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Symmetry-breaking instability of leapfrogging vortex rings in a Bose-Einstein condensate
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Three coaxial quantized vortex rings in a Bose-Einstein condensate exhibit aperiodic leapfrogging dynamics.
It is found that such circular vortex rings are dynamically unstable against deformation breaking axial rotational
symmetry. The dynamics of the system is analyzed using the Gross-Pitaevskii and vortex-filament models. The
dependence of the instability on the initial arrangement of the vortex rings is investigated. The system is found
to be significantly unstable for a specific configuration of the three vortex rings.
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I. INTRODUCTION

A vortex ring is a vortex whose core is a closed loop with
circulation around it and survives for a long time after it is
created. A circular vortex ring has a linear momentum and
can therefore travel a long distance, such as the well-known
example of smoke rings in air. However, in a normal fluid with
viscosity, such as air or water, a vortex ring eventually decays
due to the dissipation of energy and momentum. Furthermore,
the toroidal vorticity distribution has an inherent instability
against azimuthal-wave excitation [1,2].

In superfluids, vortices are quantized and a vortex ring
is a circular closed loop of a quantized vortex line [3].
Because of the absence of viscosity, a circular quantized
vortex ring has an infinite lifetime in a uniform superfluid.
Quantized vortex rings were first detected in superfluid he-
lium using ion spectroscopy [4]. In Bose-Einstein conden-
sates (BECs) of ultracold atomic gases, quantized vortex
rings have been created through the decay of solitons and
directly observed by imaging the density distribution [5–8].
The dynamics of quantized vortex rings in superfluids has
been studied theoretically by many researchers [9–25]. The
stability and dynamics of vortex rings in a trapped BEC
were studied in Refs. [10,12,14,16,20,23,25]. The scattering
dynamics of vortex rings in a uniform system was investigated
in Refs. [9,19,22].

A circular vortex ring in a uniform superfluid travels at
a constant velocity roughly proportional to the inverse of its
radius. Such a quantized vortex ring traveling in a uniform
superfluid is stationary in the moving frame of reference
and stable against perturbations. When two circular vortex
rings with the same vorticity are arranged in parallel sharing
the same axis, the radius of the front (rear) ring increases
(decreases) and the ring decelerates (accelerates). The rear
ring thus passes through the front ring and then the roles of
the two rings are reversed, which results in the leapfrogging
dynamics of the two vortex rings [26,27]. For more than
two coaxial vortex rings, the leapfrogging dynamics becomes
more complicated.

In the present paper we focus on the axial-symmetry-
breaking instability of leapfrogging vortex rings in superflu-
ids. When circular vortex rings are coaxially arranged in the
initial state, the system has rotational symmetry about the

axis of the rings. In the ensuing leapfrogging dynamics, the
axial symmetry is spontaneously broken, i.e., infinitesimal
azimuthal perturbations are exponentially increased, and the
leapfrogging dynamics is eventually destroyed by significant
distortions of the rings. Such instabilities of coaxial vortex
rings have been studied using the vortex-filament model
[17,21,24]. In Ref. [17] the dynamics of leapfrogging vortex
rings was studied numerically and axial-symmetry-breaking
instability was shown to occur for seven vortex rings. A
linear stability analysis was performed for two vortex rings
in Ref. [21]. The long-time stability of two and three vortex
rings was studied in Ref. [24].

In the present paper we investigate the axial-symmetry-
breaking instability of three quantized vortex rings using both
the Gross-Pitaevskii (GP) equation and the vortex-filament
model. Three vortex rings with the same direction of vorticity
are coaxially arranged, which exhibit leapfrogging dynamics.
We find that three such vortex rings are significantly unstable
against axial-symmetry breaking for a specific arrangement
of the vortex rings. Although three vortex rings are known
to exhibit long-time regular leapfrogging dynamics for some
initial arrangement [17,24], we find that three vortex rings
prepared in the unstable arrangement break axial symmetry
within a few leapfrogs. The instability occurs for both the GP
and vortex-filament models. We investigate the dependence
of the instability on the initial arrangements of the vortex
rings and on the interaction coefficient. We will show that
the symmetry-breaking modulation significantly grows when
the vortex rings form a particular configuration during the
dynamics and the most unstable eigenmode is obtained.

This paper is organized as follows. Section II presents a
study of the dynamics of vortex rings by solving the GP equa-
tion numerically. Section III analyzes the symmetry-breaking
instability using the vortex-filament model. Section IV gives
a summary and the conclusions of this study.

II. GROSS-PITAEVSKII MODEL

We consider a BEC of a dilute atomic gas at zero tempera-
ture described by the GP equation

ih̄
∂ψ

∂t
= − h̄2

2M
∇2ψ + V (r)ψ + 4π h̄2a

M
|ψ |2ψ, (1)
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where ψ (r, t ) is the macroscopic wave function of the conden-
sate, M is the mass of an atom, V (r) is an external potential,
and a is the s-wave scattering length. We normalize the length,
time, energy, and atomic density by an arbitrary length L,
arbitrary time T , h̄/T , and arbitrary density n0, respectively,
where h̄T = ML2 is satisfied. The GP equation then becomes
nondimensional as

i
∂ψ

∂t
= −∇2

2
ψ + V (r)ψ + g|ψ |2ψ, (2)

where the nondimensional interaction coefficient is g =
4πaL2n0. To reduce the effect of boundary conditions on the
axial symmetry of the vortex rings, we use a cylindrical tube
potential given by

V (r) =
{

0, r⊥ < Rwall

V0, r⊥ � Rwall,
(3)

where r⊥ = (x2 + y2)1/2 and Rwall is the radius of the cylin-
drical tube. Such a potential can be produced by a phase-
imprinted laser beam [28]. The height V0 of the potential wall
is taken to be much larger than the chemical potential g|ψ |2.
A periodic boundary condition is imposed in the z direction.
In experiments, a large cigar-shaped harmonic potential may
also be used instead of a cylindrical tube potential.

The initial state is prepared by the imaginary-time propa-
gation of Eq. (2), where i on the left-hand side is replaced with
−1. The wave function is normalized with the volume of the
cylindrical tube as ∫

|ψ |2dr = πR2
wallLz, (4)

where Lz is the size of the system in the z direction. The
density |ψ |2 is thus almost unity inside the tube potential,
when the radius Rwall is much larger than the healing length.
After the imaginary-time propagation converges, circular vor-
tex rings are imprinted in such a way that their symmetry axis
is on the z axis. The wave function is multiplied by exp[iφ(r)],
with the phase given by

φ(r)=
Nring∑
j=1

nz∑
n=−nz

(
tan−1 z−Zj −nLz

r⊥+Rj
−tan−1 z−Zj −nLz

r⊥−Rj

)
,

(5)

where Nring is the number of vortex rings and Rj and Zj are
the radius and z coordinate of the jth vortex ring, respectively.
The first and second terms in the large parentheses in Eq. (5)
cancel the radial flow ∂φ/∂r⊥ on the z axis and the summation
over integers n in Eq. (5) ensures a periodic boundary condi-
tion in the z direction for a sufficiently large nz. These extra
terms in Eq. (5) reduce the initial disturbances due to the phase
imprint. To further reduce the initial disturbances, we perform
a short imaginary-time evolution during Timag after the phase
φ(r) is imprinted on the wave function. This imaginary-time
evolution slightly changes the radii and z positions of the
vortex rings from Rj and Zj in Eq. (5).

We obtain the imaginary- and real-time evolutions of the
system by numerically solving Eq. (2) using the pseudospec-
tral method [29]. The numerical mesh is typically 5123 with a
spatial discretization of dx = dy = dz = 0.25 and the system

(c)

t=0 t=80 t=160

(b)

t=0 t=100 t=200

(a)

t=0 t=140 t=280

(d)

triangular rectilinear

FIG. 1. (a)–(c) Dynamics of vortex rings obtained by solving
the GP equation with g = 1. The isodensity surface of the density
|ψ |2 = 0.5 is shown. (a) Two vortex rings initially located with R1 =
R2 = 20, Z1 = −28, and Z2 = −26. (b) Three vortex rings with a
triangular initial arrangement, where R1 = 20 − 2

√
3/3, R2 = R3 =

20 + 1/
√

3, Z1 = −26, Z2 = −28, and Z3 = −24. (c) Three vortex
rings with a rectilinear initial arrangement, where R1 = R2 = R3 =
20, Z1 = −27, Z2 = −26, and Z3 = −28. The vortices seen from the
+z direction at t = 160 are highlighted. Axial symmetry is retained
in (a) and (b) and broken in (c) in the time evolution. The size of
the box is 643, with the origin at the center. See the Supplemental
Material for movies showing the dynamics [30]. (d) Initial vortex
arrangements set by Eq. (5). The triangular and rectilinear arrange-
ments used in (b) and (c) are shown in the left-hand and right-hand
panels, respectively, where the closed circles represent the positions
of vortex cores on the plane including the z axis.

size is Lx × Ly × Lz = 1283. Small noise must be added to
the initial state to trigger the symmetry-breaking instability.
To generate moderate noise, we first set complex random
numbers with a normal distribution on each numerical mesh
point and eliminate large-wave-number components with k >

kcutoff using a Fourier transform, where kcutoff is taken to be
10 × 2π/128. Such low-pass-filtered noise multiplied by a
small number (typically 0.1) is added to the wave function
after the imaginary-time evolution for Timag. In the follow-
ing calculations, we take V0 = 10, Rwall = 63, nz = 50, and
Timag = 4.

Figure 1 shows the time evolution of two and three vor-
tex rings (see the Supplemental Material for movies [30]).
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FIG. 2. Dependence of the symmetry-breaking dynamics on the
initial distance d between the vortex rings in the rectilinear initial ar-
rangement with radius R = 20. The dynamics is obtained by solving
the GP equation with g = 1 and (a) d = 1, (b) d = 2, and (c) d = 4.
The dynamics in (b) is the same as that in Fig. 1(c). The isodensity
surface of the density |ψ |2 = 0.2 is shown. The size of the box is 643,
with the origin at the center, and is seen from the +z direction. See
the Supplemental Material for movies showing the dynamics [30].

Figure 1(a) shows the case of two vortex rings that are coax-
ially arranged at t = 0. They exhibit periodic leapfrogging
dynamics and travel in the +z direction, in which the axial
symmetry is retained. Figure 1(b) shows the case of three
vortex rings coaxially arranged so that the six vortex cores
form two regular triangles on the plane including the sym-
metry axis, as illustrated in the left-hand panel in Fig. 1(d).
We refer to such an initial arrangement of vortex rings as
a triangular arrangement. The rings in this arrangement also
exhibit periodic leapfrogging dynamics such that the triangles
of the vortex cores rotate around their centers. The axial sym-
metry is retained for a long time in the leapfrogging dynamics
for the triangular arrangement, as reported for the vortex-
filament model [17,24]. We have numerically confirmed that
the axially symmetric leapfrogging dynamics continues at
least until t � 500 for Figs. 1(a) and 1(b).

In Fig. 1(c), three vortex rings with the same radius are
coaxially and equidistantly arranged along the z axis. We refer
to such an initial arrangement as a rectilinear arrangement.
The leapfrogging dynamics is irregular for this initial state.
We label the vortex rings A, B, and C from front to rear in
the initial arrangement. First, B and C pass through A and the
order is reversed as C, B, and A from front to rear. Then A and
B pass through C, during which a leapfrog occurs between A
and B, resulting in the order B, A, and C from front to rear.
Next A is overtaken by C, which gives the snapshot at t = 80

FIG. 3. Dependence of the symmetry-breaking dynamics on the
interaction coefficient g for vortex rings in a rectilinear initial ar-
rangement with d = 2, R = 20, and (a) g = 2 and (b) g = 0.5. The
dynamics is obtained by solving the GP equation. The isodensity
surfaces of the densities |ψ |2 = 0.5 and 0.2 are shown for (a) and (b),
respectively. The size of the box is 643, with the origin at the center,
and is seen from the +z direction. See the Supplemental Material for
movies showing the dynamics [30].

in Fig. 1(c). We can see that the axial symmetry starts to
break at this time. Subsequently, the axial-symmetry breaking
develops during irregular leapfrogging dynamics. The vortex
lines then intertwine with each other and reconnections occur.

Figure 2 shows the dynamics seen from the +z direction
for the rectilinear initial arrangement with various distances
d between the vortex rings. We see that the axial symmetry
is broken at t ∼ 100 and the unstable modes depend on the
initial distance d . The wavelengths of the unstable modes are
�2πR/8 in Fig. 2(a), �2πR/4 in Fig. 2(b), and �2πR/3 in
Fig. 2(c), with R being the radius of the vortex ring, which
indicates that the most unstable wavelength increases with
d . The growth rate for the unstable mode tends to decrease
with increasing d . The distances indicated in Fig. 2 are the
distances between the vortex rings in the phase imprint by
Eq. (5). By the imaginary-time evolution for Timag = 4 after
the phase imprint, the distance between adjacent vortices
changes from d = 1, 2, and 4 to d � 2, 3.5, and 5, respec-
tively.

Figure 3 shows the dependence of the symmetry-breaking
dynamics on the interaction coefficient g. For g = 2, the
wavelength of the unstable mode is �2πR/4 (or �2πR/3),
as shown in Fig. 3(a). For g = 0.5, the unstable wavelength
is �2πR/5, as shown in Fig. 3(b). This difference is purely
due to the difference in g, because the distance d between
the vortices after the imaginary-time propagation is almost the
same for Figs. 3(a) and 3(b). Notice that the GP equation (2)
has a scaling property. For example, the dynamics of vortex
rings with initial arrangement R and d and the interaction
strength g is equivalent to that with 2R, 2d , and g/4, where
the latter dynamics is four times slower than the former.

The symmetry-breaking instability demonstrated in
Figs. 1–3 is a modulational instability (or dynamical
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instability), in which infinitesimal symmetry-breaking noise
grows exponentially with time. However, in the present
case, the standard linear stability analysis, i.e., Bogoliubov
analysis, cannot be used, since the vortex rings move and the
system is not in a stationary state. We also cannot use the
Floquet analysis, since the dynamics of the three vortex rings
is not periodic for the rectilinear initial arrangement.

III. VORTEX-FILAMENT MODEL

To study the symmetry-breaking dynamics of vortex rings
in more detail, we employ the vortex-filament model. In
this model, we focus only on the dynamics of quantized
vortex lines. We assume that the fluid is incompressible and
irrotational except at the vortex lines. The approximation of
incompressibility is valid when the distance between vortex
lines is much larger than the healing length. When two vortex
rings get close to each other, the compressibility affects the
dynamics, which is ignored in the vortex-filament model.
The vortex-filament model has been used to study vortex-ring
generation in superfluid helium [31] and atomic BECs [32].

A vortex segment located at r moves with the velocity
given by the Biot-Savart law

vvv(r) = κ

4π

∫
(r′ − r) × dr′

|r − r′|3 , (6)

where κ = 2π is the normalized circulation of a quantized
vortex and the line integral is taken along all vortex lines. In
the numerical calculations, the nth vortex ring is represented
by a sequence of Np positions on the ring S(n)

1 , S(n)
2 , . . . , S(n)

Np

and S(n)
Np+1 = S(n)

1 . The Biot-Savart integral in Eq. (6) is then
rewritten as

vvv(r) = κ

4π

Nring∑
n=1

Np∑
j=1

∫ S(n)
j+1

S(n)
j

(r′ − r) × dr′

|r − r′|3

≡ κ

4π

Nring∑
n=1

Np∑
j=1

F (n)
j (r). (7)

We approximate the vortex line between S(n)
j and S(n)

j+1 to be a
straight line [33,34] and the line integral becomes

F (n)
j (r) =

(
D(n)

j + D(n)
j+1

)(
D(n)

j × D(n)
j+1

)
D(n)

j D(n)
j+1

(
D(n)

j D(n)
j+1 + D(n)

j · D(n)
j+1

) , (8)

where D(n)
j = S(n)

j − r. Since the vortex-filament model breaks
down for |r − r′| smaller than the size of the vortex core ξ , we
omit the line integral inside the vortex core, |r′ − r| < ξ , in
Eqs. (7) and (8), which avoids the divergence at r′ = r. The
length ξ corresponds to the healing length in the GP model
and we take ξ = 1, corresponding to g = 1. The number of
points per vortex ring is taken to be Nring = 256. Because the
radii of the rings that we are considering are �20, the distance
between the adjacent points |S(n)

j − S(n)
j+1| is typically 2π ×

20/256 � 0.5 � ξ . This is in contrast to the case of liquid
helium [33], in which the size of the vortex core is ∼10−10

m and usually much smaller than the distance between the
adjacent points |S(n)

j − S(n)
j+1|. We do not implement vortex

reconnections in our calculations, because we focus on the
axial-symmetry breaking.

The dynamics of Nring × Np points is obtained by numeri-
cally solving the equation of motion dS(n)

j /dt = vvv(S(n)
j ) using

the fourth-order Runge-Kutta method. The initial positions of
the points are set to

S(n)
j = Rnr j + Znz, (9)

where Rn and Zn are the radius and z coordinate of the nth
vortex ring, r j = x cos(2π j/Np) + y sin(2π j/Np) is the unit
vector in the radial direction, and x, y, and z are the unit
vectors in Cartesian coordinates. Small initial noise is added
to each point to trigger the axial-symmetry breaking. To avoid
numerical instability in the vortex-filament model, we cut
off the large-wave-number components in each time step as
follows. We perform a Fourier transform of the radius and z
coordinate as

c(n)
m =

Np∑
j=1

√(
S(n)

j · x
)2 + (S(n)

j · y)2e−im j, (10)

d (n)
m =

Np∑
j=1

S(n)
j · ze−im j, (11)

where m is an integer and c(n)
−m = c(n)∗

m and d (n)
−m = d (n)∗

m are
satisfied. We then eliminate Fourier components with |m|
larger than mcutoff and perform an inverse Fourier transform
as

S(n)
j = N−1

p

∑
|m|�mcutoff

(
c(n)

m r j + d (n)
m z

)
eim j . (12)

We take mcutoff = 10 in the following calculations.
Figure 4 shows the dynamics of vortex rings. In Fig. 4(a),

two vortex rings with the same radius R1 = R2 = 20 are
coaxially arranged at a distance Z2 − Z1 = 4 in the initial
state and they exhibit periodic leapfrogging dynamics in the
time evolution. The frequency of the leapfrogging dynamics
in Fig. 4(a) is similar to that in the GP model in Fig. 1(a). The
period of the leapfrogging dynamics is roughly proportional
to the distance between the vortex rings. In the GP model
in Fig. 1(a), the distance is Z2 − Z1 = 2 in the initial phase
imprint, though this increases during the imaginary-time evo-
lution for Timag, which is why the leapfrog frequency in
Fig. 1(a) is similar to that in Fig. 4(a) with the initial distance
Z2 − Z1 = 4. The vortex-core structure in the GP model may
also affect the leapfrog frequency, which is not included in the
vortex-filament model.

Figures 4(b) and 4(c) show the dynamics of three vortex
rings with triangular and rectilinear initial arrangements, re-
spectively. For the triangular initial arrangement, the three
vortex rings exhibit almost periodic leapfrogging dynamics
and the axial symmetry is retained until t = 200, as shown
in Fig. 4(b). For the rectilinear initial arrangement, in contrast,
the axial symmetry is broken and modulation arises after a few
leapfrogs, as shown in Fig. 4(c). This behavior of the vortex
rings is similar to that in the GP model in Fig. 1.

The degree of axial-symmetry breaking is quantified by
the Fourier coefficients c(n)

m and d (n)
m in Eqs. (10) and (11) for

m 
= 0. We define the degree of axial-symmetry breaking for
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FIG. 4. Dynamics of vortex rings obtained by the vortex-filament
model. (a) Two vortex rings initially located with R1 = R2 = 20,
Z1 = −30, and Z2 = −26. (b) Three vortex rings with a triangu-
lar initial arrangement, where R1 = 20 − 4

√
3/3, R2 = R3 = 20 +

2/
√

3, Z1 = −28, Z2 = −26, and Z3 = −30. (c) Three vortex rings
with a rectilinear initial arrangement, where R1 = R2 = R3 = 20,
Z1 = −30, Z2 = −26, and Z3 = −22. Vortices are seen from the
+z direction in the rightmost panels. Axial symmetry is retained
in (a) and (b) and broken in (c). The size of the box is 643, with
the origin at the center. See the Supplemental Material for movies
showing the dynamics [30].

mode m as

Cm =
Nring∑
n=1

(∣∣c(n)
m

∣∣2 + ∣∣d (n)
m

∣∣2)
. (13)

Figures 5(a) and 5(b) show the time evolution of Cm for
the dynamics in Figs. 4(b) and 4(c), respectively. The initial
values of Cm ∼ 10−3 originate from the initial random noise.
For the triangular initial arrangement, the values of Cm are
suppressed below 10−1 until t = 200, as shown in Fig. 5(a).
They oscillate and never grow for m 
= 6. The growth of the
m = 6 mode is slow and only affects the long-time dynamics
[24]. The time evolution of Cm for the rectilinear initial
arrangement in Fig. 5(b) is qualitatively different from that
in Fig. 5(a). The values of Cm exponentially grow in time as
they oscillate, reflecting the fact that axial-symmetry breaking
occurs in Fig. 4(c). At t � 100, the value of Cm is largest for
m = 4 in Fig. 5(b), which gives the modulation of the rings
shown in Fig. 4(c).

We note that the significant growth of C4 occurs roughly
periodically, e.g., at t � 40 and t � 75, as indicated by the
vertical dashed lines in Fig. 5(b). The vortex-ring configura-
tions at t = 40 and t = 75 are shown as the insets in Fig. 5(b).
We find that the three vortex rings align in a rectilinear manner
at these instants and the two vortex rings in the back are about

10-4
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100
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106

 0  50  100  150  200

C
m

t

10-4

10-3

10-2

10-1

 0  50  100  150  200

m = 1
m = 2
m = 3

m = 4
m = 5
m = 6

m = 7
m = 8

C
m

t

FIG. 5. Time evolution of the Fourier components Cm defined in
Eq. (13) for (a) triangular and (b) rectilinear initial arrangements,
corresponding to the dynamics in Figs. 4(b) and 4(c), respectively.
The vertical dashed lines in (b) indicate t = 40 and t = 75, for which
Cm is exponentially rising. The insets in (b) show the vortex rings at
these times.

to pass through the front vortex ring. Figure 5(b) indicates
that such dynamics significantly increases the symmetry-
breaking modulation of the vortex rings. For the triangular
initial arrangement, on the other hand, such a rectilinear
configuration of the three vortex rings is not realized in the
time evolution and hence Cm does not grow significantly. The
physical explanation for why such a vortex configuration is
unstable has yet to be clarified. Some simplification may be
needed to understand the mechanism, such as reduction to
point vortices [35].

To study the unstable modes, we perform a linear sta-
bility analysis. The symmetry-breaking modulation of the
mth mode is represented by the Fourier coefficients in
Eqs. (10) and (11), which we write as a vector vvvm =
(c(1)

m , d (1)
m , c(2)

m , d (2)
m , c(3)

m , d (3)
m )T, with T being the transpose.

When the modulation is small, we can linearize the equation
of motion with respect to vvvm and therefore we can linearize
the time evolution of the modulation as

vvvm(t ) = M(t )vvvm(0), (14)
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FIG. 6. The most unstable eigenvector of Eq. (14) for m = 4. The
three vortex rings are initially in the rectilinear configuration, as in
Fig. 4(c). (a) The most unstable eigenvectors (c(1)

4 , d (1)
4 ), (c(2)

4 , d (2)
4 ),

and (c(3)
4 , d (3)

4 ) are plotted at each time, where the circles, triangles,
and squares correspond to the vortex rings in the inset. (b) Shape of
the most unstable mode with m = 4 at t = 40 and t = 75. The three
vortex rings are seen from the +x direction in the left-hand panel at
each time. In the right-hand panels, the three vortex rings seen from
the +z direction are separately shown for clarity. Despite the order
of the vortex rings being changed by leapfrogging, the shapes of the
modes at t = 40 and t = 75 are similar to each other.

where M(t ) is a 6 × 6 matrix. The modes with different m
are not coupled with each other [1]. We obtain the matrix
M(t ) numerically as follows. First, we set the initial vector
as vvvm(0) = (ε, 0, 0, 0, 0, 0)T and make the initial vortex rings
using Eq. (12), where ε � 1. After the time evolution of the
vortex rings, vvvm(t ) is obtained with Eqs. (10) and (11), which
gives [M11(t ), M21(t ), . . . , M61(t )]T = vvvm(t )/ε. In a similar
manner, we obtain all the matrix elements of M(t ).

The eigenvector of M(t ) with the eigenvalue having the
largest magnitude corresponds to the most unstable mode.
Figure 6 shows the form of the most unstable eigenvector for
m = 4 with the triangular initial arrangement as in Fig. 4(c).
All the elements of the eigenvector can be taken to be real. In
Fig. 6(a) we plot the most unstable mode on the cm-dm plane.
At t = 40, the square (corresponding to the middle vortex

FIG. 7. Dependence of the symmetry-breaking dynamics on ini-
tial distance d between vortex rings for the rectilinear initial ar-
rangement with radius R = 20. The dynamics is obtained by the
vortex-filament model for (a) d = 6 with Z1 = −70, Z2 = −64, and
Z2 = −58 and (b) d = 3 with Z1 = −30, Z2 = −27, and Z2 = −24.
The size of the box is 643, with the z axis at the center; −80 < z <

−16 is shown at t = 0 in (a) and −32 < z < 32 is shown in the
other boxes. The rightmost panels show the system seen from the +z
direction. See the Supplemental Material for movies showing the
dynamics [30].

ring) is located opposite the circle and triangle (corresponding
to the front and rear vortex rings) across the origin. These plots
move in time as the leapfrog dynamics of the vortex rings, and
at t = 75, the circle (corresponding to the middle vortex ring)
is located opposite the triangle and square (corresponding
to the front and rear vortex rings) across the origin. These
eigenvectors of the unstable mode are visualized in Fig. 6(b),
where the modulation is superimposed on the unmodulated
vortex rings in an exaggerated manner. We find that the modes
at t = 40 and t = 75 have similar shapes, despite the order
of the vortex rings changing. At both t = 40 and t = 75,
the deviations from the unperturbed vortex rings in adjacent
vortex rings are opposite to each other.

Figure 7 shows the dependence of the axial-symmetry
breaking on the initial distance d between the vortex rings
for the rectilinear initial arrangement. In Fig. 7(a) the initial
distance is d = 6, which is larger than the d = 4 in Fig. 4(c).
The axial-symmetry breaking becomes significant at t � 300
and the mode m = 2 or 3 seems to be the most unstable.
For d = 3, as shown in Fig. 7(b), the modulation with m � 8
becomes significant at t � 60. Thus, the wavelength of the
symmetry-breaking modulation increases and the growth rate
of the modulation decreases with increasing d , which agrees
with the tendency in the GP model shown in Fig. 2.

IV. CONCLUSION

We have investigated the dynamics of coaxially arranged
multiple vortex rings using the GP model and vortex-filament
model. In both models, three vortex rings with rectilinear
initial arrangement [Fig. 1(d), right-hand panel] are found
to be very unstable and the axial rotational symmetry of
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the system is spontaneously broken within a few leapfrogs,
as shown in Figs. 1(c) and 4(c). In contrast, three vortex
rings with a triangular initial arrangement [Fig. 1(d), left-
hand panel] are much more stable, as shown in Figs. 1(b)
and 4(b). In the GP model, we have shown that the most
unstable wavelength depends on the initial distance between
the vortex rings (Fig. 2) and the interaction coefficient (Fig. 3).
In the vortex-filament model, we performed a Fourier analysis
of the modulation of the vortex rings and found that the
symmetry-breaking modulation significantly grows when the
three vortex rings are arranged in a line and the rear vortex
rings are about to pass through the front ring [Fig. 5(b)]. The
shape of the unstable mode was obtained (Fig. 6).

Such symmetry-breaking dynamics of multiple vortex
rings is difficult to observe in experiments, since coaxial
vortex rings with axial rotational symmetry must be created in
a controlled manner. Phase imprinting [36,37] and dynamical
[38,39] methods may realize such an arrangement of quan-
tized vortex rings in an atomic BEC.
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