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Determination of Chern numbers with a phase-retrieval algorithm
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Ultracold atoms in optical lattices form a clean quantum simulator platform which can be utilized to examine
topological phenomena and test exotic topological materials. Here we propose an experimental scheme to
measure the Chern numbers of two-dimensional multiband topological insulators with bosonic atoms. We show
how to extract the topological invariants out of a sequence of time-of-flight images by applying a phase-retrieval
algorithm to matter waves. We illustrate advantages of using bosonic atoms as well as efficiency and robustness
of the method with two prominent examples: the Harper-Hofstadter model with an arbitrary commensurate
magnetic flux and the Haldane model on a brick-wall lattice.
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I. INTRODUCTION

Since Feynman presented new perspectives of simulating
physics [1], there has been an outburst of works devoted
to quantum simulators [2–4], which are relatively simple
and controllable quantum systems that can experimentally
emulate the behavior of other quantum systems or phenom-
ena. A pronounced advantage of quantum simulators is most
apparent when a targeted system is too difficult to handle for
classical computers or when it is inaccessible experimentally.

Photonic devices [5], trapped ions [6], and ultracold atoms
[7–9] are considered as the most promising quantum simulator
platforms. In particular, ultracold atoms in optical lattices
constitute clean feasible systems that are free from lattice
defects, phonon vibrations, and electron-electron interactions.
As such, these systems seem to be especially well suited to
mimic miscellaneous condensed matter phenomena [10–12].
By introducing fast periodic lattice modulations such as lattice
shaking [13] or laser-assisted tunneling [14] (for a review,
see [15]) it is possible to study classical magnetism [16,17]
and create synthetic magnetic fields for neutral atoms [18–22]
and successively design non-Abelian gauge potentials [23,24],
quantum simulators of lattice gauge theories [25–35], and
topologically nontrivial quantum systems [14,36–42].

The topologically protected edge conductivity in quantum
Hall systems and in topological insulators is a consequence
of topological properties of energy bands [43–45]. As in
the celebrated Harper-Hofstadter model [46,47] and the Hal-
dane model [48] (for experiments in ultracold atoms, see
[14,36–38]), the energy bands are characterized by a nonzero
value of topologically invariant Chern numbers. There are a
few proposals on how to measure the Chern numbers in a two-
dimensional (2D) ultracold quantum system, including the
center-of-mass motion [37,49–51] and direct time-of-flight
(TOF) measurements with fermionic atoms [52–54] (see also
other relevant works in strip geometries [55–58] and a very
recent proposal on measuring Floquet topological invariants
[59]).

In this paper, we propose an efficient method to deter-
mine Chern numbers of a 2D multiband topological insulator
in a series of standard TOF measurements with a single-
component Bose-Einstein condensate (BEC) prepared in an
optical lattice. We apply a phase retrieval algorithm [60–64]
to matter waves in order to recover a small set of eigenstates
that belong to the first Brillouin zone (BZ). We illustrate the
robustness of the method with two important examples: the
multiband Harper-Hofstadter model [46,47], with an arbitrary
rational flux, and the Haldane model [48] on the brick-wall
lattice.

The paper is organized as follows. In Sec. II we present
a basic introduction to topological invariants of 2D Chern
insulators and a description of all elements of our method
for determination of the Chern numbers. In Sec. III we show
the main results of the numerical simulations demonstrating
the application of the method. Section IV is devoted to an
analysis of robustness of the method against experimental
imperfections. We conclude in Sec. V.

II. METHOD FOR DETERMINATION
OF CHERN NUMBERS

We begin with a short introduction to Chern insulators and
then we present all elements of the method for determination
of Chern numbers in experiments with the help of a phase-
retrieval algorithm.

A. Topology of energy bands

Consider a general two-dimensional tight-binding model
corresponding to a square optical lattice with the lattice
spacings ax = ay = 1. Assume that the Hamiltonian possesses
discrete translational symmetries in the configuration space:
x → x + q and y → y + 1 where q is an integer. In this case, a
q × 1 elementary cell has q sublattice sites α = 1, . . . , q. Due
to the translation symmetry, the system shows q energy bands.
An eigenstate belonging to the nth band (where n = 1, . . . , q)
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reads

ψ
[n]
k (r) ∝

∑
�,α

eik·r�α u[n]
α (k)w(r − r�α ), (1)

where w(r − r�α ) is the Wannier function localized at the site
r�α = (α, �) of the optical lattice, k = (kx, ky ) is the system
quasimomentum, where kx ∈ (−π/q, π/q] and ky ∈ (−π, π ],
and u[n]

α = u[n]
α+q is a complex-valued q-periodic function. Due

to the translational symmetry of the system the full tight-
binding Hamiltonian H can be written in a block-diagonal
form H = ⊕

k H(k), where H(k) are q × q blocks labeled by
a quasimomentum k [65]. The reduced Schrödinger equation

H(k)u[n](k) = E [n](k)u[n](k), (2)

where u[n](k) = [u[n]
1 · · · u[n]

q ]� is the normalized eigenvector,
can be solved separately for each k. The eigenenergies E [n](k)
form a band. The geometry of energy bands can be described
by the Berry connection A[n]

μ (k) and Berry curvature F [n]
xy (k)

that read

A[n]
μ (k) = u[n]†(k)∂μu[n](k), (3)

F [n]
xy (k) = ∂xA[n]

y (k) − ∂yA[n]
x (k), (4)

where μ = x, y denotes a direction in the quasimomentum
space and ∂μ = ∂/∂kμ [65]. Geometric features of energy
bands can be related to topology—topological properties of
the nth band are characterized by the topologically invariant
integer Chern number cn, defined as an integral of the Berry
curvature over the first BZ [65]:

cn = 1

2π i

∫
BZ

d2k F [n]
xy (k). (5)

The Chern numbers determine the Hall conductance of the
system if fermions are loaded to the optical lattice. The total
Hall conductance is the sum of conductances of all energy
bands below the Fermi level and reads

σxy = −(e2/h)
∑

n

cn, (6)

which is the famous Thouless–Kohmoto–Nightingale–den
Nijs (TKKN) formula [66].

In practice, it is very efficient to calculate the Chern
number using the Fukui-Hatsugai-Suzuki (FHS) method [67]
which, rather than a crude discretization of (5), exploits the
lattice gauge theory formalism by defining the Berry con-
nection on the coarsely discretized BZ (see Appendix A for
details).

In the following we show that applying the FHS approach
and a phase-retrieval algorithm [60–64] we can reconstruct
Chern numbers from a series of time-of-flight experiments
with a single-component BEC.

B. Preparation of initial eigenstates

If we knew all eigenstates of a given energy band of the
Hamiltonian, then Eq. (5) would allow us to obtain the Chern
number characterizing the band. We will show that when a
BEC in the optical lattice is prepared in a certain eigenstate,
measurement of the density of atoms after TOF and applica-
tion of a phase-retrieval algorithm allow us to reconstruct the

FIG. 1. Preparation of an initial eigenstate in the regime of
nontrivial topology, if initially kin ≈ kD. To avoid excitations to
another band, before we change parameters of the system across
the topological quantum phase transition, we have to apply a weak
constant force F1 to shift the quasimomentum kaux = kin + �t1

h̄ F1 far
away form the Dirac point kD. At kaux the upper band is not populated
if the change of parameters across the topological phase transition is
performed sufficiently slowly. Subsequently, i.e., after the change of
system parameters to a topological regime, once again we apply a
constant force to transfer a system into any final quasimomentum
k = kaux + �t2

h̄ F2.

wave function completely. Performing the same experiments
but with a BEC in different eigenstates of the band provides
sufficient information to determine the Chern number of the
band. (See Sec. IV A for the analysis of the BZ meshing size.)
In this section we discuss the first element of the method, i.e.,
the preparation of a BEC in different eigenstates of an energy
band [68].

To prepare a BEC in an eigenstate corresponding to a
topologically nontrivial energy band, one usually starts an ex-
perimental sequence with loading a BEC into the ground state
of a 2D optical lattice with trivial topology [37]. The ground
state can be well approximated by a Bloch wave (1) with a
quasimomentum kin that minimizes the dispersion relation.
By turning on artificial gauge fields, the system is then driven
into a regime of nontrivial topology of energy bands which
are characterized by nonzero values of the Chern numbers (5).
However, while switching from trivial to nontrivial topology,
a quantum phase transition takes place which is accompanied
by closing a gap between a neighboring band at distinct
quasimomenta kD ∈ D (the set of Dirac points) [65]. If kin ≈
kD, in order to avoid population of another band, before
we change parameters of the system across the topological
quantum phase transition, we have to apply a weak constant
force F1 for a suitable period of time �t1 so that the system
is transferred to some auxiliary quasimomentum kaux = kin +
�t1
h̄ F1 �= kD (see Fig. 1). Then, slow change of parameters of

the system across the topological phase transition does not
lead to population of another band if it is done on a timescale
longer than the scale given by the inverse of the energy gap
corresponding to kaux. Once we are in the topological phase,
we can apply another weak force F2 which allows us to
transfer the system to any quasimomentum k = kaux + �t2

h̄ F2

we need. In Sec. II C we show how to recover full information
about an eigenstate of the Bose system corresponding to a
given quasimomentum k in the measurement of the atomic
density after TOF. Following this experimental sequence,
we can scan the whole first BZ in separate experimental
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realizations and obtain sufficient information about the system
which allows one to determine the Chern numbers by means
of the FHS approach. In the presented experimental scheme
we argue that by using bosonic atoms it is possible to switch
to the nontrivial topology almost adiabatically by avoiding
band touching points. Nevertheless, in Sec. IV B we present
numerical studies of the influence of excitations to other bands
on the determination of the Chern numbers.

C. Phase retrieval after TOF

In this section we review and adapt a method [64] which
allows one to reconstruct a BEC wave function out of a
standard time-of-flight image after being processed with a
phase-retrieval algorithm [60–63].

A time-of-flight image shows the spatial density distribu-
tion I (r) of atoms after a time period tTOF of a free expansion
that follows a sudden turning off an optical lattice and external
trapping potentials. In the far-field limit, I (r) is proportional
to the initial distribution of atoms in the momentum space
if we may neglect interaction between particles during the
expansion of the atomic cloud [69–72]

I (r) ∝ |ψ̃k(q)|2 ∝
∣∣∣∣
∫

d2r e−iq·rψk(r)

∣∣∣∣
2

, q = mr
h̄tTOF

, (7)

where k is the initial quasimomentum, ψk(r) and ψ̃k(q) are
the representations of the initial condensate wave function
in the real and reciprocal spaces, and m is the atomic mass.
A measurement of the atomic density reveals |ψ̃k(q)|2 at
discrete points in the q space. If we knew not only the density
but also the phase of ψ̃k(q) we would be able to obtain
the wave function ψk(r) by means of the inverse discrete
Fourier transform. However, even without the knowledge of
the phase, the task is not hopeless if we have some additional
information about the system. Ultracold atoms are always
prepared in a trap, i.e., the system always occupies finite area
in the configuration space. If the support S of ψk(r) [area
where ψk(r) �= 0] and the modulus |ψ̃k(q)| are known, one
can employ an iterative phase-retrieval algorithm [60–64].
Let us stress here that the presence of an external trap is
indispensable but its shape is not important as long as the
trap size is significantly larger than the lattice spacing so
that the quasimomentum is a good quantum number. In the
present paper, we consider ultracold atoms in optical lattices
and in the presence of an external hard wall potential but
the phase-retrieval algorithm can be applied to other trapping
potentials and lattice geometries. For example, in Ref. [64]
a 2D triangular lattice and a harmonic trapping potential are
analyzed within a Thomas-Fermi approximation, where the
external potential modifies the envelope of the wave function
only.

The phase-retrieval algorithm seeks for the intersection of
two sets of functions: a set of functions with a given support
S in the position space and a set of functions with a given
modulus |ψ̃k(q)| in the reciprocal space. Let ψ (i)(r) be an
approximation of the desired solution at the ith iteration of the
phase-retrieval algorithm. The algorithm starts with a random,
complex-valued ψ (0)(r) that satisfies the support constraint
ψ (0)(r) = 0 for r /∈ S. In the simplest version of the algorithm
[60], the following operations are performed at each iteration:

(i) The Fourier transform is performed on ψ (i)(r), resulting
in |ψ̃ (i)(q)|eiφ(i) (q).

(ii) |ψ̃ (i)(q)| is substituted with the true |ψ̃k(q)| which is
obtained in an experiment after TOF.

(iii) Inverse Fourier transform is applied which gives
ψ (i+1)(r), not necessarily satisfying the support constraint.

(iv) The support constraint is imposed on ψ (i+1)(r) by
setting ψ (i+1)(r) = 0 for every r /∈ S.

Convergence of the algorithm is tracked by the error mea-
sure defined as

ε =
∫

d2q[|ψ̃ ret(q)| − |ψ̃k(q)|]2, (8)

where ψ̃ ret
k (q) is a retrieved function and |ψ̃k(q)|2 is the mea-

sured probability distribution. The presented simplest version
of the algorithm guarantees a decrease of ε in each iteration.
Unfortunately, once it reaches a local minimum of ε, it cannot
proceed further. There are modifications of the phase-retrieval
methods which allow for the much faster convergence to a
desired solution [61–63]. Moreover, to increase the rate of
the convergence one can use any extra information about
ψk(r), e.g., a preliminary in situ measurement of |ψk(r)| or
its theoretical estimation [64]. In our case, we speed up the
convergence by exploiting information about the geometry of
an optical lattice only, i.e., we do not assume anything about
the parameters of the Hamiltonian (see Appendix B for all
details).

Once ψk(r), Eq. (1), is successfully recovered, in order to
extract the coefficient vector u(k) one has to project ψk(r) on
the orthonormal basis of the Wannier functions. To minimize
the numerical error one might additionally average each uα

component over lattice sites � = 1, . . . , ncells:

uα (k) = 1

ncells

∑
�

e−ik·r�α

∫
d2r w∗(r − r�α )ψk(r). (9)

The Wannier functions w(r) can be well approximated by
Gaussian functions with the width σw = h̄tTOF/(mσw̃ ) which
can be obtained from the wide envelope of the measured
density profile

|ψ̃k(q)|2 ∝ |w̃(q)|2
∣∣∣∣∣
∑
�,α

ei(k−q)·r�α uα (k)

∣∣∣∣∣
2

, (10)

where w̃(q) is the Fourier transform of w(r) and σw̃ is the
width of w̃(q).

D. Calculation of the Chern number

In order to determine the Chern number we propose a
series of experiments with a BEC in an optical lattice. In
each experiment, one prepares a BEC in an eigenstate with
a different quasimomentum k from the first BZ and retrieves
a column complex-valued vector u(k), Eq. (2), using the
phase-retrieval algorithms (see Sec. II C). To obtain the Chern
number we apply a highly effective FHS method [67] which
allows us to calculate the Chern number with the help of
a few eigenvectors ψk(r) only, i.e., the coarsely discretized
BZ. It is possible due to the fact that the FHS algorithm is
based on a gauge-invariant lattice gauge theory formulation.
(See Appendix A for a quick revision of the FHS algorithm.)
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In Sec. III we demonstrate the method of the determination
of the Chern numbers simulating experimental data for two
examples: Harper-Hofstadter and Haldane models.

III. NUMERICAL SIMULATIONS

The proposed experimental scheme of detecting Chern
numbers applies to a general tight-binding Hamiltonian in a
two-dimensional space. In this section we illustrate applica-
tion of the scheme with two examples: the Harper-Hofstadter
model with an arbitrary rational flux [46,47] and the Haldane
model [48] on a brick-wall lattice (for experiments in ultracold
atoms, see [14,36–38]). In the case of the Harper-Hofstadter
model we show that a large number of bands is not the
limitation of our method. With the help of the Haldane model
we demonstrate that our scheme allows one to reconstruct the
phase diagram of the system.

A. The Harper-Hofstadter model

Consider bosonic atoms in a square two-dimensional lat-
tice, in XY plane, with a unit lattice spacing subjected to
uniform artificial magnetic field B = (0, 0, B). The nearest-
neighbor-hopping Hamiltonian of an atom in the Landau
gauge with the vector potential A = (0, Bx, 0) takes the fol-
lowing form:

Ĥ = −
∑
m,n

(Jĉ†
m+1,nĉm,n + J ′ei2πφmĉ†

m,n+1ĉm,n + H. c.), (11)

where ĉ†
m,n, ĉm,n are the bosonic particle creation and annihi-

lation operators corresponding to a lattice site (m, n). J, J ′ are
tunneling amplitudes and φ = B/h is a dimensionless flux.
Due to the presence of the magnetic field, particles tunneling
along y acquire the Peierls phase factor ei2πφm [73]. The
presence of the magnetic field, in principle, breaks discrete
space-translation symmetry of the lattice. However, if the flux
is a rational number, φ = p/q where p and q are coprime
integers, the translational symmetry is restored but with the
spatial period q times longer than the lattice constant. There-
fore, an effective magnetic q × 1 elementary cell consists of
q lattice sites, and the first BZ is the rectangle 2π/q × 2π in
the quasimomentum space. After rewriting the Hamiltonian
(11) in the Fourier space, the reduced Schrödinger equation
(2) takes the following form:

−Jeikx uα+1(k) − 2J ′ cos

(
ky + 2π

p

q
α

)
uα (k)

− Je−ikx uα−1(k) = E (k)uα (k), (12)

where α = 1, . . . , q.
Let us focus on the reconstruction of the lowest band

Chern number for q = 3 and q = 5 band models, as de-
picted in Fig. 2. We choose a finite optical lattice consisting
of 7 × 7 effective magnetic elementary cells (which corre-
sponds to 7 × 21 or 7 × 35 lattice sites for q = 3 and q = 5
bands, respectively). In principle, the measurement of |ψ̃k(q)|
and the use of the phase-retrieval algorithm allows us to
obtain the full information about the eigenstate ψk(r) and
successively recover the Chern number (see Secs. II C and
II D). However, the phase-retrieval algorithm is known to

FIG. 2. Harper-Hofstadter model is a 2D square lattice with
tunneling amplitudes J, J ′, in x, y, pierced by uniform artificial
magnetic field. A particle traveling along y acquires the Peierls phase.
We denote (magnetic) elementary cells by green rectangles for two
magnetic fluxes through plaquette, φ = 1/3 (left panel) and φ = 1/5
(right panel). The corresponding energy spectra are calculated for
J/J ′ = 1/2. Chern numbers associated to energy bands are indicated.

occasionally get stuck at local minima. Therefore, for every
k we repeat the algorithm, each time starting from a different
randomly generated initial state.

All retrieved eigenstates can be sorted by their error ε,
Eq. (8), as shown in Fig. 3 (upper panel). It is evident that
about the 90% of the best phase-retrieval runs converge to
functions with approximately the same error ε ≈ 10−6–10−7,
while the errors of the last 5%–10% trails are larger by a few
orders of magnitude.

For each quasimomentum k we select a random representa-
tive out of 90 phase-retrieval algorithm runs and calculate the
Chern number with the FHS method. We repeat the process
103 times and successively average the data. (Let us stress
that this repetition is a data processing post measurement
only.) As we illustrate in Fig. 3 (lower panel), after reject-
ing the worst phase-retrieval trails we are always able to
recover the Chern numbers c1 = −1 with a perfect accuracy.
Note that without any rejections, for an 8 × 8 BZ mesh we
obtain c1 = −0.97(17) for φ = 1/5 and c1 = −0.98(15) for
φ = 1/3. Moreover, in Fig. 3 we show that a much harsher
discretization of the first BZ (4 × 4) mesh is already sufficient
to correctly recover the Chern number.

B. Haldane model on a brick-wall lattice

The brick-wall structure consists of two interpenetrating
square lattices A and B (see Fig. 4). We assume real tunneling
amplitudes J between nearest-neighboring lattice sites and
complex tunneling amplitudes J ′e±iθ between next-nearest-
neighboring sites. The model is topologically equivalent to the
Haldane model on a honeycomb lattice [48]. The Hamiltonian
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FIG. 3. Reconstruction of the Chern number for the lowest band
of the Harper-Hofstadter model with magnetic flux φ = 1/3 and
φ = 1/5. Upper panel: Mean (over distinct quasimomenta) of log-
arithm of sorted retrieval errors ε [see Eq. (8)]. On average, about
90% of independent phase-retrieval runs converge successfully (ε ≈
10−6–10−7). Lower panel: The reconstructed Chern numbers as a
function of a percentage of rejected retrievals. The calculations give
the proper value c1 = −1 within error bars even if all unsuccessful
retrievals are selected. Although the better results are obtained for a
higher mesh size (8 × 8), after rejecting about 10% of the worst re-
trievals, a very coarse mesh (4 × 4) already gives a perfect agreement
with the model.

of the system reads

Ĥ = −J
∑
〈i, j〉

ĉ†
i ĉ j − J ′ ∑

〈〈i, j〉〉
eiθi j ĉ†

i ĉ j + �
∑

i

εiĉ
†
i ĉi, (13)

where i, j are indices of the lattice sites, 〈i, j〉 denotes pairs
of nearest neighbors, 〈〈i, j〉〉 pairs of next-nearest neighbors,
θi j = ±θ where the sign depends on the direction of the
tunneling, and � introduces the energy offset between the
A and B sublattices because εi = 1 for i ∈ A, εi = −1 for
i ∈ B (see Fig. 4). Complex values of the tunneling amplitudes

FIG. 4. Haldane model on a brick-wall lattice: two interpenetrat-
ing square lattices, with real and complex tunnelings to the near-
est and next-nearest-neighboring sites, respectively. Arrows denote
directions of the tunnelings.

break the time-reversal symmetry while the energy offset
breaks the parity symmetry. Switching to the reciprocal space
we can write the Hamiltonian in a block-diagonal form. Each
block is a 2 × 2 matrix H(k) whose elements take the form

H11 = � − 2J ′[cos (θ + 2kx ) + cos(θ − kx − ky)

+ cos(θ − kx + ky],

H12 = H∗
21 = −J (2 cos kx + e−iky ),

H22 = −� − 2J ′[cos(θ − 2kx ) + cos(θ + kx + ky)

+ cos(θ + kx − ky)].

An identical procedure as in the case of the Harper-
Hofstadter model leads to a successful retrieval of the Chern
number of the lowest band. This allows us to obtain the
topological phase diagram of the Haldane model (see Fig. 5).
The discretization of the first BZ corresponds to the 6 × 6
mesh. For each of the eigenstates we assume that we know
the support of ψk(r) and the modulus |ψ̃k(q)| and perform the
phase-retrieval procedure 90 times. Each application of the
algorithm starts with randomly chosen phases of an eigenstate
and consists of 350 iterations. We may now select a number
of the best results, based on their error ε, Eq. (8), and make
statistics on the retrieved Chern numbers, as in Sec. III A.
Taking all results, including those that did not converge to
a global solution, we obtain a topological phase diagram in
Fig. 5 (upper panel) which only qualitatively represents a
structure predicted by Haldane [48]. However, selecting 50%
of the best results yields a perfect recovery of the Haldane
model phase diagram, shown in Fig. 5 (lower panel).

IV. ROBUSTNESS

In this section we investigate the influence of possible
experimental imperfections on values of the retrieved Chern
numbers. As an example we choose the Harper-Hofstadter
Hamiltonian (11) with the flux φ = 1/3 and the finite lattice
consisting of 7 × 7 elementary magnetic cells (7 × 21 lattice
sites). All presented quantities are averaged over 90 phase-
retrieval runs which correspond to different randomly chosen
initial states. Percentage of discarded worst [according to error
ε, Eq. (8)] retrieval results is either 10% or 90%. The error
bars are the standard deviations of the averaged values.
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FIG. 5. Topological phase diagram of the lowest band in the
Haldane model, obtained from simulated TOF images using a
phase-retrieval algorithm. Black lines indicate phase transitions at
±3

√
3 sin θ , predicted by Haldane [48]. The quality of the phase

diagram depends on the percentage of rejected phase-retrieval out-
puts. Upper panel: When all the phase-retrieval runs are taken into
account, only general features of the phase diagram are reproduced.
Lower panel: Rejection of 50% worst results (according to the
retrieval error ε), already leads to an exact reconstruction of the phase
diagram and more rejections do not change the picture.

A. Number of points chosen in the first Brillouin zone

We have tested how densely one has to probe the first
BZ in order to get the proper value of the Chern number
c1 corresponding to the lowest energy band in Fig. 2 (left
panel). Figure 6(a) indicates that it is sufficient to perform
the 4 × 4 mesh discretization of the Brillouin zone and the
retrieved Chern number is correct. It also demonstrates how
powerful the FHS method is. In order to make sure that a
Chern number is retrieved correctly, an experiment should be
performed again with different discretization of the BZ.

B. Excitations to the second band

Experimental preparation of an eigenstate from the lowest
energy band is usually not perfect and contributions from
the higher bands can be expected. In this section we analyze

contamination of eigenstates of the lowest (first) band ψ
[1]
k by

eigenstates from the second band ψ
[2]
k ,

ψk = α ψ
[1]
k + β ψ

[2]
k , |α|2 + |β|2 = 1, (14)

and its influence on the determination of the Chern number c1,
which would estimate the worst-case scenario for the Landau-
Zener transition (see Sec. II B).

We have applied our method for different populations |β|2
of the second band and the results are presented in Fig. 6(b).
We conclude that |β|2 � 0.12 allows for the correct retrieval
of the Chern number c1 in the case of the 8 × 8 mesh. A
similar, symmetric result applies to the Chern number of the
second band: to obtain successfully c2 we require |β|2 � 0.86.
If one takes only the 4 × 4 mesh, β must satisfy |β|2 � 0.02
to recover the Chern number of the lowest band. Note that
the mesh size in the FHS method must be increased with the
absolute value of the Chern number [67], and therefore in the
case of the 4 × 4 mesh it is not enough to recover a correct
Chern number c2 = 2. Although we find that the higher mesh
gives a better critical |β|2, at some point the undesired occu-
pancies of other bands will always spoil the results. Therefore,
in Sec. II B we propose a method to minimize the excitations
to higher bands.

C. Background noise

In the experiment, background noise will affect the atomic
density measurements. Let us define the signal strength A
as the average value of |ψ̃k(q)|2 calculated in the first BZ.
The signal-to-noise ratio reads SNR = A/σn, where σn is the
standard deviation of Gaussian white noise whose absolute
values are added to each point q of the atomic density image.
The results of the retrieved Chern number versus SNR are
presented in Fig. 6(c). The minimal SNR that allows for the
successful retrieval of the Chern number is about 5.5 for an
8 × 8 mesh after discarding about 90% of the worst retrievals.
It is also important to note that experimental noise can be
reduced either by repeating the experiment and averaging
the recorded density profiles over separate realizations, or by
applying noise removal algorithms [74–76].

D. Resolution of experimental imaging system

In order to check how the results are sensitive to the
resolution of the imaging system, we convolve the original
atomic density after TOF, |ψk(q)|2, with the Gaussian profile
of width σr . In Fig. 6(d) we can see how the average value
of the Chern number c1 depends on the ratio σr/σpeak, where
σpeak is the width of the Gaussian fit to the highest Bragg peak
that can be observed in the atomic density, |ψk(q)|2, after TOF.
The minimal resolution that guarantees the correct value of the
Chern number is σr/σpeak ≈ 0.4, which also requires an 8 × 8
mesh after discarding about 90% of the worst retrieval results.

V. SUMMARY

We have proposed a method for determination of the
topological invariants of two-dimensional Chern insulators
with the help of ultracold bosonic atoms in optical lattice
potentials. The method relies on a sequence of experiments
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FIG. 6. Analysis of the influence of experimental imperfections on the retrieved Chern numbers. All presented results are related to the
lowest energy band of the Harper-Hofstadter model with the flux φ = 1/3. We consider a finite lattice consisting of 7 × 7 elementary magnetic
cells (7 × 21 lattice sites); cf. Fig. 2. Panel (a): average values of the obtained Chern number c1 of the lowest band as a function of the Brillouin
zone meshing. It turns out that it is sufficient to discretize the first BZ with a 4 × 4 mesh only in order to obtain the correct value of c1. Panel
(b): impact of the excitation of the system to the second energy band. In the Harper-Hofstadter model with q = 3 bands, the lowest energy
band corresponds to c1 = −1 while the Chern number of the second band is c2 = 2 (see Fig. 2). For 8 × 8 meshing, when the occupation of
the second band exceeds |β|2 ≈ 0.12, the obtained Chern number of the lowest band becomes incorrect, i.e., it switches from c1 = −1 to 0.
When |β|2 � 0.86, the system is actually in the second band and the value of the obtained Chern number equals 2 as expected. For a 4 × 4
mesh, this limit is much smaller: |β|2 � 0.02, and the Chern number of the higher band is not correctly reproduced. Panel (c): dependence of
average values of the Chern number on the signal-to-noise ratio. In order to successfully reproduce the Chern number, the signal-to-noise has
to be greater than about 5.5. It is evident that discarding more retrieval results reduces the limitation. Panel (d): average values of the Chern
number for different resolutions of an experimental imaging system. Finite resolution is simulated by convolution of the atomic density after
time of flight with the Gaussian function of width σr . Horizontal axis shows σr in units of the width σpeak of the highest Bragg peak observed
in the atomic density after TOF. If σr/σpeak � 0.4, the retrieved Chern number is correct.

where a Bose-Einstein condensate is prepared in different
eigenstates of a given energy band. In each experiment, an
atomic density after time of flight is measured. Because the
time of flight is actually the Fourier transform of the initial
condensate wave function of atoms prepared in a finite optical
lattice, a phase-retrieval algorithm can be applied in order to

obtain the phase of the wave function. The full knowledge of
eigenstates of a given band allows one to calculate the Chern
number characterizing the band.

We illustrate the application of the method with two exam-
ples: the Harper-Hofstadter model and the Haldane model on
a brick wall lattice. It turns out that it is sufficient to retrieve a
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small number of eigenstates of a given band, i.e., to discretize
coarsely the first Brillouin zone, in order to determine the
Chern number. An experimental sequence that allows one to
avoid population of neighboring bands, during the preparation
of the system in a topological phase, is presented. We also
analyze robustness of the method and its resistance to experi-
mental imperfections.
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APPENDIX A: FUKUI-HATSUGAI-SUZUKI METHOD

Assume the 2D system on a square lattice that is invariant
under discrete space translations x → x + qx and y → y +
qy, where qx, qy are integer multiples of the lattice constant
a = 1. Hence, the system can be described completely by a
qxqy × qxqy Hamiltonian matrix H(k) in a reduced Brillouin
zone k ∈ (−π/qx, π/qx] × (−π/qx, π/qx]. Assume that, for
each k, the Hamiltonian H(k) has nondegenerate eigenvalues.
Then, the solutions of the Schrödinger equation

H(k)u[n](k) = E [n](k)u[n](k), (A1)

describe separate energy bands labeled by n = 1, . . . , qxqy.
Let us take a set of discrete points kl (l = 1, . . . , NxNy) in the
first BZ

kl = (kl1 , kl2 ),

with

klμ = 2π lμ
qμNμ

, lμ = 0, 1, . . . Nμ − 1,

where μ = x, y. We will call μ̂ the vector of the length δkμ =
2π/(qμNμ) in the direction μ. The U(1) linking variables of
the nth band are defined as

U [n]
μ (kl ) := u[n]†(kl )u[n](kl + μ̂)/N [n]

μ (kl ), (A2)

with N [n]
μ (kl ) = |u[n]†(kl )u[n](kl + μ̂)|.

The field strength F̃ [n]
xy (kl ) takes a manifestly gauge-

invariant form

F̃ [n]
xy (kl ) : = ln

U [n]
x (kl )U [n]

y (kl + x̂)

U [n]
x (kl + ŷ)U [n]

y (kl )
,

−π <
1

i
F̃ [n]

xy (kl ) � π. (A3)

Finally, the Chern number reads

cn = 1

2π i

∑
l

F̃ [n]
xy (kl ). (A4)

Even for coarsely discretized BZs this algorithm gives accu-
rate values of the Chern numbers (see Sec. IV A or Ref. [67]).

APPENDIX B: PHASE-RETRIEVAL ALGORITHM
AND ITS OPTIMIZATION

Phase-retrieval algorithms iteratively seek for a solution
ψ (r) in the object space, provided the modulus of its Fourier
transform |ψ̃k(k)| and support S [area where ψ (r) �= 0] are
known. The simplest version of the algorithm, called error
reduction (ER), is described in Sec. II C. Fienup proves [60]
that at each iteration, the retrieval error, defined as

ε =
∫

d2q[|ψ̃ (i)(q)| − |ψ̃k(q)|]2, (B1)

decreases. Stagnation of this algorithm in local minima is,
however, likely to occur [61,63]. Several approaches have
been proposed to solve this problem [63]. One example is the
hybrid input-output (HIO) algorithm based on nonlinear feed-
back control theory [61]. It is very similar to the ER algorithm,
the only change is the step (iv) described in Sec. II C. The part
of ψ (i)(r) that lies outside the support is not set to zero but
instead to (1 − ηPm)ψ (i)(r), where the operator Pm [described
in steps (i) and (ii) in Sec. II C] is the projection on the set
of functions with the modulus |ψ̃k(k)| and 0 < η < 1 is the
feedback parameter, usually set to 0.7–0.9. In most cases, a
combination of the HIO and ER methods, e.g., 20 iterations of
HIO and 1 iteration of ER algorithms, repeated in cycle, gives
the best results. Since the HIO method does not guarantee the
decrease of the error ε, the last few (30–50) iterations, should
consist of the pure ER algorithm.

FIG. 7. Illustration of the result of the projection Pw = Pw2 ◦ Pw1 that is used in the phase-retrieval algorithm. The Harper-Hofstadter
model with the flux φ = 1/3 is considered. The plot shows a cut of the probability density along the x direction before (dashed line) and after
(solid line) the projection. The projection reestablishes the translational symmetry of the system. Horizontal lines help to see that due to the
projection, the probability densities in all sublattice sites become equal.
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Support. If we want to recover N complex numbers ψk(r)
within support, we need at least 2N real numbers |ψ̃k(q)|.
This gives a constraint on the area of the support which must
not be less than 50% of the area of the whole table of ψk(r).
In our case, the support occupies only 22.5% of the whole
table which increases the rate of convergence. If the support is
symmetric with respect to rotation by 180◦ around some point
r0 in space (e.g., the support is a rectangle or a circle), the fact
that ψk(r − r0) and ψ∗

k [−(r − r0)] have the same modulus of
the Fourier transform causes an ambiguity. The algorithm will
converge to any of the two solutions with equal probability
and in some cases it will stagnate at their superposition
[62]. The only other nonuniqness can appear if and only
if ψk(r) can be written as a convolution of two noncentral
symmetric functions [77]. Therefore, in our simulations we
choose a trapezoidal support with the ratio 4/5 of its bases
which corresponds to a hard-wall box potential of this shape.
Fluctuations of the size of an atomic cloud in a trap result in
changes of the width of the Bragg peaks in the momentum
distribution. The latter are not dangerous in the determination
of Chern numbers. We also stress that if the size of the cloud
is fluctuating one must set a support that is slightly larger
than the average size of the cloud. This way one does not
unintentionally “cut” the solution in real space.

Optimization. If additional information about ψ (r) is
known, it can be used to speed up the algorithm convergence.
For example, if the geometry of an optical lattice and the
number of lattice sites can be estimated in the experiment,
we know all information about an eigenstate of the system
presented in Eq. (1) except the factors eik·r�α uα . We use this
information as follows.

Define the projection Pw1ψ
(i) of a current estimate of the

desired solution on the Wannier state basis,

Pw1ψ
(i)(r) := 1

N
∑
�,α

v
(i)
�αw(r − r�α ), (B2)

where � = 1, . . . , ncells is the index of an elementary cell, α =
1, . . . , q is the index of a lattice site within an elementary cell,
N is the normalization factor, and

v
(i)
�α =

∫
d2r w∗(r − r�α )ψ (i)(r). (B3)

If ψ (i)(r) is identical with the desired solution, then v
(i)
�α ≡

eik·r�α uα , hence |v(i)
�α | should not depend on � and we impose

FIG. 8. Comparison of different versions of the phase-retrieval
algorithm. The combination of the HIO and ER methods leads to a
smaller error ε [see Eq. (B1)] than the ER method alone but to a much
larger error than in the case when the projection Pw = Pw2 ◦ Pw1 is
applied every third iteration (see the discussion in the text). Fringes
correspond to one cycle of the HIO(20) + ER(1) = 21 iterations.
The last 30 iterations correspond to the pure ER method which allows
one to reduce the error at the end of the retrieval process.

this condition in the iterative process. We define the next
projection Pw2 ,

Pw2 [Pw1ψ
(i)(r)] :=

∑
�,α

∣∣v(i)
α

∣∣
rmse

i Arg v
(i)
�α w(r − r�α ), (B4)

where
∣∣v(i)

α

∣∣2
rms = 1

ncells

∑
�

|v(i)
�α |2

is the mean occupation of the sublattice site α. This operation
ensures that occupations of the same sublattice sites in all
elementary cells are the same (see Fig. 7 for clarification). The
complete projection

Pw = Pw2 ◦ Pw1 (B5)

is performed every three iterations of the phase-retrieval al-
gorithm. The effect of our optimization is clearly visible in
Fig. 8—the final error (B1) is about four orders of magnitude
smaller than without the optimization (see also comprehensive
phase-retrieval software libraries [78]).
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G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett. 112, 043001
(2014).

[23] L. Tagliacozzo, A. Celi, P. Orland, M. Mitchell, and M.
Lewenstein, Nat. Commun. 4, 2615 (2013).

[24] A. Kosior and K. Sacha, Europhys. Lett. 107, 26006 (2014).
[25] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet,

J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M.
Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109, 145301
(2012).

[26] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U.-J.
Wiese, and P. Zoller, Phys. Rev. Lett. 109, 175302 (2012).

[27] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 109,
125302 (2012).

[28] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U.-J.
Wiese, and P. Zoller, Phys. Rev. Lett. 110, 125303 (2013).

[29] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein, Ann.
Phys. (NY) 330, 160 (2013).

[30] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 110,
125304 (2013).

[31] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S. Pascazio,
and F. V. Pepe, J. Phys. A 48, 30FT01 (2015).

[32] V. Kasper, F. Hebenstreit, M. Oberthaler, and J. Berges, Phys.
Lett. B 760, 742 (2016).

[33] O. Dutta, L. Tagliacozzo, M. Lewenstein, and J. Zakrzewski,
Phys. Rev. A 95, 053608 (2017).

[34] E. Zohar, A. Farace, B. Reznik, and J. I. Cirac, Phys. Rev. A 95,
023604 (2017).

[35] D. González-Cuadra, E. Zohar, and J. I. Cirac, New J. Phys. 19,
063038 (2017).

[36] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[37] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2015).

[38] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,
Nat. Phys. 11, 859 (2015).

[39] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Science 349, 1514 (2015).

[40] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Science 349, 1510 (2015).

[41] N. Goldman, J. Budich, and P. Zoller, Nat. Phys. 12, 639 (2016).

[42] A. R. Kolovsky, Phys. Rev. A 98, 013603 (2018).
[43] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[44] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[45] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[46] P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 874 (1955).
[47] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[48] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[49] H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).
[50] A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302

(2013).
[51] A. Dauphin, D.-T. Tran, M. Lewenstein, and N. Goldman,

2D Mater. 4, 024010 (2017).
[52] E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and

J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011).
[53] P. Hauke, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 113,

045303 (2014).
[54] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S.

Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091
(2016).

[55] L. Wang, A. A. Soluyanov, and M. Troyer, Phys. Rev. Lett. 110,
166802 (2013).

[56] C. Schweizer, M. Lohse, R. Citro, and I. Bloch, Phys. Rev. Lett.
117, 170405 (2016).

[57] H.-I. Lu, M. Schemmer, L. M. Aycock, D. Genkina, S. Sugawa,
and I. B. Spielman, Phys. Rev. Lett. 116, 200402 (2016).

[58] S. Mugel, A. Dauphin, P. Massignan, L. Tarruell, M.
Lewenstein, C. Lobo, and A. Celi, SciPost Phys. 3, 012 (2017).

[59] F. N. Ünal, B. Seradjeh, and A. Eckardt, arXiv:1812.04636.
[60] J. R. Fienup, Opt. Lett. 3, 27 (1978).
[61] J. R. Fienup, Appl. Opt. 21, 2758 (1982).
[62] J. R. Fienup and C. C. Wackerman, J. Opt. Soc. Am. A 3, 1897

(1986).
[63] S. Marchesini, Rev. Sci. Instrum. 78, 011301 (2007).
[64] A. Kosior and K. Sacha, Phys. Rev. Lett. 112, 045302 (2014).
[65] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

[66] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[67] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674
(2005).

[68] Note that fermionic TOF images do not contain enough in-
formation to reconstruct the Berry curvature and the Chern
number. Nevertheless, in [53] it was shown how to overcome
this for generic two-band models.

[69] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F. S.
Cataliotti, P. Maddaloni, F. Minardi, and M. Inguscio, Phys.
Rev. Lett. 87, 220401 (2001).

[70] F. Gerbier, S. Trotzky, S. Fölling, U. Schnorrberger, J. D.
Thompson, A. Widera, I. Bloch, L. Pollet, M. Troyer, B.
Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. Lett. 101, 155303 (2008).

[71] P. Deuar, Comput. Phys. Commun. 208, 92 (2016).
[72] Note that we consider topological properties of noninteracting

systems only. If there are non-negligible interactions between
atoms they can be turned off during the time-of-flight expansion
by using Feshbach resonances.

[73] R. Peierls, Z. Phys. 80, 763 (1933).
[74] V. R. Vijaykumar, P. T. Vanathi, and P. Kanagasabapathy,

IAENG Int. J. Comput. Sci. 37, 300 (2010).

043611-10

https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1126/science.1207239
https://doi.org/10.1126/science.1207239
https://doi.org/10.1126/science.1207239
https://doi.org/10.1126/science.1207239
https://doi.org/10.1103/PhysRevA.87.023602
https://doi.org/10.1103/PhysRevA.87.023602
https://doi.org/10.1103/PhysRevA.87.023602
https://doi.org/10.1103/PhysRevA.87.023602
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1209/0295-5075/93/20003
https://doi.org/10.1209/0295-5075/93/20003
https://doi.org/10.1209/0295-5075/93/20003
https://doi.org/10.1209/0295-5075/93/20003
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1209/0295-5075/107/26006
https://doi.org/10.1209/0295-5075/107/26006
https://doi.org/10.1209/0295-5075/107/26006
https://doi.org/10.1209/0295-5075/107/26006
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1016/j.physletb.2016.07.036
https://doi.org/10.1016/j.physletb.2016.07.036
https://doi.org/10.1016/j.physletb.2016.07.036
https://doi.org/10.1016/j.physletb.2016.07.036
https://doi.org/10.1103/PhysRevA.95.053608
https://doi.org/10.1103/PhysRevA.95.053608
https://doi.org/10.1103/PhysRevA.95.053608
https://doi.org/10.1103/PhysRevA.95.053608
https://doi.org/10.1103/PhysRevA.95.023604
https://doi.org/10.1103/PhysRevA.95.023604
https://doi.org/10.1103/PhysRevA.95.023604
https://doi.org/10.1103/PhysRevA.95.023604
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevA.98.013603
https://doi.org/10.1103/PhysRevA.98.013603
https://doi.org/10.1103/PhysRevA.98.013603
https://doi.org/10.1103/PhysRevA.98.013603
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevA.85.033620
https://doi.org/10.1103/PhysRevA.85.033620
https://doi.org/10.1103/PhysRevA.85.033620
https://doi.org/10.1103/PhysRevA.85.033620
https://doi.org/10.1103/PhysRevLett.111.135302
https://doi.org/10.1103/PhysRevLett.111.135302
https://doi.org/10.1103/PhysRevLett.111.135302
https://doi.org/10.1103/PhysRevLett.111.135302
https://doi.org/10.1088/2053-1583/aa6a3b
https://doi.org/10.1088/2053-1583/aa6a3b
https://doi.org/10.1088/2053-1583/aa6a3b
https://doi.org/10.1088/2053-1583/aa6a3b
https://doi.org/10.1103/PhysRevLett.107.235301
https://doi.org/10.1103/PhysRevLett.107.235301
https://doi.org/10.1103/PhysRevLett.107.235301
https://doi.org/10.1103/PhysRevLett.107.235301
https://doi.org/10.1103/PhysRevLett.113.045303
https://doi.org/10.1103/PhysRevLett.113.045303
https://doi.org/10.1103/PhysRevLett.113.045303
https://doi.org/10.1103/PhysRevLett.113.045303
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1103/PhysRevLett.110.166802
https://doi.org/10.1103/PhysRevLett.110.166802
https://doi.org/10.1103/PhysRevLett.110.166802
https://doi.org/10.1103/PhysRevLett.110.166802
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.21468/SciPostPhys.3.2.012
https://doi.org/10.21468/SciPostPhys.3.2.012
https://doi.org/10.21468/SciPostPhys.3.2.012
https://doi.org/10.21468/SciPostPhys.3.2.012
http://arxiv.org/abs/arXiv:1812.04636
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/JOSAA.3.001897
https://doi.org/10.1364/JOSAA.3.001897
https://doi.org/10.1364/JOSAA.3.001897
https://doi.org/10.1364/JOSAA.3.001897
https://doi.org/10.1063/1.2403783
https://doi.org/10.1063/1.2403783
https://doi.org/10.1063/1.2403783
https://doi.org/10.1063/1.2403783
https://doi.org/10.1103/PhysRevLett.112.045302
https://doi.org/10.1103/PhysRevLett.112.045302
https://doi.org/10.1103/PhysRevLett.112.045302
https://doi.org/10.1103/PhysRevLett.112.045302
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1016/j.cpc.2016.08.004
https://doi.org/10.1016/j.cpc.2016.08.004
https://doi.org/10.1016/j.cpc.2016.08.004
https://doi.org/10.1016/j.cpc.2016.08.004
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591


DETERMINATION OF CHERN NUMBERS WITH A … PHYSICAL REVIEW A 99, 043611 (2019)

[75] F. Lenzen, K. I. Kim, H. Schäfer, R. Nair, S. Meister, F. Becker,
C. S. Garbe, and C. Theobalt, Denoising Strategies for Time-
of-Flight Data, in Time-of-Flight and Depth Imaging. Sensors,
Algorithms, and Applications, edited by M. Grzegorzek, C.
Theobalt, R. Koch, and A. Kolb (Springer, Berlin/Heidelberg,
2013), pp. 25–45.

[76] L. Niu, X. Guo, Y. Zhan, X. Chen, W. Liu, and X. Zhou,
Appl. Phys. Lett. 113, 144103 (2018).

[77] R. Barakat and G. Newsam, J. Math. Phys. 25, 3190
(1984).

[78] R. Chandra, Z. Zhong, J. Hontz, V. McCulloch, C. Studer, and
T. Goldstein, arXiv:1711.09777.

043611-11

https://doi.org/10.1063/1.5040669
https://doi.org/10.1063/1.5040669
https://doi.org/10.1063/1.5040669
https://doi.org/10.1063/1.5040669
https://doi.org/10.1063/1.526089
https://doi.org/10.1063/1.526089
https://doi.org/10.1063/1.526089
https://doi.org/10.1063/1.526089
http://arxiv.org/abs/arXiv:1711.09777

