud contributions. As shown in Fig. 5(c),
the Bragg pulse can entirely transform the BEC from the
momentum state |n = 0〉 to |n = 1〉, but the thermal cloud
does not contribute to the Bragg diffraction and remains
unaffected.

Realizing the highest quality of a QW might encourage one
to use a BEC with the minimum achievable quasimomentum
and thermal cloud. However, this raises another difficulty.
Experimentally, the walk is always associated with a gradual
reduction of atomic population. Thus, using a BEC with
these parameters minimized (which can be achieved only by
significantly reducing the BEC population), results in a lack
of visibility on the detection system and adversely affects the
signal-to-noise ratio of the images. This trade-off limited us
to realizing the optimum QWs with a δβFWHM = 0.025 h̄G
quasimomentum, corresponding to a 5–10% thermal cloud of
the atomic population.
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FIG. 5. Comparison of two standard QWs implemented using
the BECs with different quasimomenta, δβFWHM = 0.025 h̄G (a) and
0.04 h̄G (b). The walk initiated with a larger quasimomentum under-
goes a dephasing that prevents a significant fraction of the atomic
population from being driven by the walk. Panel (c) demonstrates
the effects of a strong Bragg pulse applied to an atomic population
with different BEC/thermal cloud ratios. This pulse can almost
entirely change the momentum state of the BEC from |n = 0〉 to
|n = 1〉, whereas the thermal cloud does not undergo this transition
and remains mostly unaffected. Panel (d) shows the slower growth
of the mean energy of the walk initiated with a BEC with larger
quasimomentum.

B. Controlling the microwave phase

Another experimental concern that, if not addressed, can
adversely affect our QWs is a “global” phase, introduced by
the dc component of the kicking potential Ûk = e−ik[1+cos(θ̂ )].
This is because the prefactor e−ik , corresponding to this phase,
can propagate through the quantum ratchet derivations [49]
and consequently alter the ideal shift operator in Eq. (3) as

T̂ =
[

e−ik 0
0 e+ik

][|n + 1〉〈n| 0
0 |n − 1〉〈n|

]
. (7)

This additional matrix imposes a phase difference of 
φ = 2k
between the internal states at each application of the ratchet. If
this phase difference is not compensated for properly at each
step, it can adversely affect the dynamics of the walk. Experi-
mentally, we address this by introducing compensation phases
to each coin-toss MW pulse as M̂(π/2,−π/2 + φc). Figure 6
shows the momentum distributions of a QW at the 2nd and
5th steps when this compensation phase is scanned over a 2π

range. The periodic transfer of the weight of the walk from
one side to the other by varying the φc is quite clear in these
figures. As one would expect, the symmetry is achieved only
when the phases φc = 2k and φc = 2k + π (rad) are applied
on the MW pulses to properly cancel the global phase. Thus,
effectively, we use the MW pulses M̂(π/2,−π/2 + 2k) to
maintain the quality of the walk at each step.

FIG. 6. Scanning the phase φc of the MW pulses to verify the
exact values required for suppressing the global phase effect due
to the ratchet potentials. Panels (a) and (b) demonstrate the 2nd-
and 5th-step momentum distributions vs φc and panel (c) shows
the variation of their corresponding mean momenta. The oscillation
of the weight of the walk by varying the phase is quite clear in
these figures. As expected, the symmetry (mean momentum ≈ 0.5)
is achieved only at φc = 2k and φc = 2k + π (rad).

C. Initializing the internal state

In addition, the phase arrangement of the MW pulses used
for initializing the walk (gate) and mixing the internal states at
subsequent steps (coins) can affect the symmetry of the walk.
This is due to the fact that the direction of the shifts in the
external state is entangled to the walker’s internal state, deter-
mined by a MW pulse at each step. A standard (symmetric)
walk can only be realized with the choice of gate and coin
operators with phase differences of odd multiples of π/2, e.g.,
M̂(π/2, π ) and M̂(π/2,−π/2) for the Hadamard gate and
coin operators. One can verify this by successively applying
these operators on an initial state |�0〉 = |1〉 ⊗ |n = 0〉 for a
few steps of the sequence mentioned in Sec. III (for simplicity
we assume that the ratchet can still be achieved with one mo-
mentum state |n = 0〉). Figure 7(a) shows the symmetry in the
atomic population of the momentum states P(n), obtained for
the first five steps of this walk. However, the symmetry starts
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FIG. 7. Population distributions of the first five steps of a QW
when a gate operator different from (a) or similar to (b) the coin
operators is used to initialize the walk; see main text for details. The
walk starts to be asymmetric at the third step when the latter case is
implemented.

to break quickly in the case of applying other configurations of
MW pulses, e.g., using similar M̂(π/2,−π/2) pulses for both
gate and coin operations [see Fig. 7(b)]. Figure 8 compares
the experimental QW patterns obtained for these two different
arrangements of the gate and coin pulses.

D. Quantum-to-classical transition

The transition to a classical walk is one of the interesting
features that we are able to demonstrate in our experiments
thanks to the relatively large range of our walk steps. We in-
vestigate this feature by randomizing the mixing between the
two internal states during each coin toss by adding a uniformly
distributed random phase to the MW pulses. Figures 9(a)–
9(c) demonstrate the “snapshots” of the quantum-to-classical
transition of our walk, realized at different amounts of coin-
phase randomness; Fig. 9(a) represents the previously intro-

FIG. 8. Experimental QWs implemented with dissimilar (a) and
similar (b) gate and coin operators. The walk becomes asymmet-
ric in the latter, leading to an increasing mean momentum as
shown in (c).

FIG. 9. Transition of our QW to classical as a result of a noise
enhancement. This noise takes the form of a controllable random-
ization of the phase of each MW pulse. The standard QW (a) was
carried out with keeping the coin phase fixed at χ = π/2. Signatures
of a classical walk start to appear at 8% phase randomness (b), and
the walk becomes almost completely classical when the phase is
randomized by 20% (c). The corresponding mean energy variations
(d) reveal a slowdown in the propagation of the walk as a result of
this quantum-to-classical transition.

duced standard QW [Fig. 3(b)] with the characteristic stan-
dard deviation of the momentum distribution ∝ j. This was
conducted by keeping the coin phases fixed at χ = −π/2.
The QW ballistic peaks become less prominent after a few
steps by adding as little as 8% randomness, Fig. 9(b). The
disappearance of these peaks, along with the emergence of a
Gaussian distribution with the characteristic standard devia-
tion ∝√

j, is a manifestation of a classical walk. The walk
becomes dominantly classical (Gaussian with no QW peaks)
at 20% phase randomness [Fig. 9(c)] and fully classical by
gradually increasing the noise within a full 2π (not shown
here). Figure 9(d) shows the behavior of the mean energy of
these walks. As can be seen, with larger amounts of phase
randomness the mean energy of the system grows at a slower
rate and displays characteristics of a classical walk.

E. Biased walks

We are also able to steer our QWs by controllably biasing
either coin or shift operators, i.e., by manipulating either inter-
nal or external degrees of freedom. In the former, we realize
the biased coins (BCs) by altering the power of the MW
pulses from the π/2 scheme to obtain unequal superpositions
of internal states. This effectively breaks the balance of our
standard gate and coin operators by introducing a bias factor
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FIG. 10. Quantum walks steered using the BCs with ρ = 0.7 and
|k| = 1.45 (a), and BRs with k1 = −1.7, k2 = +1.0 (b). The former
produces an unequal superposition of internal states at each coin
toss, and the latter applies unequal shifts on the momentum of each
internal state. Panel (c) shows the experimental (E.) and simulated
(S.) variations of the mean momenta of these walks. Compare these
steered walks and their mean momenta to those of a symmetric walk
[Figs. 8(a) and 8(c) for dissimilar gate and coins] implemented with
ρ = 0.5 and k1 = −1.45, k2 = +1.45.

ρ such that [49]

M̂ρ (π ) =
( √

ρ −√
1 − ρ√

1 − ρ
√

ρ

)
,

M̂ρ (−π/2) =
( √

ρ i
√

1 − ρ

i
√

1 − ρ
√

ρ

)
. (8)

Applying these biased operators at each step constantly as-
signs a higher population to one internal state than the other.
Figure 10(a) demonstrates the experimental results of a BC
walk implemented with ρ = 0.7 [compare to Fig. 8(a) for
an unbiased walk realized with ρ = 0.5 and the same ratchet
strength |k| = 1.45]. In the second form of the steered walks,
a biased ratchet (BR) is applied to realize nonsymmetric walk
steps. We achieve the BR by detuning the kicking laser so
that the laser frequency is no longer halfway between the
ground-state hyperfine levels. This shift in the laser frequency
results in unequal ratchet potentials addressing each state [see
definition of k around Eq. (4)] and generalizes the original
shift operator T̂ = e−ik cos(θ̂ )σz to [15]

T̂ = exp

[
−i cos(θ̂ )

(
k1 0
0 k2

)]
, (9)

where the bias is controlled by k2/k1. Figure 10(b) shows a BR
steered walk realized with the kicking strengths k1 = −1.7,
k2 = +1.0. The corresponding mean momenta of these BC
and BR steered walks are also demonstrated in Fig. 10(c),

FIG. 11. Experimental momentum (a) and population (b) distri-
butions of a QW reversed at the 8th step. Panel (c) shows the variation
of the mean energy corresponding to this reversal. As can be seen, the
energy does not completely return to its original value. The ability to
recover the initial state is experimentally limited by the contributions
of various nonresonant quasimomenta that are present in the thermal
cloud (and to a lesser extent the BEC).

displaying their apparent growth compared to the unvarying
momentum of the symmetric walk shown in Fig. 8(c). In-
tuitively, by adjusting the coin and ratchet bias factors, one
can engineer the direction and speed of the walk as desired or
compensate for any probable biases in the walk.

F. Time reversal

Reversibility is another aspect of our momentum-based
QWs. This feature is a consequence of the unitary nature
of the walk and the entanglement between the internal and
external degrees of freedom which can be achieved only
in quantum systems. We use these properties to focus the
diverging momentum currents of our QWs and retrieve the
initial state of the system. Experimentally, after j walk steps
Ûstep = T̂M̂ are taken, we apply their Hermitian conjugate
Û†

step = M̂†T̂† for an additional j steps. These conjugates

can themselves be realized as M̂† = M̂(π/2, π/2) and T̂† =
M̂(π, π/2)T̂M̂(π,−π/2), so when the intermediate M̂ ma-
trices multiply for successive steps, the reversal steps simplify
to Û†

step = T̂M̂(π/2, π/2) after a T̂M̂(π,−π/2) “reflection.”
Figure 11 shows our experimental QW reversal with the
convergence of the momentum (a) and population (b) distribu-
tions, leading to a downturn in the mean energy of the system
(c). One potential application of these “driven” walks [62,63]
is in quantum algorithms, e.g., searches of marked momen-
tum states, as in [64] but by adjusting the coin degree of
freedom instead of the lattice. One could also make use of
this reversibility in atom interferometry [65]. The interference
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signal of the recombining momentum currents might be used
to sense potentials affecting the phase of the system [65–67].

V. CONCLUSIONS

We have conducted a parametric study on a momentum-
based QW with a 87Rb BEC. Our walk was realized using a
quantum ratchet derived from an AOKR, and the coins were
implemented by manipulating the two ground hyperfine levels
of 87Rb with MW pulses. We elaborated distinct features of
our QWs resulting from the interference and entanglement in
their propagation dynamics. These walks are typically mani-
fested by a pair of ballistically splitting peaks, differentiating
them from a classical walk with a Gaussian distribution.

Our independent access to both internal and external de-
grees of freedom allows us to regulate the dynamics of our
QWs. We showed how the speed of our walks can be adjusted
by tuning the strength of the quantum ratchet in our shift op-
erators. We also demonstrated how the directionality of these
walks can be controlled in different ways, e.g., by manipu-
lating the superposition of the internal states (BC), changing
the relative detunings from the hyperfine levels (BR), or by
adjusting the phase of the gate or coin pulses accordingly. This
control feature can be used for compensating probable biases
in the dynamics of the quantum transport.

In addition, by introducing a controllable noise to the phase
of the system, we highlighted different stages of a quantum-
to-classical transition in our walks. We also investigated the
reversibility, as a direct consequence of the unitary nature
of the QWs, and showed that our walks can be reversed
at any step by applying the conjugates of the steps taken.
This should allow the retrieval of the quantum information
encoded in previous steps or even the recovery of the initial
state of the system. One can also use this feature in atom
interferometry [66,67] thanks to the high sensitivity of the
walk reversal to phases. Furthermore, we demonstrated how
the qualitative aspects of our QWs can be affected by the
global phase, introduced by the pulsed optical lattices, and
fractions of the thermal cloud and various quasimomenta
contributing to the BEC.

Since we implement our QWs using a BEC, our study
could be extended to many-body walks [16,68] by taking
atom-atom interactions into account. This is interesting be-
cause a typical short-range contact interaction for BECs will
act long range in momentum space [69,70] offering new
aspects in quantum walks of interacting particles.

In our experiment, because of the coin mixing, the external
and internal degrees of freedom are effectively coupled. Such
effective spin-orbital or in our context better spin-momentum
coupling offers an interesting playground for testing topologi-
cal properties [27,35–37,61,71–73]. For the future, it should
be possible to translate the proposal from Ref. [61] into a
feasible experiment, and to test the impact of decoherence
by spontaneous emission [74] and other noise sources such
as lattice vibrations on the quantum walk and the stability of
topological phases [61].

Another future direction for this work is the creation of
multidimensional QWs [36,37,64,75,76]. The obvious way
to do this would be by using a multidimensional opti-
cal lattice produced by laser fields propagating in different
spatial dimensions. However, a tantalizing possibility with
our momentum-based walks would be to employ a one-
dimensional lattice with multiple spatial frequency compo-
nents. In this case, each component would serve as the basis
for its own momentum shift operator. As long as the spatial
frequencies were not rational multiples of one another, each
would produce its own distinct degree of freedom. Impor-
tantly, with a thoughtful choice of the lattices dimensions,
it should still be possible to maintain quantum resonance
conditions for all the spatial frequencies since the Talbot time
scales inversely with the square of spatial frequency [77].
For example, two lattices with spatial frequencies that are
different by a factor of

√
2 (an irrational number) produce two

independent degrees of freedom and have Talbot times that are
a factor of 2 (a rational number) apart.
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