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Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas
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We study the growth of two- and three-body correlations in an ultracold Bose gas quenched to unitarity. This
is encoded in the dynamics of the two- and three-body contacts analyzed in this work. Via a set of relations
connecting many-body correlation dynamics with few-body models, signatures of the Efimov effect are mapped
out as a function of evolution time at unitarity over a range of atomic densities n. For the thermal resonantly
interacting Bose gas, we find that atom bunching leads to an enhanced growth of few-body correlations. These
atom-bunching effects also highlight the interplay between few-body correlations that occurs before genuine

many-body effects enter on Fermi timescales.
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I. INTRODUCTION

Properties of the ultracold Bose gas in the unitary regime
(nla]® — o0o) are paradigmatic for other strongly correlated
systems where the s-wave scattering length, a, is much larger
than the range of interactions [1,2]. However, experimental
studies of this regime are severely limited by the enhanced
decay of pairs of atoms into deeply bound states leading
to loss rates scaling as 71/n oc n*a*. Recently, experimental
control of a near a Feshbach resonance [3] has opened up
a pathway to creating and exploring the unitary Bose gas
by rapidly quenching interactions to unitarity |a| — oo. The
inherent metastability of this system due to the Efimov effect
[4-8] combined with the emergence of a prethermal state
[9-12] has presented a theoretical puzzle as the relevance of
ground-state predictions to this nonequilibrium gas remains
unclear [13-20].

The situation is radically different for the unitary two-
component Fermi gas, which is comparatively stable due
to Pauli suppression of losses [21]. Studies of this system
over the past two decades [22] have confirmed a universal
thermodynamics parametrized by the “Fermi” scales k, =
(67%n)'3, E, = h2k§/2m, and t, = h/E, [23], where m is
the atomic mass. In addition, a parameter referred to as the
the two-body contact is central to a set of universal relations
between system properties as derived by Tan [24-26]. For
bosonic systems, the Efimov effect introduces additional rela-
tions involving the three-body contact parameter [27,28]. The
two- and three-body contacts determine the behavior of pair
and triplet correlations as two and three atoms approach one
another, respectively. The addition of the three-body contact
underscores the underlying intrinsic discrete scaling of the
unitary Bose gas [3] and the complex role of nonperturbative
few-body physics in dictating properties of the gas.

Over the past few years, experiments have begun to explore
Bose gases at unitarity by rapidly quenching from weak
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interactions to the unitary regime effectively circumvent-
ing fast atomic losses over a limited window of time
[8,11,12,29,30]. By studying the postquench dynamics of the
contacts, the interplay of few-body correlations in the unitary
Bose gas may be unraveled. This was done interferometri-
cally by Fletcher et al. [30] in the nondegenerate regime by
measuring Ramsey oscillations and extracting the two- and
three-body contacts in different regions of the cloud. In this
work, we denote such locally defined contacts as C, and Cs.
The integration of the intensive C; and C3 over the extent of the
system yields the extensive contacts C; and Cs, respectively
[27,28]. At unitarity, it was observed that the two-body contact
saturated too quickly to be time resolved and that the three-
body contact slowly approached an equilibrium prediction
[31,32]. In the degenerate regime, contact dynamics have
not been measured directly; however, the tail of the single-
particle momentum distribution observed by Makotyn et al.
[29] has been argued as consistent with nonzero contacts
[32,33] although they were not observed in the time-resolved
measurements of Ref. [12].

Theoretically modeling the experimental quench sequence
and subsequent dynamics at unitarity is nontrivial in this
strongly correlated regime. However, the existence of exact
solutions of the unitary few-body problem provides an alterna-
tive pathway to studying the many-body dynamics by extract-
ing the dynamical contacts. This is made possible through a
set of short-distance relations derived in Refs. [27,34,35] that
collectively relate the dynamics of few-body wave functions
with the correlation functions and contacts. In Ref. [34], these
relations, in conjunction with solutions of the unitary two-
body problem, yielded universal leading-order dynamics of
C, in the degenerate regime that agree quantitatively with a
many-body model including up to two-body correlations [36].
The insensitivity of this agreement to the long-range details
of the few-body model employed (trapped, untrapped, etc.)
was demonstrated in Ref. [34]. Physically, this is due to the
isolation of early-time correlation growth (¢ < #,) from long-
range physics on scales comparable to and larger than n~!/3.
These relations were also used to make a robust prediction for
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leading-order dynamics of C3 in the degenerate regime [35].
These dynamics depend log-periodically on both n and the
three-body parameter «,, which is the wave number of the
ground-state Efimov trimer [4,5].

In principle these short-distance relations hold also for
the nondegenerate Bose gas quenched to unitarity with some
additional qualifications. In this regime, it is not immediately
clear how to parametrize the nonequilibrium dynamics in
terms of the Fermi and thermal scales that includes the thermal
de Broglie wavelength A = (27 /% /mk,T)"/* and time 1, =
h/k,T. However, recent experimental results in this regime
have highlighted the central role played by the geometric
mean referred to as the “meeting time” t, = (t,1,)'/?, which
measures the travel time for an atom moving at the thermal
speed to reach its neighbors [12]. Such an event cannot be
properly captured within a few-body model. However, for
Bose gases prepared near the critical point for condensation
nA3 ~ 1, the timescale matching #; ~ 1, ~ t, allows the con-
tact dynamics to be predicted via few-body models in the same
basic spirit as Refs. [34,35]. Experimentally, this phase-space
density range was achieved near the trap center in Ref. [30]
and spans part of the range explored in Ref. [12]. At lower
phase-space densities, such predictions can still be made
but only at shorter times ¢ < t;, t,. Additionally, we expect
that atom-bunching effects due to the Hanbury Brown—Twiss
effect [37,38] may play a role in the contact dynamics, making
this an intriguing regime to study.

In this work, we quench both a pure Bose-Einstein con-
densate (BEC), approximated as a coherent state, and an ideal
thermal Bose gas to unitarity and investigate the subsequent
growth of few-body correlations in a uniform system. These
states are chosen to approximate the regimes explored exper-
imentally using ®Rb and *°K in Refs. [8,29] and [11,12],
respectively. Via analytic solutions of the unitary three-body
problem [39] and the set of short-distance relations, we extend
the study of the dynamics of C3 in Ref. [35] to the thermal
regime where log-periodic signatures are enhanced due atom
bunching. We also map out the dynamics of C, for both
thermal and BEC initial conditions. C; measures the number
of pairs per (volume)*? [40]; however, we find that after
an initial period of universal evolution the number of pairs
becomes sensitive to the surrounding “medium” consisting
of the third boson. Crucially, through this medium effect,
C, develops a secondary dependence on the Efimov effect
prior to genuine many-body effects which enter on Fermi
timescales. Due to the lack of a fourth boson in our model,
there is no analogous medium effect in the dynamics of Cs,
which measures the number of triplets per (volume)®/3 [40].
The dependence of C; on the Efimov effect in our model and
in Ref. [35] is therefore primary. Additionally, by comparing
the postquench dynamics for both thermal and BEC initial
states and searching for multiplicative signatures due to atom
bunching, we further highlight the emergence of this medium
effect in the dynamics of C,.

This paper is organized as follows. We begin in Sec. II
by reviewing connections between the many-body correlation
dynamics and few-body models in a quenched uniform gas.
These relations are then appropriately calibrated to model a
Bose gas whose initial state is either BEC or thermal. Via
these connections, we employ analytic solutions to the unitary

three-body problem to study the postquench dynamics of C; in
Sec. Il and C3 in Sec. IV. We conclude in Sec. V, commenting
on experimental implications throughout. In the Appendixes
we provide additional details related to the calculation for
completeness. In Appendix A, analytic solutions for three
resonantly interacting bosons in a trap given in Ref. [39] are
outlined, and we provide technical derivations of results used
in this work specific to these solutions. In Appendix B we
provide details related to the convergence of our calculations.

II. MANY-BODY CORRELATION DYNAMICS
VIA FEW-BODY MODELS

In this section, we outline a set of short-distance relations
between few-body wave functions, correlation functions, and
contacts at unitarity, first given in Refs. [31,34,35]. For alkali-
metal atoms, the species-dependent van der Waals length,
rvaw, furnishes a natural short range for interparticle interac-
tions [41]. In an ultracold Bose gas, the typical momentum
scale is such that krygw < 1 and the s-wave scattering length
determines the low-energy physics, captured by the zero-
range model. The connections outlined in this section are
made at distances larger than ryqw but shorter than the scales
a,n" Y3 and A.

We begin by relating the short-distance behavior of
few-body correlation functions to the contacts. The
normalized pair correlation function is defined in second
quantization as [42]

(TP @) )P (r)
(TP @) (@) )

in terms of the bosonic field operators ¥ (r) = 3, axe™/v/V
and system volume V. In a uniform system the first-order
correlation function (V¥ (r)y(r)) = N/V =n. Assuming
translational invariance, we ignore the center-of-mass
dependence of a pair and write g2 (r) = g (0, r). In first
quantization, the numerator of Eq. (1) is equivalent to the trace
over all other coordinates N(N — 1)|[{Unp|(|0); ® |r)»)|? for
indistinguishable bosons [27]. This gives

§2(r,r) = (1)

NN —1)
g(2><r>=7fd3r3-~- &y W (0,113, ).

2)

As r vanishes, the many-body wave function behaves
as  WUyg(0,r,r3,...,rN) = A(c, {r;};52)/r, where 1/r
matches the functional behavior of the zero-energy two-body
scattering state at unitarity in the zero-range model [27]. The
function A depends on the distinct positions of the remaining
atoms and the center of mass of the interacting pair ¢ = r/2.
In this limit, Eq. (2) becomes [27]

NN — 1)

() —

gor) = —33
C

/ By Pryl A, [l ()

= —, 4
r—0 1672n%r? @
where we have dropped the dependence on ¢ due to
translational invariance.

We now outline a relation analogous to Eq. (4) for the
behavior of the normalized triplet correlation function in the
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limit of vanishing separation between three bosons. In second
quantization, the normalized triplet correlation function is
defined as [42]

TP @) @I ) () ()
(WGP @) ) G ad )
()
In first quantization, the numerator of Eq. (5) is equiva-
lent to the trace over all other coordinates N(N — 1)(N —

2) (Mg |(10); ® |r)2 ® |r')3) for identical bosons in a trans-
lationally invariant system [27]. This gives

NN -1V -2)

x [Wpp (0,1, 1,1y ..., Ty)|% (©6)

g(3)(r, I‘/, I'W) =

g2, r, 1) s dry

In a uniform system, translational invariance allows us to
ignore center-of-mass dependence and write g* (R, Q) =
g¥(0,r,r) in terms of the hyper-radius R = \/r2 + p2/2
written in terms of the Jacobi vectors r and p = 2r —
r)/+/3 and the hyperangles € = {p, #, }. The set of hy-
perangles consists of the spherical angles for each Jacobi
vector and the hyperangle tan(o) = r/p [43]. In the limit
R — 0, where the separation between three-bosons vanishes
with fixed hyperangles, the many-body wave function be-
haves as \I—’MB(O, r, l'/, ry,...,Iy)~ B(C, {I'[}[>3)\I-’SC(R, Q),
where C = (r +1')/3 [27]. The three-body wave function
W, (R, ) is the zero-energy three-body scattering state

by ()
V(s lds)

depending on Efimov’s constant so ~ 1.00624 [44], the three-
body parameter R, = V2 exp(ImIn[I"(1 4 isg)]/s0)/ks that
sets the phase of the log-periodic oscillation via the gamma
function I' [45], and the hyperangular wave function ¢, (£2) =
(14 Q) sinh(so(r /2 — a))/~/47 sin2« for three identical
bosons in the lowest state of angular momentum. The operator
O = Pi3 + Py is written in terms of the B;’s that permute
particles i and j. We refer the reader to Appendix A for
analytic expressions of the hyperangular normalization factor
(@so|9s,)- In this limit, Eq. (6) becomes [27]

\IJ(RSZ)—1 i lR
(R, = sin | so In

R (7

N(N — 1)(N —2)
3

VR.Q) = |V (R, @)

x/d3r4-~' dry|BC, {r}i=3)1,  (8)

¢VR.R) = [V (R Q) Cs, ©)

8
n3s2v/3
where we have dropped the dependence on C due to transla-
tional invariance.

We now relate the contacts to the short-distance behavior
of three-body wave functions after a quench. To derive these
relations, we review the interpretation of correlation functions
as conditional probabilities [46]. If we measure an atom
whose position defines the origin, ng®(r) is the conditional
probability density for measuring another atom in a volume
dV (ndV « 1) at r [46]. The magnitude of C, therefore

dictates the probability for measuring correlated pairs. Analo-
gously, n>g®) (R, R) is the conditional probability for finding
two other atoms in volume elements dV whose locations are
defined by the three-body configuration (R, 2) [46]. The mag-
nitude of C3 therefore dictates the probability for measuring
correlated triplets. In a three-body model, these probability
densities can be extracted from a calibrated three-body wave
function W(R, 2, t) via the following relations [35]:

w0 = 2 [Erplve ot a0
ngV(R, Q1) = 21UR 0, (11)

wherers 1, = pﬁ/Z, and the factor of 2 in Egs. (10) and (11)
arises due to the indistinguishability of the measured atoms.
Equations (4) and (9)—(11) constitute the basic short-distance
relations referenced in Sec. I, serving as the foundation of our
analysis of the many-body correlation dynamics in this work.

Before moving on, we comment on the sense in which
Egs. (10) and (11) may be used to make predictions for the
two- and three-body correlations in a quenched ultracold Bose
gas. The quench immediately impacts the behavior of the
many-body wave function at short distances, which becomes
singular as 1/r. Subsequently, there is a lag between the early-
time correlation growth (r < t,) at short distance resulting
from this disturbance, and the evolution of the bulk medium
on timescales f,, f;, and ¢,. In this picture, the character of
the early-time growth of correlations at short distances is
therefore few body in nature. Not all observables, however,
may show a clear signature of the contacts as evidenced in the
recent experimental observation of an exponential rather than
the expected [24] power-law form of the high-momentum tail
of the single-particle momentum distribution [12]. Addition-
ally, the observed k-dependent rate at which the occupation
of high-momentum modes plateaus in that work suggests a
competition between short-distance few-body physics and the
equilibrating effect of quasiparticle collisions in this particular
observable [47]. Quantitatively understanding relaxation and
equilibration dynamics for quenched ultracold gases remains
an important, difficult, and open topic that we leave for future
study [48,49].

A. Initial conditions

In order to predict contact dynamics from a three-body
wave function, it is necessary to choose initial conditions such
that Egs. (10) and (11) match the prepared many-body system
under study. In this work, we consider an ultracold Bose gas
prepared as either a BEC or an ideal thermal Bose gas. The
limiting behavior of correlation functions in these cases is [42]

1 (BEC)
[!  (Thermal).

Physically, the /! bunching factor means that if we measure
one boson at the location r the probability of simultaneously
finding / — 1 additional identical bosons at this same location
is /! more likely than the individual probabilities for measur-
ing each boson at this place. For a BEC approximated as a
coherent state, this probability is always the same regardless
of the number of bosons [50].

&, ...,r)= { (12)
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In this work, we follow Ref. [35] and use the initial three-
body wave function

- R\’
U(R, R,0) = Ae R /ZBT|:1 — (—) } (13)
B,

where A is the normalization constant

0 8
A7 = (3;12)3/2(36 + 12i - 65> (14)
- 1 4 2 )
BZ B2

so that (W|W) = 1. The lengths B; and B, must be carefully
chosen so that the initial boundary conditions

2 f drs |V, p,0)*/n = {1 (BEC) (15)
’ ir—0 {2 (Thermal),
2|W(R, R,0))*/n* = {1 (BEC) (16)
T R—0 |3 (Thermal),

are satisfied. We find that the choices k,B; ~ 2.3422, k,B, ~
4.3959 and k,B; =~ 1.6679, k,B> ~ 2.8816 match the initial
boundary conditions for a BEC and an ideal thermal Bose gas,
respectively.

It is tempting to interpret the long-range details of Eq. (13)
and lengths B, and B, physically, e.g., in terms of an arti-
ficial trap. However, it was shown in Refs. [34,35,51] that,
provided the initial boundary conditions [Egs. (15) and (16)]
are satisfied, the obtained early-time contact dynamics are
largely insensitive to long-range details like the presence or
absence of an artificial trap. In these works, this insensitivity
was shown to be robust to both variation of the functional form
of the initial few-body wave function and the variation of the
frequency of an artificial trap.

B. Unitary three-body problem

For convenience, we have chosen to use analytic solutions
of the trapped unitary three-body problem in the zero-range
model given in Ref. [39], although any set of three-body
eigenstates (free space, trapped, box, etc.) at unitarity may be
used to study the contact dynamics. Due to the arbitrariness
of this choice, we focus here only on general features of the
unitary three-body problem, moving specifics of our calcula-
tions related to the chosen three-body basis to Appendixes A
and B.

We follow the general approach of Efimov [44] and
factor unitary three-body relative eigenstates as |W; ;) =
N iFD(R)ps(R)/R?, where N7 = (W, ;|W, ;) is the nor-
malization factor. The hyperangular eigenstates ¢,(2) = (1 +
0)s()/~/47 sin 2 solve the hyperangular eigenvalue prob-
lem [4]

— ¢l (@) = s*p5(a), (17)

8
(0 — 3)=0, 18
@ ( )+ﬁ¢(”/) (18)
@s(/2) = 0, (19)

yielding ¢;(a) = sin(s(wr/2 —«)) and channel labels
s =1isg,S1,... that are solutions of the transcendental

equation

8 . [smw ST —0 20
ﬁsm(€>—scos(7>_ . (20)

For channels with s> > 0, the R — 0 behavior of the hyper-
radial eigenstates is Fj(s)(R) & O(R®). In the Efimov channel

where s = isg, an additional boundary condition Fj("s")(R) x
sin[sg In(R/R;)] is required to preserve the Hermiticity of the
problem [39,52].

This model can be extended to include three-body losses
by simply modifying the three-body parameter dependence
in this boundary condition as In R, — In R, — in/sy to imitate
flux loss to deeply bound molecular decay channels [27,53].
For ®Rb [54] and K [55], the experimentally measured in-
elasticity parameters are n = 0.06 and n = 0.09, respectively.
By taking a derivative of the eigenenergies Eéi) in the Efimov
channel, we estimate the finite widths I'; for each eigenstate
due to inelastic decay to first order in 1 [27],

—cy, 1)

where the extensive three-body contact for each trapped
eigenstate is calculated analytically in Appendix A. The time-
dependent unitary three-body wave function is obtained by
projection onto the initial wave function, Eq. (13), via the
sudden approximation

WR, Q1) = Y oW (R, R)e BT (22)

8,7

where the summation runs over all channels and quantum
numbers and includes the overlaps ¢, ; = (W, ;|Wo) (see
Sec. A1 for analytic expressions). We further classify the
physics described by each channel as universal (s > 0) or
nonuniversal (s = isy) due to independence or dependence,
respectively, on the three-body parameter «,.

III. POSTQUENCH DYNAMICS OF C,(¢)

In this section, we study the early-time dynamics of C,()
for BEC and thermal initial conditions, which amounts to
enforcing Eq. (12). This is accomplished by substituting our
three-body wave function, Eq. (22), into Eq. (10) to link the
growth of pair correlations in the gas with the short-distance
behavior of the three-body model outlined in Sec. II B. Cru-
cially, the presence of a third boson external to a pair plays
a role here analogous to the medium, introducing secondary
Efimov and bunching effects into the dynamics of C, as its
presence is increasingly felt at later times. This results in
dynamics of C,(¢) that depart from universal predictions found
in the literature [34,36] before many-body effects take place.

We begin by deriving an expression for C,(¢) using the
three-body wave function in Eq. (22). To emphasize the
generality of this approach, results specific to the partic-
ular basis of three-body eigenstates used are located in
Appendix A for reasons of clarity and completeness. We begin
by rewriting the three-body eigenfunctions as W, ;(R, ) =
1+ Q)XS,.,-(r, p)/rp, where the x functions are finite in the
limit r — O and vanish in the limit |p| — 0 [56]. Combining
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Egs. (4) and (10) gives the following:
2

/d3r3,12 rZCs,j(t)(l + Q)Xw.(r’ p)

- 9
-
s, J L

G@)
32720 x>0

(23)

where we have included the time-dependent phase factors in
the overlaps ¢, j(t) = ¢, ; exp[—i(Eéf)) — il'j/2)t /h] for nota-
tional simplicity. In the limit [r| — O, the Jacobi vectors can
be related via kinematic relations [56] to give

A[xu,m] _ 2B ) xR D)

0 = - . (24)
rp =0 /3p2/4 V3p2/4
The limit in Eq. (23) can now be taken with the result
2
Ca(1) 3 Xs.;(0, p)
o= [@n e8] s

5,

We now recast the |r| — O limit as an equivalent ¢ — 0 limit
to obtain

Co(t) =327°n Y s j(0)Ch ,(ON NG 0 [0]"

5,8, J,J

x | d°r3 12 R ,

where R = r3 12+/2/3 when r = 0, and we have utilized the
shorthand notation ¢° = sin(s /2)/ V4r. Using the trapped
eigenfunctions of Ref. [39] as discussed in Sec. IIB, all
integrals in Eq. (26) may be evaluated analytically, and these
expressions are calculated in Sec. A 2.

(26)

A. BEC

In this section, we present results for C,(¢) for a BEC
quenched to unitarity. In our model, this amounts to evaluating
Eq. (26) using BEC initial conditions given in Eq. (12). The
leading-order dependence of C,(#) in this scenario was derived
analytically in Ref. [34],

1287 ¢
(672)*3 1,
by solving the unitary two-body problem, agreeing with a
many-body variational prediction to within less than 2%.

Our results for C,(t) are shown in Fig. 1 over a range
of densities of experimental interest. We find that the initial
growth of C,(¢) follows the universal prediction in Eq. (27) as
shown in Fig. 1(a). Ultimately, this agreement at short times
indicates that the presence of a third boson is irrelevant during
this stage. However, at later times ¢ = 0.25f,, the dynamics
of C, include intrinsically three-body effects: log-periodic
scaling with the atomic density and a beating phenomenon
at the frequency of an Efimov trimer. We focus now on
characterizing these effects.

The log-periodic oscillation of C,(t) with atomic density
can be seen in the dynamical surface in Fig. 1(c). This
oscillation is relatively small, on the order of a 10% variation
on top of the continuous scaling of C,(t) with the atomic

n 30t = (27)

(@)
”rngV
12 81T x 1076 =— ==
817 x 1077 =——=—
& 817x1078 = — —
< 8 8.17 x 1079 ——
‘g 817 x 10 Ve e
4 |
0 0.1 0.2 0.3 0.4 0.5
t/tn
(b)
0t n74/3cénu)_‘ r;‘é":-:-;‘:

\ n_4/3CQU)

n_4/3C§C)

710 |
0.1 0.2 0.3 0.4 0.5
t/tn
(c) 15
10
(]
N
~
¥
<
0

t/ta - 1077
1077

3
nryaw

FIG. 1. (a) Dynamics of C,(¢) for n = 0.06 for BEC initial con-
ditions over a range of densities of experimental interest compared to
the universal leading-order behavior [Eq. (27)]. (b) Evolution of the
components of C,(t) for the same parameters as (a). (¢) Dynamical
surface showing the evolution of C,() over a range of densities and
times.

density by ¢ ~ 0.5t,. By rescaling the atomic density in van
der Waals units, the dynamical surface applies to a range of
atomic species satisfying n < 1, including both 3Rb and *°K.
Additionally, the maximum of this surface occurs for densities
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satisfying
kaRS) ~ 0.91, (28)

where Rg{] =21+ s(z))/3 exp(jm/so)/Kk4 is the size of the
Jjth Efimov trimer in free space [57]. This supports the find-
ings of Refs. [35,58] that the coincidence of trimer size and
interparticle spacing results in correlation enhancement.

That the dynamics of C,(¢) should contain a mixture of
both universal and nonuniversal characteristics can be seen
easily from the coherent sum in Eq. (26), which can be
decomposed as Cy(1) = CSV(t) 4+ C™ (1) + CS(¢) into con-
tributions which are universal (s, s’ > 0), nonuniversal (s =
s’ = isg), and the remainder, which couples universal and Efi-
mov channels, respectively. Although these components are
not physically distinguishable, it is conceptually instructive
to analyze their behavior individually as shown in Fig. 1(b).
We see that n#3C{(r) is to a very good approximation
universal, showing virtually no variation with atomic density.
The violation then arises effectively through the dynamics of
n=43¢M™(t) for t > 0.25¢,, which is the only contribution
that increases as the system evolves. This contribution also
displays a visible beating phenomenon in time at the fre-
quency of the Efimov trimer with binding energy nearest E,
such that |E3({,)| > FE,. This phenomenon was also found in the
early-time dynamics of C3(¢) in Ref. [35], which we revisit in
Sec. IV A.

The delayed appearance of log-periodicities and trimer
beating in the pair correlation dynamics is a signature of the
secondary influence of the medium played by the third boson.
Importantly, this delay occurs prior to t ~ t,, where we expect
genuine many-body effects to become important. We return
to the picture of the third boson as a medium in Sec. III B,
where atom-bunching effects allow us to further characterize
this metaphor.

B. Thermal state

In this section, we present results for C,(¢) for an ideal
thermal Bose gas quenched to unitarity by evaluating Eq. (26)
using the appropriate initial conditions given in Eq. (12).
Although the equilibrium value for C, was calculated in
Refs. [31,32] as Cy7 = 32w A%n?, there are no analytic results
in the literature for the postquench growth of C,(¢) in this
regime. A two-body model was used in the supplementary
materials of Ref. [30] to estimate the time 7, &~ 0.1mA2/h at
which C,(7) grows to 90% of the model-specific equilibrium
contact density. However, this model cannot be expected to
make quantitative predictions for a quenched thermal Bose
gas because it both fails to satisfy the appropriate initial
boundary conditions in Eq. (12) and is evaluated beyond
timescales 1, #,, and #; where a many-body treatment is
necessary.

Although we simulate a thermal state, there is no ex-
plicit temperature dependence in our model, and therefore
we predict that the early-time contact dynamics are temper-
ature independent in the thermal regime. This temperature-
independent prediction is, however, valid only at times short
relative to t, t,, and t,, which is to say before individual atoms
feel effects related to their neighbors and the finite coherence
length in the problem o A [42]. Our results for the growth

(@) 30
nridw ,‘/
817 x 1070 === = & ke
8.17 x 1077 =——— @{L\
200 |sirx10s——- S |
o 817 x 1077 == -
T: 817 x 10710— — ~ ’/,"__;,g;}’ﬁ
10
0 0.1 0.2 0.3 0.4 0.5
t/tn
(b) 29
i —4/3p(nu) —_7
G oo
e e — ——
10 1
NS— ”74/30511)
0 TL_4/BC§C)
_10 |
~20 ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5
t/tn
(© 20

t/ta 107
107° 5
nryaw

FIG. 2. (a) Dynamics of C,(¢) for thermal initial conditions with
n = 0.06 over a range of densities of experimental interest compared
to the universal leading-order behavior [Eq. (29)]. (b) Evolution of
the components of C, over the same density range as used in (a).
(c) Dynamical surface showing the evolution of C, over a range of
densities.

of C,(t) in this regime are shown in Fig. 2. We show results
for contact dynamics in the thermal regime out to ¢ ~ 0.5¢,,
with the caveat that in the high-temperature regime (¢, > t,)
this predictive range is further restricted. We find that the
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leading-order growth is consistent with

1287 ¢

G =2 —
n 2(7) GO

(29)

where the bunching factor 2! appears as a multiplicative
correction to the BEC result in Eq. (27). By taking just
the leading-order dependence [Eq. (29)], we make a crude
estimate of 7, by solving Cy(12) = 0.9C5? to obtain 7, =
0.25mA?/h. For the temperature 370 nK of the gas used in
Ref. [30], we find that 7, &~ 32 us, which is consistent with
the conclusion that C, saturates too quickly for its dynamics
to have been resolved. We note that failure to include the
bunching factor 2! from Eq. (12) leads to a doubling of 1,
which would disagree with experimental findings.

As in Sec. IIT A, we find that the presence of the third
boson is irrelevant at early times evidenced by agreement with
Eq. (29), as shown in Fig. 2(a), which can be obtained from
a two-body model in the spirit of Ref. [34]. However, the
dynamics of C,(¢) depart from this initial growth behavior at
t 2 0.1t,, which is even earlier than for the BEC case [see
Fig. 1(a)]. This is the first indication of the different medium
roles that may be played by the third boson depending on the
initial state of the gas, and we return to this point shortly.
As in Sec. III A, the dynamics of C,(f) become nonuniversal
as the Efimov effect manifests through the third boson as
log-periodicities and trimer beating, both of which are visible
in the dynamical surface shown in Fig. 2(c). To study these
effects, we return to the decom(position of C,(t) in terms of
universal, C;u), nonuniversal, Cznu), and coupled, C com-
ponents whose behaviors are shown in Fig. 2(b). As for the
BEC, both the log-periodicities and the beating phenomenon
arise from the contribution C{"” for r > 0.1. A faint variation
with the atomic density is also visible in C;C) . Violation of
the continuous scaling of C,(¢) is much more pronounced for
the thermal gas on the order of 30% by ¢ ~ 0.5¢#,. Due to
this variation, we find that the surface attains a maximum for
densities satisfying

kaRY) 2 1.01, (30)

which indicates that the coincidence of trimer size and inter-
particle spacing also enhances pair correlation growth in the
thermal regime.

By comparing the dynamics of C,(¢) for different initial
conditions, the thermal or BEC nature of the third boson
medium may be isolated in traces of atom-bunching effects.
Two-atom bunching effects are immediately clear by compar-
ing the initial growth behaviors in Egs. (27) and (29), where
the signature 2! is found. Physically, this is a result of the
primary conversion of bunched pairs into correlated two-body
clusters with short-distance behavior o< 7! in the sense of
Sec. II. Isolating the three-atom bunching signature 3! in the
dynamics of C, is, however, more subtle. To investigate this,
we average the dynamics of C,(¢) over a log-period in the
atomic density,

nie3/%0
S dlogmCa(t)
37T/S()

O(1) = . €1V

30

20F

n44/3672

10

t/tn

FIG. 3. Dynamics of C,(t) for both thermal and BEC initial
conditions. The solid black lines correspond to the leading-order
growth formulas. The dot-dashed lines are the fits from Eqgs. (32)
and (33). The data points are from directly evaluating Eq. (26).

in order to isolate bunching effects from the Efimov effect. We
then fit the thermal data to

2
(1) ~ ati n ﬁ(f) (Thermal), 32)

and find that o = 52.94 ~ 2567 /(67%)*/? and B = —7.12
provides a reasonable fit as shown in Fig. 3. We test for the
3! signature by fitting the BEC data for C,(¢) to

sooat Bl
C() = 55 + ;(;) (BEC), (33)

which also provides a reasonable fit as shown in Fig. 3. The
bunching factor 3! therefore makes the dominant contribution
to the secondary dynamics of C,(¢) for the thermal Bose gas.
Physically, we interpret this as the secondary conversion of
a third boson bunched in close proximity into a two-body
cluster, which we conclude from Eq. (32) is 3! more likely
in the thermal case. Conceptually, it is an intriguing ques-
tion how this effect might cascade sequentially with other
surrounding bunched bosons as the system evolves toward
Fermi timescales. This might be investigated theoretically, for
instance, by using solutions of the unitary four-body problem
[19] to predict the contact dynamics through a straightforward
extension of the procedure outlined in Sec. II.

IV. POSTQUENCH DYNAMICS OF C;(¢)

In this section, we study the early-time dynamics of Cs(t)
for BEC and thermal initial conditions, by enforcing Eq. (12)
in the evaluation of Eq. (22) in Eq. (11). The dynamics of C5(t)
for a BEC quenched to unitarity were first studied in Ref. [35].
In this work, we revisit that study and extend it to the thermal
Bose gas.

We begin by deriving an expression for C;(¢) in terms of
the three-body wave function in Eq. (22). As in Sec. I, details
related to the specific basis of three-body eigenstates used can
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n—5/3c3

FIG. 4. Dynamical surface for the postquench evolution of C5(z)
for BEC initial conditions with n = 0.06 over a range of densities of
experimental interest.

be found in Appendix A. From Egs. (9) and (11), we obtain
2

C()4
O R P = DOV R D (Y
S.J

nst V3

As discussed in Sec. II B, only hyper-radial eigenstates in the
Efimov channel are nonzero in the limit R — 0, and therefore
we ignore all universal channels in the above summation.
The hyperangular dependence of both sides of Eq. (34) is
identical and can be integrated over the solid angle [dQ =

2 [ dasin® 2« 7% dp [ di to yield

2
Fj(SO)(R)

Z CSo,j(t) % —
- /Uﬁqu@w) sin [soIn £ ]| &—0
J J !

The above limit can now be taken without difficulty and, when
using the trapped eigenstates of Sec. II B, can be calculated
analytically along with the normalization factors (F j(s) |F j(s)) =

J5 AR RIF{"(R)|? as detailed in Appendix A.

12
—C3(0). (35)
nsy

A. BEC

In this section, we review results for C3(z) for a BEC
quenched to unitarity first obtained in Ref. [35]. These results
are revisited here both for reasons of completeness and to be
contrasted against the results in Secs. III A and III B and for C3
for thermal initial conditions in Sec. IV B. The leading-order
growth of C5(r) was fit in Ref. [35] to

2
n=3C4(t) = 0.55[1 4 3.09 x H(n, «, z)](ti) . (36)

with  unknown log-periodic function H(n,«k,,t) =
H(ne’™ i’ ., t)e[0,1]. This log-periodic profile can
be seen in the dynamical surface shown in Fig. 4, which when
plotted versus atomic density in van der Waals units applies
broadly to atomic species satisfying n < 1.

Although the visible beating phenomenon at the frequency
of trimers at the scale of the interparticle spacing in Fig. 4
was first observed in Ref. [35], we now understand this to

1.5

1077
10~°

3
nryaw

FIG. 5. Dynamical surface for the postquench evolution of C;(t)
for thermal initial conditions over a range of densities of experimen-
tal interest with n = 0.06.

be a more general phenomenon in light of the results for C,
in Sec. III. The visibility of these oscillations in time and
of the log-periodic variations with the atomic density in the
dynamical surface is, however, much greater for C; than C,.
Intuitively, this agrees with the picture outlined in Sec. III
that the Efimov effect is secondary in the dynamics of C,,
entering only after the presence of the third boson is felt after
a period of universal evolution. Quantitatively, whereas the
log-periodic oscillation of C, was estimated in the 10-30%
range in Secs. III A and III B, it is the primary contribution for
Cs(t), which is clear from Eq. (36).

By inspecting the dynamical surface for C5(¢), we find that
it attains a maximum for densities

kaRY) ~ 0.75, (37)

which is within the error estimates knRg{j) ~ (0.74(5) from
Ref. [35] obtained by comparing positions of the peaks at
t = 0.5t, for two different forms of the initial three-body wave
function. We note that although the resonance conditions for
C, and Cj are slightly phase shifted, they both demonstrate
the significance of scale matching between Efimov trimer
and interparticle spacing for few-body correlation growth in
a BEC quenched to unitarity.

B. Thermal state

In this section, we analyze the nonequilibrium dynamics
of C3(t) in the thermal regime. From the dynamical surface
shown in Fig. 5, we find that the early-time growth of C;(¢)
behaves as

2
t
n=BC(t) =3.17[1 + 2.91 x H(ne "7/% ,, r)](t—> ,

(38)

where the log-periodic profile function is well approximated
by a phase-shifted version of the function H in Eq. (36).
Comparing Egs. (36) and (38) reveals the three-body atom-
bunching factor 3.17/0.55 ~ 3! in a ratio of the overall
prefactors. The log-periodic violations also reflect the three-
body atom-bunching factor, which can be seen from the ratio
3.17 x 2.91/1.70 ~ 3! of the prefactors of H.

043604-8



BUNCHING, CLUSTERING, AND THE BUILDUP OF ...

PHYSICAL REVIEW A 99, 043604 (2019)

The dynamics of C3(¢) have been studied experimentally
in this regime in Ref. [30]. At the longest times studied in
that work, C; was found to approach the theoretical prediction
C3? ~ 3+/350A%n® [31,32]. The early-time dynamics were,
however, found to be consistent with zero. Our temperature-
independent prediction for the early-time dynamics of Cs(?)
[(Eq. (38)] holds for times t < f;,t,. Therefore, we con-
sider the case nA> = 1 where the latest times considered in
our model (¢ ~ 0.5t,) can be used as a prediction. We find
C»(0.5t,)/n*A* & 0.45, which appears to be within the early-
time experimental error bars in Ref. [30]. However, the time
t = 0.5¢, is less than the combined experimental duration of
the rf pulse and shortest interrogation time, and therefore
a direct quantitative comparison is not possible within our
model. We do, however, find qualitative agreement with the
experimental finding that C; grows slower than C,, which in-
dicates a sequential buildup of clusters in the thermal regime.

By inspecting the dynamical surface for Cs(¢), we find that
it attains a maximum for densities

kR = 0.83, (39)

which was used to estimate the phase shift of the log-periodic
function H in Eq. (38). Combined, the resonance conditions
(28), (30), (37), and (39) collectively indicate that the link be-
tween scale matching between Efimov trimer and interparticle
spacing and enhanced few-body correlation growth in a Bose
gas quenched to unitarity is quite robust.

V. CONCLUSION

In this work, we have analyzed the two- and three-body
contact dynamics after quenching a Bose-condensed and
thermal ultracold Bose gas to unitarity. By connecting the
correlation dynamics of this many-body system with solutions
of the three-body problem, we search for signatures of the
Efimov effect in the contacts. We find that pair correlations are
initially insensitive to three-body effects, evolving universally
with the Fermi scales. However, after a delay the medium ef-
fect of the third boson introduces intrinsic three-body effects,
including log-periodicities and a trimer beating phenomenon.
Additionally, by comparing results for pair correlation growth
for thermal and BEC initial states, we find that the third
boson carries a memory of the initial state of the medium.
For three-body correlations, we also find bunching signatures
in the early-time dynamics of the thermal C;. We find that
log-periodicities and trimer beating first predicted in Ref. [35]
are robust, arising in the dynamics of both C, and C; for both
thermal and BEC initial conditions.

In the thermal regime, our predicted contact dynamics are
temperature independent at times less than the thermal and
Fermi times ¢, and t,, respectively. This constraint precludes
direct quantitative comparison with the recent experimental
results in Ref. [30]. However, our findings are qualitatively
consistent with that work, namely, that C, is saturated well
before the shortest interrogation times, and that C; develops
much more slowly in comparison.

By extending the interferometric technique used in
Ref. [30] to the degenerate regime, the contact dynamics
presented in this work and Ref. [35] might also be tested.
Additionally, in the thermal regime where nonequilibrium

many-body predictions at unitarity are lacking, the contact
predictions presented in this work might be used as a bench-
mark. This reasoning also applies in the degenerate regime
where the pursuit of a many-body theory including the Efimov
effect remains ongoing in the theoretical community [59-61].
Finally, we note that the method outlined in this work is
completely general, and can therefore be extended straightfor-
wardly to the scenario where channel couplings are important,
e.g., at finite scattering length [62].
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APPENDIX A: FURTHER DETAILS OF THE UNITARY
TRAPPED THREE-BODY PROBLEM

An advantage of using analytic solutions to the trapped uni-
tary three-body problem is that the calculation of the contact
dynamics can be done fully analytically. In this section, we
begin by giving some details of the trapped three-body eigen-
states from Refs. [39,63] for reasons of completeness [64].
We then derive analytic results in Secs. A 1 and A 2 required
to calculate the contact dynamics via Egs. (26) and (35).

Within each channel, the hyper-radial eigenfunctions
F j(‘v) (R) satisfy the hyper-radial Schrédinger equation

_h_z d_2+li + Uy (R) F(S)(R)_E(I)F(S)(R)
2m\dR*> RdR : J T ’

(AL)

where U;(R) = Ii*s>/2mR? + mw?R?/2 is the channel poten-
tial with trapping frequency, w, and associated trap length,
ano = (h/mw)'/?. In the universal channels (s> > 0), the
hyper-radial eigenstates are given by

s _R2242 + (s R’
FOR) = e */2 hnL;>(R2/a§0)<a—> , (A2)

ho

where L(].s) is a generalized Laguerre polynomial of degree
J. The spectrum of three-body eigenenergies is given by
E;{,) = (s+ 14 2j)iw, where j =0, 1,2, ....In the Efimov
channel (s = isg), they are given by
(o) (py — Fhoy, 2,2

Fjso (R) — ?WE;é)/Zﬁw,iso/Z(R /ahu), (A3)
where W is a Whittaker function [45]. The eigenenergy spec-
trum in the Efimov channel is obtained by solving

1 +iso— E/n R
argF|: oo — By / w}JrsOln—t:argF[lJrisO],

Ao

2
(A4)
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which is understood mod 7. We choose R; such that there
is an Efimov trimer with binding energy Eég) = hzxf /m =
0.0517% /mr2y, in the free-space limit w — 0.

The normalization constant of the three-body eigenfunc-
tions is given by

23\° 1
N2 (—) —_— (AS)
YNVB) FPE sl

where
Guls) = / Ap, (). (A6)

The components of N ; were calculated analytically in
Ref. [63] with the result

(Pslps) = — ; sm(2 [cos(2 - sin 3

4 ST
— m COS F s (A7)
9| (s Cls+ 1+ j]
FUF) == >0 (A
1—EY /hw+iso
< ; T[Iml/f Z_3b /TR0
(F'j( 0)|F'j( U)> — aﬁ ( 2 ) (A9)

o Sinh(So?T)|]"(l—E§{;)/¢) |2 )

where 1 is the digamma function.

We derive also expressions for the widths I'; of each
eigenstate in the Efimov channel using Eq. (21). This requires
that the extensive three-body contacts C3(j ) be obtained for
each eigenstate. We begin from the relation between the (non-
normalized) triplet correlation function and the wave function
for three bosons in vacuum [46],

GO, r,r) =310, 1, 1), (A10)

where |W) = |¥).,| ¥y, ;) in terms of center of mass and
relative wave functions. Following Ref. [27], we then integrate
over the center-of-mass dependence, and take the R — 0 limit
at fixed €2 to relate with the extensive three-body contact

3!/d3C U(r, v, r’) = 311, (R, ),

8
V352

The identical hyperangular dependence of W ;(R, £2) and
W,.(R, &) allows us to integrate simply over [ d2 to obtain

o [Wse(R, Q) Ci.  (All)

52 ’
0

eIy
AFIET)

Fj(So)(R)

= cY. Al2
sin[so In R/R;] 3 ( )

R—0

From the asymptotic behavior of the Whittaker functions [45],
the above limit can be taken with the simple result

S0

) .
Imw( 1-E3 éhw-HsU)
L 4 : (Al4)
ho nImI//(l—Es‘Q/zthriso)’

a2 CY = : (A13)

where I'; is the width obtained via the relation given in
Eq. (21). Equation (A14) was first obtained in Ref. [63]. The
free-space result C3 = (e~ 27/% )”Kf for the nth Efimov trimer
can be obtained by taking asymptotic limits of the digamma
function in Eq. (A13) [45,65].

1. Overlaps ¢, ;

The overlaps for general s are given by the integral
33/2
Csj = ?/dRRS/dQ Yo(R, )7 (R, ).  (ALS)

The hyperangular integration can be easily performed and the
total expression for the overlaps reduces to [63]

o, =B FR) e
BRI |0 Ry )
9673/2 sin [%]
(Bilo) = ——or (AL7)
(polgho) = 87 (A18)

The mod square of the overlaps obeys the following sum
rule [63]:

’<Fj(x)’F0)|2

les. P = P(8) e (A19)
J (Fj(0)|Fj( )>(F0|F0>
2
P(s) = [{¢s]¢0)| ’ (A20)
(psldbs) (doldbo)
> les il = Ps), (A21)
J
> Ps)=1, (A22)
where |Fp) is the hyper-radial component of |W),
2 2
Fy(R) = <£> eRZ/ZBf[1 - (5) } (A23)
Oho B2
and
$o(2) = 1. (A24)

For general s, the total contribution to the norm of each chan-
nel is given by Zi s, j|2 = P(s), which was first obtained in
Ref. [63] as '

P(s)—|:sn sin(sn) cos(sjr>+ 4 cos(sr[>:|_1
127 \2 ) 2) "33 6

96s sin (%)
_ A25
X (s =4y (A25)

We quote the analytic expression for (Fj(SU)|F0) in Eq. (A25),
which was first obtained in Ref. [35]:

1 /1 _[1 1 3
FOlR = —(=28|=. il -— 2| 2,j|)., 26
AR CEF R ) A
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where

_ D +iso/2+3/2)
[(a+2— EY /2hw)

Ele, j

( 1 )(i.f0+])/2
X —
2
Ao

1 1 —iso/2—-3/2—a
x-Fi(a, b; c, _— 4 — .
2fi( Z)<2B$ 2a§0>

(A27)

The function ,F; is the Gauss hypergeometric function [45]
with arguments

a=3/24+a+isy/2, (A28)
b= (iso — E§' /ho + 1) /2, (A29)
c=a+2—EY 2ho, (A30)
1/B> — 1
_ VB = 1/aj, 1= Vi, (A31)
/B + 1/a},

The overlaps ¢, ; for s* > 0 are also needed in the evaluation

of C,(¢) in Eq. (26). We calculate analytic results for (Fj(s) |Fo),
and the relevant integrals can be found tabulated in Ref. [66].
‘We obtain the result

s a2 . 4 .
(FO|Fo) = 212, )51 = 2;"2 113, j. s, (A32)
where
T[S +a]Mls+j+1/1 a2\
Yo, jos] =2l + i+ 1 ~ 4 ho
JIT[s + 1] 2 2B
s

X 2 F] ]’§+a;s+1;ﬁ (A33)

§+2Bf

2. Evaluation of Aj:j.’,

To evaluate Eq. (26) for the dynamics of C,(¢), integrals of

the form
Ar r/ _f/dZF(Y)(Z) F(Y)(Z)]

must be evaluated, where we have defined the array A;; as

(A34)

shorthand. Below we obtain analytic expressions for A;j for
all relevant cases.

Case I: s> > 0,5% > 0. For the universal channels, the
array has the following integral form:

1 /3 , ,
_ 13 5/245 /2=1/2 =27 (5) (7 ()
> 2ah0/dZ(Z) 4 ZL]' (Z)Lj/ (2).
(A35)

This integral can be evaluated analytically by expanding
LE-}Y )(z) via the recurrence relation [67]

j / v
, "+s—1/24j —
LY () =

[ i
)Ll((s _5_])/2)(Z),

(A36)

where the (-) is the generalized binomial coefficient. Equation
(A35) is now in a form which can be found tabulated in
Ref. [66], and we find with the help of symbolic mathematical
software that

, 1 /3 ) '~ 1 :/ s+s'—1 s'—s—1
Ay = —\/jaho(—l)"<—s e )! A 2
’ 2V 2 2 Jj Jj

s sS—s+1 , s+s5-1
><3Fz(—1,—1—s,—'—/—

2 ’ 2 ’
R |
—j+ "),

> (A37)

Case II: s = s’ = isy. For the Efimov channels, the array
has the following integral form:

RNE \
s0.80 _ — |2 -3/2 ,
Aj?j’o = 2\/;[1[10/ dZ(Z) WE;é)/2hw,ng/2(Z)WE3(é )/2hw,is0/2(z)'
(A38)

This integral can be found tabulated in Ref. [66], and we

obtain
I'[1/2]T[1/2 + iso]T'[—iso]
r [ l—iso—zEéf)/hw ] r [ 2+i.vo—E§{;]/hu):|

3
50,50 __ =
A%0 _\/;ahoRe
2

11 1—EY Jheo + i
xRe|:qF2<2 2+iso, 3b / w+ls0;

2

—EY) /ho +iso. 1)}

1 + iso, (A39)

2

where 3F, is the generalized hypergeometric function [67].
We note that for j = j/, Eq. (A39) matches an expression
first derived in Ref. [63]. The generalized hypergeometric
function ,Fy(a;---ap;bi--- by; 1) is absolutely convergent
on the unit circle if Re[)_b; — ) a;] > 0 [67]. This works
out to the requirement Es({:) — E;{;) > 0. If Eég) — Eé{;) <0,
then the label transform j — j’ performed on Eq. (A39) will
produce a convergent result.

Case III: s* > 0, s’ = isy. For the coupling of universal
and Efimov channels, the array has the following integral
form:

,s’ Gho 5/2-1,=2/2] (5)
f/dzz Ly @Wei) 1y isy 2 (@)

(A40)

This integral can be evaluated analytically by expanding the
generalized Laguerre polynomial as [67]

J . /
©) oy _ T\ Z
L (Z)_,g?( 1)<j_l>“.

Equation (A40) is now in a form that can be found tabulated
in Ref. [66], and we find

(A41)

oy =t f2 Z( D () N il [
U \J =1 T1—EY 2hw+1+5/2]

(A42)
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APPENDIX B: CONVERGENCE

In this section, we comment on the convergence of our
results for the contact dynamics as a function of eigenbasis
size. For the dynamics of Cy, the components (C3", C™, C\)
each have different convergence requirements. It is therefore
computationally more efficient to calculate each component
separately. The results presented in this work for C,(¢) were
obtained using a basis consisting of the first 17 universal chan-
nels with 190 eigenstates per channel and 25 positive-energy
eigenstates in the Efimov channel in addition to bound Efimov

trimers overlapping significantly with the initial state. For
Céu) and Céc), we find convergence to two digits of precision
beyond the decimal at + = 0, which rapidly improves to four
digits of precision or more by 7 = 0.5¢,. For C™", we find
convergence to more than four digits of precision beyond the
decimal at all times. For the dynamics of C3(t), the calculation
is generally well converged at all times to at least five digits
of precision beyond the decimal for using 100 eigenstates in
the Efimov channel and the few bound Efimov trimers that
overlap insignificantly with the initial state.
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