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Particle-number scaling of the quantum work statistics and Loschmidt echo
in Fermi gases with time-dependent traps
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We investigate the particle-number dependence of some features of the out-of-equilibrium dynamics of
d-dimensional Fermi gases in the dilute regime. We consider protocols entailing the variation of the external
potential which confines the particles within a limited spatial region, in particular, sudden changes of the trap
size. To characterize the dynamic behavior of the Fermi gas, we consider various global quantities such as the
ground-state fidelity for different trap sizes, the quantum work statistics associated with the protocol considered,
and the Loschmidt echo measuring the overlap of the out-of-equilibrium quantum states with the initial ground
state. Their asymptotic particle-number dependencies show power laws for noninteracting Fermi gases. We also
discuss the effects of short-ranged interactions to the power laws of the average work and its square fluctuations,
within the d-dimensional Hubbard model and its continuum limit, arguing that they do not generally change the
particle-number power laws of the free Fermi gases.
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I. INTRODUCTION

The recent progress of experiments in atomic physics has
provided a great opportunity for a thorough investigation of
the thermodynamics of quantum systems, and the interplay
between quantum and statistical behaviors. Atomic systems
are realized with a great control, thanks to the impressive
progress in the manipulation of cold atoms [1]. The realiza-
tion of physical systems which are described by theoretical
models, such as dilute Fermi and Bose gases, Hubbard and
Bose-Hubbard models, with spatial dimensions from one to
three, provides thorough experimental checks of the fun-
damental paradigms of statistical and quantum physics. In
particular, they allow us to investigate the unitary quantum
evolution of closed many-body systems, exploiting their low
dissipation rate which maintains phase coherence for a long
time [1,2]. Therefore the theoretical investigation of the out-
of-equilibrium unitary dynamics of many-body systems is of
great importance for a deep understanding of the fundamental
issues of quantum dynamics, their possible applications, and
new developments.

In this paper we study some features of the out-of-
equilibrium quantum dynamics of Fermi gases, arising from
variations of the external potential which confines them within
a limited spatial region. We consider generic d-dimensional
traps arising from external power-law potentials, and, in
particular, the cases of harmonic traps and hard-wall traps.
Some aspects related to this issue have been discussed in the
literature, such as the time dependence of the particle density
and fixed-time correlation functions, spatial entanglement,
and so on, in particular for one-dimensional systems, see, e.g.,
Refs. [3–16].

We focus on the particle-number dependence of the out-of-
equilibrium dynamics of N-particle Fermi gases in the dilute
regime, when the external potential is changed in such a way
as to give rise to sudden variations of the trap size, or shifts of
the trap. To characterize the evolution of the quantum states,

we consider various global quantities, such as the ground-state
fidelity associated with changes of the trap size, the quantum
work associated with a sudden change of the trap size, the
overlap between the quantum state at a given time t and the
initial ground state, as measured by the so-called Loschmidt
echo. We show that large-N power laws characterize their
dependence on the particle number.

We mostly consider lattice gas models of spinless non-
interacting Fermi particles in the dilute regime, realized in
the limit of large trap size keeping the particle number fixed.
This corresponds to the trap-size scaling limit, or continuum
limit, whose scaling functions are related to the correlation
functions of a continuum many-body theory of free Fermi
particles in an external confining potential [17,18]. In the case
of the quantum work and its fluctuations, we also discuss
the effects of particle interactions, in the framework of the
Hubbard model and its continuum limit in the dilute regime.

The paper is organized as follows. In Sec. II we present
the general setting of the problem for free Fermi lattice
gases in the dilute regime, and their continuum limit. In
Sec. III we study the particle-number dependence of the
ground-state fidelity associated with variations of the trap
size; the corresponding equilibrium condition is realized in
the limit of adiabatic changes of the trap features. Section IV
is devoted to the computation of the first few moments of the
quantum work distribution associated with sudden changes
of the trap size, starting for an equilibrium (ground-state)
condition. In Sec. V we study the particle-number dependence
of the overlap between the quantum states along the out-of-
equilibrium evolution and the initial states, as measured by the
so-called Loschmidt echo. In Sec. VI we discuss the effects of
short-ranged particle interactions within the Hubbard model
and its continuum limit, arguing that the power laws of the
asymptotic particle-number dependence of the quantum work,
and its fluctuations, do not generally change with respect
to the case of free Fermi gases. Finally, in Sec. VII we
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summarize our main results, and draw our conclusions. Some
useful formulas for the ground state of noninteracting Fermi
gases are reported in the Appendix.

II. GENERAL SETTING OF THE PROBLEM

We consider d-dimensional lattice gases of N noninter-
acting spinless Fermi particles constrained within a limited
spatial region by an external force. The corresponding lattice
many-body Hamiltonian reads

H (�) = −t
∑
〈xy〉

[c†
xcy + H.c.] +

∑
x

V (x, �) nx , (1)

where x are the sites of a d-dimensional cubic-like lattice,
〈xy〉 indicates nearest-neighbor sites, cx is a spinless fermionic
operator, nx = c†

xcx is the particle-density operator. In the rest
of the paper we set the lattice spacing a = 1, the kinetic
constant t = 1, and h̄ = 1; their dependence can be easily
inferred by dimensional analysis. The confining potential
V (x, �) is coupled to the particle density operator; it is such
that V (x, �) → ∞ for |x| → ∞, so that 〈nx〉 → 0 for x → ∞.
We assume it is isotropic, and characterized by a generic
power law, i.e.,

V (x, �) = 1

p
vp|x|p , � = v−1 , (2)

where � should be considered as the trap size [7,17]. The
potential with power law p = 2 gives rise to harmonic traps,
where ω = v is the corresponding frequency. In the limit p →
∞ we recover hard-wall traps, so that V = 0 for |x| < � and
V = ∞ for |x| > �. The particle number operator N̂ = ∑

x nx

is conserved, i.e., [N̂, H (�)] = 0. We consider the lattice
model (1) at a fixed number N of particles, N ≡ 〈N̂〉.

We consider the dilute regime, when the particles are
sufficiently diluted, i.e., N/�d � 1. This is effectively defined
as the asymptotic behavior in the large trap-size limit, keep-
ing the particle number N fixed. This limit can be studied
in the trap-size scaling framework [10,17], which relates
the asymptotic trap-size dependence of lattice gases in the
dilute regime with the corresponding vacuum-to-metal quan-
tum transition of the many-body Hamiltonian (1) in the pres-
ence of a chemical potential term [adding a term −μ

∑
x nx to

the Hamiltonian (1), releasing the constraint on the number
of particles]. We recall that the large trap-size limit in the
presence of a chemical potential μ corresponds to taking
the large-� limit keeping the ratio N/�d fixed. A detailed
discussion of the connection between the dilute regime and
the one keeping N/�d fixed can be found in Ref. [17]. In
particular, when increasing the chemical potential across the
value μ = μc = −2d , the Fermi gas experiences a quantum
phase transition, from a trivial phase where the ground state
is given by the vacuum (absence of particles, for μ < μc),
to the metallic phase characterized by algebraically decaying
correlations (μ > μc), see, e.g., Ref. [20].

The critical behavior at the vacuum-to-metal transitions
(located at μ = μc = −2d) is characterized by the trap-size
exponent [17,19]

θ = p

p + 2
, (3)

depending on the power of the confining potential (2). Its
meaning is related to the fact the presence of an external
inhomogeneous potential induces a nontrivial length scale
ξ ∼ �θ in the correlation functions of the system (we recall
that we are using the particular physical units h̄ = 1, a = 1,
t = 1). Thus, the critical length scale does not scale as the
trap size, but as a nontrivial power with exponent θ . Only
in the limit p → ∞ we have that ξ ∼ � as expected from
standard finite-size scaling arguments [21]. For example, the
trap-size dependence of the gap �(�) of the Fermi gas (i.e., the
difference of the lowest energy levels) behaves asymptotically
as

�(�) ∼ ξ−z ∼ �−zθ , (4)

where z = 2 is the dynamic exponent associated with the
vacuum-to-metal transition of Fermi gases. Moreover, cor-
relation functions of generic local operators O(x) develop a
trap-size scaling behavior [10,17], such as

F (x1, . . . , xn; �, N ) ≡ 〈O(x1) . . . O(xn)〉
≈ �−εF (X 1, . . . , X n; N ), (5)

where

X i = xi/�
θ , ε = n θ yo, (6)

and yo is the renormalization-group dimension of the operator
O(x) at the fixed point associated with the vacuum-to-metal
transition [20,21]. Of course, corrections to this asymptotic
behavior arise in lattice models due to the space discretization.
They are generally suppressed by powers of �, more precisely
they are expected to vanish as �−2θ for lattice free-fermion
gases.

In the continuum limit a → 0, where a is the lattice spac-
ing, or equivalently in the limit �/a → ∞ keeping fixed a, we
recover a continuum model for a Fermi gas of N particles in a
trap of size �, corresponding to the many-body problem with
one-particle Hamiltonian

H(�) = p2

2m
+ V (x, �) . (7)

We set m = 1, so that the trap size � corresponds to that
of the lattice model (1), using the same unit (h̄ = 1 and
t = 1). Such a continuum limit corresponds to the trap-size
scaling limit of the lattice model [10,19]. This implies that the
scaling functions F (X 1, , X n; N ) entering the trap-size scaling
relation (5) are exactly given by the continuum many-body
problem associated with the one-particle Hamiltonian (7).
Some useful formulas for the ground state of Fermi gases
with the one-particle Hamiltonian (7) are reported in the
Appendix.

In this paper we mostly focus on the evolution of the Fermi
gas arising from variations of the trap size, starting from the
ground state associated with an initial trap size �0. We study
the relations between the initial and evolving states, as they
are quantified by a number of quantum information concepts,
such as ground-state fidelity, quantum work statistics, and
Loschmidt echo.

In the protocol that we consider the initial condition of
the Fermi gas is the ground state associated with the initial
Hamiltonian parameters. Therefore, in the continuum limit,
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the t = 0 state is represented by the many-body wave function

�(x1, . . . , xN , t = 0; �0) = 1√
N!

det[ψi(x j ; �0)] , (8)

where ψk (x; �0) are the lowest N eigenstates of the one-
particle Hamiltonian H(�0), cf. Eq. (7). Then the trapping
potential generally changes as

V (x, t ) = 1

p
κ (t )|x|p . (9)

The time dependence of the function κ (t ) has a time scale ts.
In the limit ts → 0 we may consider it as a sudden change
of the confining potential, while for ts → ∞ we recover the
adiabatic limit [more precisely when ts � �(t )zθ with �(t ) ≡
κ (t )−1/p], when the quantum evolution passes through equi-
librium ground states associated with the varying trap sizes.
The time variation of the external potential gives generally
rise to a nontrivial quantum evolution of the Fermi gas, whose
many-body wave function in the continuum limit can be
written as

�(x1, . . . , xN , t ; �0) = 1√
N!

det[ψi(x j, t ; �0)] , (10)

where the one-particle wave functions ψi(x j, t ; �0) are solu-
tions of the one-particle Schrödinger problem

i
dψi(x j, t ; �0)

dt
=

[
p2

2
+ V (x, t )

]
ψi(x j, t ; �0) , (11)

ψi(x j, t = 0; �0) = ψi(x, �0) . (12)

In particular, we will consider the out-of-equilibrium dynam-
ics arising from sudden changes of the trap size.

III. GROUND-STATE FIDELITY RELATED TO
VARIATIONS OF THE TRAP SIZE

Before discussing the out-of-equilibrium dynamics arising
from sudden variations of the trap size of the system, we
investigate the adiabatic limit of our dynamic problem, which
corresponds to slow variations of the trap size �(t ) ≡ κ (t )−1/p,
when the time scale of the time-dependent external potential
gets large, so that the system is always in the ground state
associated with the actual value �(t ). Thus the global changes
of the system properties are related to the variation of the
ground-state many-body wave function, and in particular, to
the quantum overlap between the ground states for different
trap sizes. This is quantified by the equilibrium ground-state
fidelity associated with variations of the trap size.

The concept of ground-state fidelity has been introduced
to quantify the overlap between ground states associated with
different parameters of the model [22,23]. The usefulness of
the fidelity as a tool to distinguish quantum states can be
traced back to Anderson’s orthogonality catastrophe [24]: the
overlap of two many-body ground states corresponding to
Hamiltonians differing by a small perturbation vanishes in the
thermodynamic limit.

The ground-state fidelity monitors the changes of the
ground-state wave function |0�,N 〉 of the N-particle Fermi gas
trapped by the potential with length scale �, when varying the

control parameter v = �−1. We define it as [22]

F (�0, �1, N ) ≡ ∣∣〈0�1,N

∣∣0�0,N
〉∣∣ . (13)

Defining

δ� ≡ �1/�0 − 1 , (14)

and assuming δ� sufficiently small, we can expand the ground-
state fidelity in powers of δ�: [22]

F = 1 − 1
2δ2

� χF (�0, N ) + O
(
δ3
�

)
, (15)

where χF may be considered as the corresponding susceptibil-
ity. The cancellation of the linear term in the expansion (15)
is essentially related to the fact that the fidelity is bounded,
i.e., 0 � F � 1. The fidelity susceptibility gives a quantitative
idea of the speed of the flow of ground states within the
global Hilbert space of the quantum states, when varying the
trap size. The behavior of the ground-state fidelity, and in
particular, its susceptibility, at quantum transitions has been
discussed in the literature, see, e.g., Refs. [25–28], finding a
sizable enhancement of the fidelity susceptibility with respect
to the behavior of systems in normal conditions.

We compute the ground-state fidelity in the trap-size scal-
ing limit, or equivalently in the continuum limit. As we shall
see, the fidelity susceptibility turns out to be independent of
�0 in this limit, i.e.,

χF (�0, N ) ≡ χF (N ) . (16)

We then determine the large-N asymptotic behaviors. It is
important to note that such large-N asymptotic behaviors
should be always meant within the dilute regime of the lattice
gas model, i.e., when the condition N/�d � 1 is satisfied.

To begin with, we consider N-particle Fermi gases
constrained within one-dimensional harmonic traps, whose
ground-state wave function can be written as [29]

�(x1, . . . , xN ; �) = �−N/4cN A(X1, . . . , XN )e− ∑
i X 2

i /2 ,

A(x1, . . . , xN ) =
∏

1�i< j�N

(Xi − Xj ) ,

where Xi = xi/
√

�, and cN is the appropriate normalization
constant so that

∫ ∏N
i=1 dxi|�|2 = 1. The fidelity between

one-dimensional ground states associated with the trap sizes
�0 and �1 can be analytically computed, obtaining

F (�0, �1, N ) =
∫ N∏

i=1

dxi �(x1, . . . , xN ; �1)∗�(x1, . . . , xN ; �0)

=
[

4�0�1

(�0 + �1)2

]N2/4

. (17)

By expanding it as in Eq. (15), we obtain the corresponding
susceptibility, which is given by

χF (N ) = 1
8 N2 . (18)

The computation of the fidelity for Fermi gases in higher
dimensions, d > 1, is more complicated. The ground state of
N-particle gases is again given by the Slater determinant as-
sociated with the lowest N one-particle states, such as Eq. (8).
They can be obtained by filling the lowest one-particle states
(A2) with

∑
i ni � ne. The number N of particles or states is a
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FIG. 1. The fidelity susceptibility for two-dimensional harmonic
traps with respect to a variation of the trap size �. We show (prac-
tically exact) data of n−3

e χF versus ne, and also the corresponding
linear extrapolation a + b/ne using the data for ne and ne − 1. They
clearly appear to approach the large-ne limit n−3

e χF ≈ 1/3 shown by
the dashed line. Recalling that ne ≈ √

2N asymptotically, we obtain
the large-N behavior (20).

function of ne, which asymptotically behaves as N ≈ n2
e/2 in

two dimensions, and N ≈ n3
e/6 in three dimensions.

The ground-state fidelity for different trap sizes is formally
given by the integral of two N-particle Slater determinants.
To compute matrix elements between states expressed in
terms of Slater determinants, such as � (κ )(x1, . . . , xN ) =
det[ψ (κ )

i (x j )]/
√

N!, we may use the notable formula (see
Ref. [30] and references therein)

〈� (1)(x1, . . . , xN )|� (2)(x1, . . . , xN )〉

=
∫ N∏

i=1

dxi � (1)(x1, . . . , xN )∗� (2)(x1, . . . , xN )

= det

[∫
dx ψ

(1)
i (x)∗ ψ

(2)
j (x)

]
. (19)

We compute the fidelity associated with N particles (in
practice this can be done exactly) by using the above formula
with the one-particle eigenfunctions associated with different
trap sizes, �0 and �1, so that δ� � 1. Then, to evaluate the
fidelity susceptibility χF (N ) for N particles, we perform the
δ� → 0 extrapolation of the quantity 2(1 − F )/δ2

� at fixed N .
This can be achieved with high accuracy. Results for two-
dimensional Fermi gases are shown in Fig. 1. The large-N
power law of χF is then obtained by analyzing the behavior
of the data with increasing N . This analysis shows that the
large-N power law depends on the spatial dimensions. Indeed,
the fidelity susceptibility shows the asymptotic behavior

χF (N ) = bd nd+1
e

[
1 + O

(
n−1

e

)]
= cd N (d+1)/d [1 + O(N−1/d )] , (20)

for d-dimensional harmonic traps. This is clearly supported
by the data shown in Fig. 1 for two-dimensional gases up
to ne = 30 corresponding to N = 435. We estimate b2 ≈ 1/3
with high accuracy, see Fig. 1, thus c2 ≈ √

8/9. An analogous

0 100 200
N

0

5

10

N
 -2

 χ
F

data
fit d=1 hard walls

FIG. 2. The fidelity susceptibility for one-dimensional hard-wall
traps with respect to a variation of the trap size �. We show data of
N−2χF up to N = 200. Their large-N behavior nicely fits the function
f (N ) = 2 ln N + b + c/N as shown by the dashed line, supporting
the asymptotic behavior (21).

analysis of three-dimensional data confirms the large-N be-
havior (20) with b3 ≈ 1/8, thus c3 ≈ (81/32)1/3.

We now consider the hard-wall limit p → ∞ of the confin-
ing potential. To compute the ground-state fidelity associated
with two different trap sizes, we may use the one-particle
eigenfunctions (A3) and the formula (19). As shown by
Fig. 2, the results for one-dimensional hard-wall traps show
the asymptotic large-N behavior

χF (N ) ≈ a N2 ln N, (21)

with a ≈ 2. Therefore, it appears to increase faster than that
associated with the harmonic traps.

IV. QUANTUM WORK ASSOCIATED WITH CHANGES
OF THE TRAPPING POTENTIAL

A. Quantum work distribution

In this section we focus on the statistics of the work done
on the Fermi gas, when this is driven out of equilibrium by
suddenly switching the control parameter associated with the
external potential. Several issues related to the definition and
computation of the work statistics in quantum systems have
been already discussed in a variety of physical implementa-
tions [31,32], including spin chains [33–41], fermionic, and
bosonic systems [41–47].

We consider the quantum dynamics of a ground-state
Fermi gas initially constrained within a trap of size �0, that
is subject to a sudden variation of the trap size from �0 to �1.
In this section we analyze the particle-number scaling of the
quantum work average and square fluctuations associated with
this quench protocol.

The quantum work W associated with out-of-equilibrium
dynamic protocols do not generally have a definite value.
More specifically, this quantity can be defined as the dif-
ference of two projective energy measurements [31]. The
first one at t = 0 projects onto the eigenstates of the initial
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Hamiltonian H (�0) with a probability p�0
m,N given by the

density matrix of the initial state, for example, given by
the equilibrium Gibbs distribution. Then the system evolves,
driven by the unitary operator U (t, 0) = e−iH (�1 )t , and the
second energy measurement projects onto the eigenstates of
the many-body Hamiltonian H (�1). The work probability
distribution can thus be written as [31,48,49]:

P(W ) =
∑
n,m

δ
[
W − (

E �1
n,N − E �0

m,N

)] |〈n�1,N |m�0,N 〉|2 p�0
m,N ,

(22)

where E �
n,N and |n�,N 〉 are the eigenvalues and corresponding

eigenstates of the many-body Hamiltonian with trap size �.
The zero-temperature limit corresponds to a quench protocol
starting from the ground state of H (�0) (we assume that the
ground state is not degenerate). The work probability (22)
reduces to

P(W ) =
∑

n

δ
[
W − (

E �1
n,N − E �0

0,N

)] |〈n�1,N |0�0,N 〉|2 . (23)

Assuming that both �0 and �1 are large, thus in the con-
tinuum or trap-size scaling limit, we conjecture that the work
probability develops the asymptotic behavior

P(W, �0, �1, N ) ≈ �zθ
0 P (w, δ�, N ) , (24)

where we introduced the scaling variable

w = �zθ
0 W , (25)

associated with the quantum work, and δ� = �1/�0 − 1. The
power law of the prefactor of the work distribution and that of
the rescaling of the quantum work are related to the scaling
behavior of the gap �(�0) ∼ �−zθ

0 , so that∫
dW P(W, �0, �1, N ) =

∫
dwP (w, δ�, N ) = 1 . (26)

The scaling behavior (24) implies that the moments 〈W k〉 of
the work distribution develop the asymptotic behavior

〈W k〉 =
∫

dW W k P(W ) ≈ �−zθk
0 Wk (δ�, N ) , (27)

and so on. These scaling relations will be supported by explicit
calculations.

We also mention that within the same scaling framework
we may also consider the more general case when the ini-
tial condition is represented by a Gibbs distribution with
temperature T , thus the quantum work distribution is given

by the more general expression (22), with p�0
m,N ∼ e−E

�0
m,N /T .

For sufficiently small T , the temperature dependence can
be taken into account by adding a further scaling variable
associated with T to the arguments of the scaling functions.
The corresponding scaling variable is Tr ∼ T/�(�0) where
�(�0) ∼ �−zθ

0 is the gap, cf. Eq. (4). In the following we limit
our calculations to the zero-temperature limit.

B. Average work

Let us first determine the average work. We compute it in
the trap-size scaling or continuum limit. Using Eqs. (23) and

(27), we write it as

〈W 〉 = 〈0�0,N | H (�) − H (�0) |0�0,N 〉
= 〈0�0,N |

∑
x

[V (x, �) − V (x, �0)]nx |0�0,N 〉

=
∫

dx[V (x, �) − V (x, �0)]ρ(x, �0, N ) , (28)

where

ρ(x, �0, N ) = 〈
0�0,N

∣∣n(x)
∣∣0�0,N

〉
. (29)

Therefore, the trap-size and particle-number dependencies of
the average work can be inferred from those of the ground-
state particle density. For N-particle Fermi gases, confined by
a generic power-law potential (2) with trap size �0, the trap-
size scaling of the particle density can be obtained from the
corresponding continuum limit, i.e., [50]

ρ(x, �0, N ) ≈ �−dθ
0 S(X , N ) ,

X ≡ x/�θ
0 , S(X , N ) =

N∑
k=1

ψk (X )2 , (30)

where ψk are the one-particle eigenfunctions of the one-
particle Hamiltonian (7). The large-N behavior of Sp turns out
to asymptotically behave as [17,50]

S(X , N ) ≈ Nθ Sr (X/N (1−θ )/d ) . (31)

In particular, for a one-dimensional harmonic trap [10,51,52]

Sr (z) = 1

π

√
2 − z2 for |z| � zb =

√
2 , (32)

and Sr (z) = 0 for |z| � zb. The corrections to this large-N
behavior are [10] O(N−1) (relatively to the leading term) for
z < zb. We also mention that at the boundary of the cloud,
i.e., for z = zb where ρ(x) vanishes, a different large-N scaling
behavior sets in [10,53], where the particle density increases
as N1/6, instead of the N1/2 behavior for z < zb. This is related
to the fact that the z → zb limit of the O(1/N ) corrections is
singular.

Using Eq. (30), we straightforwardly obtain

〈W 〉 ≈ �−2θ
0 W1(δ�, N ) ,

W1(δ�, N ) = B(δ�) I1(N ) ,

B(x) = 1 − (1 + x)p

p(1 + x)p
= −x + O(x2) , (33)

I1(N ) =
∫

dx|x|pS(x, N ).

Note that Eq. (33) agrees with the trap-size scaling reported in
Eq. (27).

Moreover, using Eq. (31), we obtain the asymptotic large-
N behavior

W1(δ�, N ) ≈ B(δ�) I1 N1+2θ/d ,

I1 =
∫

dx|x|pSr (x) . (34)

Note that the above scaling equations imply first the trap-
size scaling limit, and then the large-N limit, thus always
remaining within the dilute regime.
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For one-dimensional harmonic traps, using Eq. (32), we
obtain

W1(δ�, N ) = 1
2 B(δ�) N2 . (35)

Note that, since the ground-state energy is given by

E �
0 = �−1

N∑
i=1

(i − 1/2) = N2

2�
, (36)

Eq. (35) implies

〈W 〉 � E �1
0 − E �0

0 = −1

2
�−1

0 N2 δ�

1 + δ�

, (37)

as expected.

C. Work fluctuations

We now consider the second moment of the work distribu-
tion, and in particular,

〈W 2〉c = 〈W 2〉 − 〈W 〉2 . (38)

We obtain its scaling behavior, and in particular, its large-N
power law, by arguments similar to those for the average work.
Using Eqs. (23) and (27), we write

〈W 2〉c = 〈0�0,N |[H (�) − H (�0)]2 |0�0,N 〉c

= �
−2p
0 B(δ�)2

∫
dx1dx2|x1|p|x2|pG(x1, x2), (39)

where

G(x1, x2) = 〈
0�0,N

∣∣ n(x1) n(x2)
∣∣0�0,N

〉
− 〈

0�0,N

∣∣ n(x1)
∣∣0�0,N

〉〈
0�0,N

∣∣ n(x2)
∣∣0�0,N

〉
. (40)

Therefore, the trap-size and particle-number dependencies
of the work fluctuations can be inferred from those of the
equilibrium density-density connected correlation G(x1, x2).

For free fermions, G(x1, x2) can be written as

G(x1, x2) = −|C(x1, x2)|2 + δ(x1 − x2)C(x1, x2) , (41)

where C(x1, x2) is the one-particle correlation function, which
is [17]

C(x1, x2) = 〈0�0,N | c(x1)†c(x2) |0�0,N 〉
= �−dθ

0 E (X 1, X 2) , (42)

where

E (X 1, X 2) =
N∑

k=1

ψk (X 1)∗ψk (X 2) , X i = xi/�
θ
0 . (43)

Of course, C(x, x) = ρ(x). Therefore, we have

G(x1, x2) = �−2dθ
0 Z (X 1, X 2) ,

Z (X 1, X 2) = −E (X 1, X 2)2 + δ(X 1 − X 2)E (X 1, X 2) . (44)

Note that the trap-size scaling function Z develops the large-N
behavior [17,50]

Z (X 1, X 2, N ) ≈ Nθ Zr (Nθ/d X 1, Nθ/d X 2) (45)

for X 1 = X 2 (this scaling behavior does not hold for |X 1 −
X 2| → 0).

0 10 20 30 40ne

0.25

0.30

n e-3
 I 2

data
O(1/ne) extrapolationd=2    p=2

FIG. 3. N-dependence of the function I2(N ) entering the expres-
sion (46) for the square work fluctuations 〈W 2〉c, associated with a
sudden quench of the trap size of two-dimensional gases, from �0

to �1. We show data of n−3
e I2 versus ne, and also the corresponding

linear extrapolation a + b/ne using the data for ne and ne − 1. They
approach the large-ne limit n−3

e I2 ≈ 1/3 shown by the dashed line.
Recalling that asymptotically ne ≈ √

2N , we obtain the large-N
behavior (50). Concerning the units, we recall that we set the lattice
spacing a = 1, the kinetic constant t = 1, and h̄ = 1.

Using the above results for the connected density-density
correlation function, we arrive at

〈W 2〉c ≈ �−4θ
0 W2(δ�, N ) ,

W2(δ�, N ) = B(δ�)2 I2(N ) ,

I2(N ) =
∫

dX 1dX 2|X 1|p|X 2|pZ (X 1, X 2) . (46)

Again, Eq. (46) agrees with the trap-size scaling put forward
in Eq. (27).

The large-N dependence can hardly be inferred from the
large-N scaling of the two-point function G(x1, x2), such as
Eq. (45), because the integral I2 in Eq. (46) includes the
contribution for |x2 − x1| → 0, where Eq. (45) does not apply.
To determine it, we write I2(N ) as

I2(N ) = TrM2p − TrM†
1pM1p , (47)

Mkp,i j =
∫

dx|x|kpψi(x)∗ψ j (x) , (48)

and compute it for several values of N . The analysis of I2(N )
with increasing N shows that the leading contributions of
the two terms in Eq. (47) asymptotically cancel. For one-
dimensional harmonic traps we obtain the exact result

I2(N ) = 1
2 N2 for d = 1, p = 2 . (49)

For two-dimensional harmonic traps, the large-N extrapola-
tion of fixed-N results shows the asymptotic behavior

I2(N ) = eN3/2[1 + O(N−1/2)] for d = 2, p = 2 , (50)

with e ≈ √
8/9, see Fig. 3. These results may hint at the

general large-N behavior I2(N ) ≈ e N1+2θ/d when extending
the results to confining potential with generic powers p.
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We finally note that the higher moments (higher than the
second one) of the work distribution (23) cannot be written
as expectation values of powers of the difference of the final
and initial Hamiltonians, such as the cases of the first and
second moments, cf. Eqs. (28) and (39). In these cases more
complicated expressions must be evaluated. In this paper we
only report results for the first two moments.

D. Quantum work associated with a breathing Fermi gas

We now consider a noninteracting one-dimensional Fermi
gas of N particles trapped by a harmonic potential. The initial
state at t = 0 is its ground state within a trap of size �0 ≡
ω−1

0 centered at a distance xc: �(x, t = 0) = 1√
N!

det[ψi(x j −
xc)] where ψi are the one-particle eigenstates in a harmonic
potential. Then the gas is released within a larger trap of
size �1 ≡ ω−1

1 > �0. The time-dependent many-body function
describing the motion is given by

�(x1, . . . , xN , t ) = 1√
N!

det[ψi(x j, t )],

ψi(x, t ) =
∫ ∞

−∞
dyP(x, t ; y, 0)φi(y − xc; �0),

P(x, t ; y, 0) =
[

mω1

2π i sin(ω1t )

]1/2

exp

{
imω1

2 sin(ω1t )

× [(x2 + y2) cos(ω1t ) − 2xy]

}
, (51)

where φi(y − xc, �0) are the eigenfunctions (A3) for a har-
monic trap centered at x0 with trap size �0, P(x2, t2; x1, t1)
is the one-particle propagator associated with an oscillator
of frequency ω1 = �−1

1 . The particle density oscillates as a
pendulum, as one can easily infer by computing the time
dependence of the particle density

ρ(x, t ) =
N∑

i=1

|ψi(x, t )|2 = ρ(x, t + 2π/ω1) , (52)

and ρ(x, t ) = ρ(−x, t + π/ω1).
We now compute the average quantum work associated

with the sudden shift of the center moving from x = xc to
x = 0, and enlargement of the harmonic trap. For this purpose
we must evaluate

〈W 〉 = 〈0xc,�0,N | 1

2�2
1

∫
dx x2n(x)| 0xc,�0,N 〉

− 〈0xc,�0,N | 1

2�2
0

∫
dx (x − xc)2n(x) | 0xc,�0,N 〉 , (53)

where | 0xc,�0,N 〉 indicates the ground state of the N-particle
Fermi gas in a harmonic trap of size �0 centered at xc. After
some manipulations, we may write it as

〈W 〉 = �−2
0 〈0xc,�0,N | B(δ�)

∫
dx (x − xc)2n(x) | 0xc,�0,N 〉

+ �−2
0 〈0xc,�0,N | xc

(1 + δ�)2

∫
dx (x − xc)n(x) | 0xc,�0,N 〉

+ �−2
0 〈0xc,�0,N | x2

c

2(1 + δ�)2

∫
dx n(x) | 0xc,�0,N 〉 , (54)

where δ� = �1/�0 − 1. Thus

〈W 〉 = �−2
0 B(δ�)

∫
dx (x − xc)2 ρ(x − xc, �0)

+ �−2
0

xc

(1 + δ�)2

∫
dx (x − xc) ρ(x − xc, �0)

+ �−2
0

x2
c

2(1 + δ�)2

∫
dx ρ(x − xc, �0) , (55)

where ρ(x, �0) is the particle density for a trap size �0. We
note that the first term corresponds to the average work for the
variation of the trap size from �0 to �1, cf. Eq. (28), and the
second one vanishes because of the reflection symmetry of the
particle density. We obtain

〈W 〉 = �−1
0 W1(δ�, Xc, N ) ,

W1(δ�, Xc, N ) = B(δ�)

2
N2 + X 2

c

2(1 + δ�)2
N , (56)

where Xc = xc/�
θ . The first term is essentially related to the

change of the trap size, while the second one to the shift of
the trap. Note that their N-dependence power law differs; the
dominant one is that related to the change of the trap size.

We may also compute the average fluctuations 〈W 2〉c. We
only report the results for the case the trap size is unchanged,
thus �1 = �0, and we only shift the trap center from xc to the
origin. We obtain

〈W 2〉c = �−2
0 W2(δ�, Xc, N ) ,

W2 = X 2
c

∫
dX1 dX2 X1 X2 Z (X1, X2) = X 2

c

N

2
. (57)

V. QUANTUM OVERLAP BETWEEN INITIAL
AND EVOLVED STATES

A. Loschmidt echo

To characterize the quantum dynamics arising from vari-
ations of the trapping potential, we study how the out-of-
equilibrium states arising from the change of the trapping
potential depart from the initial one, which is the ground
state associated with the trap size �0. This issue can be quan-
titatively analyzed by considering the overlap between the
initial state and the evolving N-particle states during the out-
of-equilibrium quantum evolution. This provides nontrivial
information on the nature of the quantum dynamics associated
with the quenches considered in this paper, extending earlier
studies focusing on the correlation functions and spatial en-
tanglement at fixed time [12,14].

The evolution of the overlap with the initial ground state
can be quantified by the so-called Loschmidt echo

LE = |〈�(x1, . . . , xN ; t )|�(x1, . . . , xN ; t = 0)〉| , (58)

and the related echo function

Q(t, N ) = − ln LE (t, N ) , (59)

where the initial t = 0 state |�(x1, . . . , xN ; t = 0)〉 is the
ground state for a system constrained within a trap of size
�0. Therefore, the echo function Q becomes larger and larger
when the overlap measured by the Loschmidt echo gets more
and more suppressed.
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We consider again a sudden quench of the potential, cor-
responding to the variation of the trap size from �0 to �1,
including �1 → ∞ corresponding to a free expansion of the
gas. We generally expect the following scaling behavior:

Q(t, �0, �1, N ) ≈ Q(τ, δ�, N ) , (60)

where

τ = �−zθ
0 t (61)

is a scaling variable associated with the time t , so that τ ∼
t �(�0) since �(�0) ∼ �−zθ

0 is the gap for the trap of size �0.
The dynamic trap-size scaling behavior (60) is analogous to
that put forward, and numerically checked, for the dynamic
finite-size scaling of the Loschmidt echo in out-of-equilibrium
conditions arising from quenches at quantum transitions [54].

The Loschmidt echo LE (t ) of the out-of-equilibrium dy-
namic arising from a sudden variation of the trap size from �0

to �1 (starting from the ground state associated with �0) can
be related to the corresponding work distribution P(W ), cf.
Eq. (23). Indeed one can show that [33]

LE (t ) = |CP(t )|, CP(t ) =
∫

dW eitW P(W ) , (62)

relating the Loschmidt echo with the characteristic function
CP(t ) of the work distribution. Of course, the trap-size scaling
behavior (60) put forward for the Loschmidt echo is consistent
with that for the work distribution, cf. Eq. (24).

In the following we focus on one-dimensional systems
trapped by harmonic and hard-wall potentials. Extensions
to higher dimensions may be straightforwardly considered,
but they require more cumbersome calculations. We present
calculations in the continuum limit, which are valid in the
trap-size scaling limit of the lattice gas model.

B. Harmonic traps

1. Quantum dynamics when changing one-dimensional
harmonic traps

We consider Fermi gases in general time-dependent con-
fining harmonic potential, Eq. (9) with p = 2, starting from
an equilibrium ground-state configuration with initial trap size
�0, as outlined in Sec. II.

As shown in Ref. [55], see also Ref. [6], the time-
dependent many-body wave function �(x1, . . . , xN ; t ) of the
system can be derived from the solutions ψ j (x, t ) of the
one-particle Schrödinger equation

i∂tψ j (x, t ) =
[
−1

2
∂2

x + 1

2
κ (t )x2

]
ψ j (x, t ), (63)

with the initial condition ψ j (x, 0) = φ j (x) where φ j (x) are the
eigensolutions of the Hamiltonian at t = 0, characterized by a
trap size l0, with eigenvalue Ej = �−1

0 ( j − 1/2). The solution
can be obtained introducing a time-dependent function s(t ),
writing [55,56]

ψ j (x, t ) = s−1/2φ j (x/s)exp

(
i
ṡx2

2s
− iE j

∫ t

0
s−2dt ′

)
, (64)

where φ j (x) is the jth eigenfunction of the Schrödinger equa-
tion of the one-particle Hamiltonian at t = 0, thus with trap

size l0. The function s(t ) satisfies the nonlinear differential
equation

s̈ + κ (t )s = κ0s−3 (65)

with initial conditions s(0) = 1 and ṡ(0) = 0. Then, using
Eq. (64), one can write the time-dependent many-body wave
function as [6]

�(x1, . . . , xN ; t ) = 1√
N!

det[ψ j (xi, t )]

= s−N/2�(x1/s, . . . , xN/s; 0)

× exp

⎛
⎝ iṡ

2s

∑
j

x2
j − i

∑
j

E j

∫ t

0
s−2dt ′

⎞
⎠, (66)

where �(x1, . . . , xN ; 0) is the wave function of the ground
state for the Hamiltonian at t = 0.

In the case of an instantaneous change to a confining
potential with trap size �1, so that κ (t ) = �−2

1 for t > 0, the
solution of Eq. (65) reads

s(t ) =
√

1 + (
�2

1/�
2
0 − 1

)
[sin(t/�1)]2 . (67)

Notice that, assuming �1/�0 > 1,

1 � s(t ) � �1/�0 , (68)

and ṡ = 0 when s(t ) = 1 and s(t ) = �1/�0. Interestingly, the
many-body quantum states at times corresponding to s(t ) =
1 and s(t ) = �1/�0 turn out to coincide with the ground
states associated with the trap sizes � = �0 and � = �2

1/�0,
respectively (notice that �2

1/�0 > �1). In the case �1 → ∞,
corresponding to an instantaneous drop of the trap, so that
κ (t ) = 0 for t > 0, the solution of Eq. (65) is a monotonically
increasing function, given by

s(t ) =
√

1 + (t/�0)2. (69)

Further analytic results for a linear time dependence of κ (t ) in
Eq. (9) can be found in Ref. [10].

2. Loschmidt echo for an instantaneous change of the trap size

Using the above results, we may write the Loschmidt echo
as

LE (t, N ) =
∣∣∣∣∣ s−N/2

∫ N∏
i=1

dxi �(xi/s; 0)∗�(xi; 0)

× exp

⎛
⎝−iṡ

2s

∑
j

x2
j

⎞
⎠

∣∣∣∣∣∣ (70)

= s−N/2

∣∣∣∣det
∫

dx ψi(x/s; 0)∗ψ j (x; 0)exp

(−iṡ

2s
x2

)∣∣∣∣,
where we used Eq. (19). Then, noting that the function s(t ),
cf. Eq. (67), can be rewritten as

s(t ) ≡ S(τ, δ�) , (71)

where τ = t/�0, δ� = �1/�0 − 1, and

S(τ, δ�) =
[

1 + (
2δ� + δ2

�

)(
sin

τ

1 + δ�

)2
]1/2

,

S(τ, δ� = ∞) =
√

1 + τ 2 , (72)
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FIG. 4. The echo function Q, cf. Eqs. (58) and (59), associated
with changes of one-dimensional harmonic traps, whose trap size
suddenly varies from �0 to �1, for δ� = 1, 2, ∞, as given by Eq. (75).

we obtain

LE (t, �0, �1, N ) = |detAi j (τ, δ�, N )| ,

Ai j =
∫

dZe−iS′Z2/2φi(Z/
√

S)φ j (Z
√

S) , (73)

where S′ = dS/dτ , and the eigenfunctions φn(X ) are those
reported in Eq. (A3) with ξ = 1.

By further developing the above equations, we arrive at the
final expression

LE (t, �0, �1, N ) = F (S, S′)N2/2 ,

F (S, S′) = 2S√
(1 + S2)2 + S2S′2 . (74)

This can be derived by straightforward manipulations of
the expression (70). We also checked it numerically using
Eq. (73).

Finally, for the echo function Q = − ln LE we obtain

Q(t, �0, �1, N ) = N2

4
ln

[
(1 + S2)2 + S2S′2

4S2

]
, (75)

where S(τ, δ�) is reported in Eq. (72). The above expression
is in agreement with the general scaling behavior put forward
in Eq. (60). In Fig. 4 we show the echo function for some
values of δ�, including that for the free expansion δ� → ∞.
Note that when Q(t ) = 0, the quantum state coincides with the
initial one, apart from a trivial phase; this occurs periodically,
when τ = kπ�1/�0 and k = 0, 1, 2, . . .. In the case of a free
expansion, �1/�0 = ∞, we have

Q(t, �0,∞, N ) ≈ N2

2
ln τ (76)

in the large-time limit.
We finally note that, by exploiting Eq. (62), the behavior of

the Loschmidt echo can also provide information on the work
distribution of the same dynamic protocol.

C. Free expansion from a hard-wall trap

We now consider an N-particle Fermi gas constrained
within hard walls, in the corresponding ground state, and
study the out-of-equilibrium dynamics arising from the sud-
den drop of the hard walls, allowing the Fermi gas to expand
freely.

The free expansion of the gas after the instantaneous drop
of the walls is described by the time-dependent wave function

�(x1, . . . , xN ; t ) = 1√
N!

det[ψi(x j, t )], (77)

where ψi(x, t ) are the one-particle wave functions with initial
condition ψi(x, 0) = φi(x), cf. Eq. (A4), which can be written
in terms of the free-particle propagator P(x2, t2; x1, t1), as

ψi(x, t ) =
∫ �0

−�0

dy P(x, t ; y, 0) φi(y) ,

P(x2, t2; x1, t1) = 1√
i2π (t2 − t1)

exp

[
i(x2 − x1)2

2(t2 − t1)

]
. (78)

Then the Loschmidt echo can be written as

LE (�0, t, N ) = |〈�0|�(t )〉| = |detFkq(t )| , (79)

where

Fkq(t ) =
∫ �0

−�0

dx φk (x)∗ ψq(x, t ) . (80)

One can easily check that LE , thus Q = − ln LE , can be
written as a function of the scaling variable τ = �−2

0 t and the
particle number N , in agreement with the scaling behavior
predicted by Eq. (60).

The Loschmidt echo is expected to vanishes in the large-
time limit due to the fact that the particles escape from the
trap in their free expansion. This is also formally obtained
by noting that the large-t behavior of the one-particle wave

0 100 200
N

6

8

10

Q
 / 

N

τ=1/2
τ=1
τ=2
τ=4

d=1 hard wall 

FIG. 5. The echo function Q, cf. Eqs. (58) and (59), for a free
expansion of the Fermi gas after the sudden drop of the hard walls
trapping the gas, for some values of τ = �−2

0 t . The data are consistent
with the asymptotic behavior Q ≈ aN (ln N + b) (represented by the
dashed lines).
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functions, cf. Eq. (78), have the following asymptotic
behavior:

ψn(x, t ) ≈
√

2

π3t

1 − (−1)n

n
, (81)

i.e., they tend to be independent of x, corresponding to the fact
that when x � vFt (where vF is the Fermi velocity) the one-
particle wave functions within the space occupied initially can
be approximated by a constant.

Results for the Loschmidt echo are shown in Fig. 5, up to
N = 200 particles, for some values of τ . As expected, the echo
function Q increases with increasing τ , thus implying a rapid
suppression of the Loschmidt echo. The results also show that
in the large-N limit the echo function increases as

Q(�0, t, N ) ∼ N ln N . (82)

Therefore, in the case of hard-wall trap, the echo function Q
turns out to increases more slowly than the case of harmonic
traps, cf. Eq. (75).

VI. INTERACTING FERMION GASES

A. Hubbard model

We now discuss the effects of short-ranged particle inter-
actions on the particle-number scaling behaviors obtained for
free fermions, in particular for the quantum work statistics.
For this purpose, we consider the Hubbard model describing
lattice gases of spinful fermions. The Hamiltonian of the
Hubbard model reads

Hh = −t
∑
σ,〈xy〉

(c†
σxcσy + H.c.) + U

∑
x

n↑xn↓x , (83)

where x are the sites of a cubic lattice, 〈xy〉 indicates nearest-
neighbor sites, cσx is a fermionic operator, σ =↑↓ labels the
spin states, and nσx ≡ c†

σxcσx. Again we set t = 1. Analo-
gously to noninteracting lattice Fermi gases, cf. Eq. (1), the
external force trapping the particles is taken into account by
adding a potential term, i.e,

H = Hh + Hv , Hv =
∑
σ,x

V (x, �) nσx . (84)

The particle number operators N̂σ = ∑
x nσx are conserved,

i.e., [H, N̂σ ] = 0. For simplicity, in the following we consider
balanced Fermi systems, thus N↑ = N↓ = N/2 where N is the
total number of particles.

We define the particle density

ρ(x) = 〈nx〉 ≡ 〈n↑x + n↓x〉 , (85)

the one-particle correlation

C(x, y) =
∑

σ

〈c†
σxcσy + H.c.〉 , (86)

and the connected density-density correlation

G(x, y) = 〈nxny〉 − 〈nx〉〈ny〉 . (87)

In the symmetric case N↑ = N↓, we have that 〈n↑x〉 = 〈n↓x〉
and 〈c†

↑xc↑y〉 = 〈c†
↓xc↓y〉.

We again consider an out-of-equilibrium dynamics arising
from the sudden change of the trap size, from �0 to �1 > �0,

in the dilute regime. Our purpose is to discuss the particle-
number dependence of the average work and its fluctuations,
associated with this process.

B. Dilute regime of the Hubbard model

To investigate the particle-number dependence of the work
fluctuations, we need to summarize a number of known results
concerning the equilibrium correlation functions of N-particle
interacting lattice fermions, associated with the ground state
in the presence of an external power-law potential. They show
a corresponding equilibrium trap-size scaling.

1. Three-dimensional systems

In the language of the renormalization-group theory,
the power-law scaling behaviors in the dilute regime
are controlled by a corresponding dilute fixed point, re-
lated to the vacuum-to-metal quantum transition [20]. The
renormalization-group analysis of the effects of the interac-
tions shows that the U term is irrelevant at the dilute fixed
point for d > 2 because its renormalization-group dimension
yU = 2 − d is negative. Therefore, the asymptotic trap-size
dependence in the dilute regime turns out to be the same as
that of a free Fermi gases of N particles with N↑ = N↓ = N/2,
independently of U , at least for U > U ∗ with U ∗ < 0 [20].
The corresponding trap-size scaling reads [17]

ρ(x, �,U, N ) ≈ �−3θ 2 S(X , N/2) ,

C(x1, x2, �,U, N ) ≈ �−3θ 2 E (X 1, X 2, N/2) ,
(88)

G(x1, x2, �,U, N ) ≈ �−6θ 2 Z (X 1, X 2, N/2) ,

X i ≡ xi/�
θ , θ = p

p + 2
,

for the particle density, the one-particle and connected
density-density correlations, respectively. The scaling func-
tions S, E , and Z are the same trap-size scaling functions
of the free spinless fermion theory, introduced in Secs. IV B
and IV C. The presence of the on-site interaction associated
with the parameter U induces O(�−(d−2)θ ) scaling corrections.
They dominate the scaling corrections expected within the
lattice model of free spinless fermion, i.e., the Hubbard model
with U = 0, which are relatively suppressed as O(�−2θ ) [10].

2. Lower-dimensional systems

The on-site coupling U becomes marginal in two dimen-
sions, indeed its renormalization-group dimension yU = 2 −
d vanishes, thus a residual weak dependence on U is expected
in the asymptotic regime. More precisely we expect [17,18]

ρ(x, �,U, N ) ≈ �−2θR(X ,U, N ),

C(x1, x2, �,U, N ) ≈ �−2θC(X 1, X 2,U, N ) , (89)

G(x1, x2, �,U, N ) ≈ �−4θG(X 1, X 2,U, N ) .

Finally, in one dimension the U term turns out to be
relevant, since yU = 1, therefore the asymptotic behaviors
are expected to change. The relevance of the U term in one
dimension gives rise to nontrivial asymptotic trap-size scaling
limits, requiring an appropriate rescaling of the parameter U .
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This is taken into account by introducing the scaling variable

Ur = U�θ , (90)

where θ is the same exponent of Eq. (3). Indeed, the system
develops the trap-size scaling behavior [17]

ρ(x) ≈ �−θR(X,Ur, N ) ,

C(x1, x2) ≈ �−θC(X1, X2,Ur, N ) , (91)

G(x1, x2) ≈ �−2θG(X1, X2,Ur, N ) ,

where Xi = xi/�
θ . These scaling behaviors are expected to

be approached with power-law suppressed corrections. Of
course, for Ur = 0, i.e., for a strictly vanishing U , we must
recover the scaling functions of the free Fermi gas, taking into
account that an unpolarized free Fermi gases of N particles
is equivalent to two independent spinless Fermi gases of N/2
particles.

3. Continuum limit

It is important to note again that the trap-size scaling limit
corresponds to a continuum limit in the presence of the trap,
i.e., it generally realizes a continuum quantum field theory
in the presence of an inhomogeneous external field [17,19].
In particular, in the trap-size scaling limit the observables of
the one-dimensional trapped Hubbard model can be written in
terms of the solutions of the continuum Hamiltonian [17,18]

Hc =
N∑

i=1

[
p2

i

2m
+ V (xi )

]
+ g

N↑∑
i=1

N↓∑
j=1

δ(xi − x j ) , (92)

describing N fermions, with N↑ = N↓ = N/2, interacting
through a local δ-like term. In particular, in one dimension
we recover the so-called Gaudin-Yang model [58,59]. Indeed,
the trap-size scaling limit of the one-dimensional Hubbard
model at fixed N is related to the Gaudin-Yang model with
g ∼ Ur ≡ U�θ . More precisely, the trap-size scaling functions
entering formulas (91) are exactly given by corresponding
quantities of the Gaudin-Yang problem with a trap of unit size.
Analogously, in two dimensions we recover the continuum
interacting model with g ∼ U [18,57]. Finally, in three dimen-
sions, the continuum limit is given by the trap-size scaling of
the free Fermi theory, for any value of the lattice coupling
U > U ∗ with U ∗ < 0 [20].

C. Particle-number dependence of the quantum work

We now discuss the particle-number dependence of the
quantum work associated with a sudden quench of the trap
size, from �0 to �1 > �0, starting the ground state of the Fermi
gas in the trap of size �0. We again consider the definition
of work distribution given by Eq. (22), in particular Eq. (23).
To compute the average work we follow the same line of
reasoning used in the case of free Fermi gases, see Sec. IV B.
This leads us to the following general formula for the trap-size
scaling limit of the average work:

〈W 〉 ≈ �−2θ
0 B(δ�) A1(Ur, N ) ,

A1(Ur, N ) =
∫

dX |X |pR(X ,Ur, N ) , (93)

where X = x/�θ
0, R(X ,Ur, �0) is the rescaled particle density

of the ground state with trap size �0, and B(δ�) is defined
in Eq. (33). Analogously for the square work fluctuations,
following the initial steps outlined in Sec. IV C, we obtain

〈W 2〉c ≈ �−4θ
0 B(δ�)2 A2(Ur, N ) ,

A2(Ur, N ) =
∫

dX 1dX 2|X 1|p|X 2|pG(X 1, X 2,Ur, N ) , (94)

where G is the rescaled density-density connected correlation
function. As shown in Sec. VI B, the effective on-site coupling
Ur is given by

Ur = U�θ
0 for d = 1 ,

Ur = U for d = 2 , (95)

Ur = 0 for d = 3 .

We now argue that the power laws associated with the
particle-number dependence of the average work and its
square fluctuations are generally analogous to those of the
d-dimensional free Fermi gases.

In the case of three-dimensional Fermi gases this claim is
clearly a consequence of the fact that in the trap-size scaling
functions R and G coincide with those of the free Fermi gases,
cf. Eqs. (88), when the onsite coupling U is larger than a
negative value U ∗. Therefore Eqs. (34), (46), and (50) are
expected to hold as well.

On the other hand, as shown by Eqs. (89) and (91), the
trap-size scaling, or continuum limit, of lower-dimensional
models is more complicated. Let us first discuss the apparently
more complicated case of one-dimensional systems, whose
continuum limit corresponds to the Gaudin-Yang model. As
shown in Ref. [17], for a large number of particles (still
remaining in the dilute regime), the trap-size scaling function
of the particle density behaves asymptotically as

R(X,Ur, N ) ≈ N1/2R∞(X/N1/2,Ur/N1/2), (96)

where R∞(z, u) is a nontrivial scaling function, and power-
law-suppressed corrections are neglected. This already sug-
gests that the effect of a finite continuum coupling Ur gets
suppressed in the large-N limit. As we shall see, this is also
confirmed by arguments based on the relation between the
trap-size scaling of the trapped Hubbard model and the con-
tinuum Gaudin-Yang model, which allows us to determine the
trap-size scaling functions of the particle density and its corre-
lation, i.e., R(X,Ur, N ) and G(X1, X2,Ur, N ) respectively, in
the strongly repulsive and attractive limits, i.e., Ur → ∞ and
Ur → −∞.

The equation of state of the homogenous Gaudin-Yang
model is exactly known for both repulsive and attractive
zero-range interaction [58,59]. It is characterized by different
asymptotic regimes with respect to the effective dimensionless
coupling γ ≡ g/ρ, where ρ is the particle density. At weak
coupling γ � 1 it behaves as a perfect Fermi gas; in the
strongly repulsive regime γ � 1 the equation of state ap-
proaches that of a spinless Fermi gas; in the strongly attractive
regime γ → −∞ and for unpolarized gases it matches that of
a one-dimensional gas of impenetrable bosons [60], more pre-
cisely hard-core bosonic molecules of fermion pairs [61,62].
We know that in the g → ∞ limit the particle density and its

043603-11



ETTORE VICARI PHYSICAL REVIEW A 99, 043603 (2019)

correlations of the Gaudin-Yang model become identical to
those of a gas of N spinless fermions [63–65]. This would
imply that the Ur → ∞ limit of the trap-size scaling functions
is

R(X,Ur → ∞, N ) = S(X, N ),

G(X1, X2,Ur → ∞, N ) = Z (X1, X2, N ), (97)

where S and Z are the same functions entering the spinless
free-fermion trap-size scaling.

In the g → −∞ limit the density properties of the Gaudin-
Yang model are expected to match that of an ensemble
of hard-core N/2 bosonic molecules constituted by up and
down fermions. Indeed, with increasing attraction, the pair-
ing becomes increasingly localized in space, and eventually
the paired fermions form a tightly bound bosonic molecule.
Actually, the results of Ref. [61] for harmonic traps, see also
Ref. [17], show that these bound states get trapped in a smaller
region, with an effective trap size �b = �/2 in the strongly
attractive limit. Thus we expect that in the g → −∞ limit
the particle density of the unpolarized Gaudin-Yang model
with a harmonic trap matches that of N/2 hard-core doubly
charged bosons with an effective trap size �b = �/2, which
in turn can be mapped into a free gas of N/2 spinless doubly-
charged fermions in a harmonic trap of size �b. On the basis of
these arguments, the Ur → −∞ limit of the trap-size scaling
functions for harmonic traps is expected to be

R(X,Ur → −∞, N ) = 23/2S(
√

2X, N/2),

G(X1, X2,Ur → −∞, N ) = 8Z (
√

2X1,
√

2X2, N/2). (98)

These results for the Gaudin-Yang model imply that, if
we compute the average work (93) and its fluctuations (94)
in the limits Ur → ±∞, we obtain formulas analogous to
those for the free Fermi theory when inserting them into the
corresponding Eqs. (97) and (98). In particular, we obtain the
same large-N power laws, with trivial changes of their coeffi-
cients. These arguments suggest that the large-N behavior of
one-dimensional systems is essentially the same of the of free
Fermi particles, at least in the regime of trap-size scaling, or
equivalently for the continuum Gaudin-Yang model.

Another important issue concerns the degree of universal-
ity of the above claims, with respect to further local interaction
terms extending the Hubbard model (83). This can be inferred
by the universality of the behavior of the particle density,
and particle density correlations [17]. We expect that they are
universal with respect to a large class of further short-ranged
interaction terms, such as

Hnn =
∑
σ,σ ′

wσσ ′
∑
〈xy〉

nσx nσ ′y. (99)

Indeed, Hnn may only give rise to a change of the effec-
tive quartic coupling U (when adding Hnn to the Hubbard
Hamiltonian, the effective relevant quartic coupling becomes
U + 2w↑↓), and to further O(�−θ ) corrections due to the
fact that they introduce other irrelevant perturbations of
renormalization-group dimension yw = −d at the dilute fixed
point.

In conclusion, the above arguments show that the large-N
power laws of the work fluctuations remain unchanged when

we consider three-dimensional Fermi gases with short-ranged
interactions with positive on-site couplings (more precisely
for U > U ∗ with U ∗ < 0). We also conjecture that this prop-
erty extends to one-dimensional systems, in the regime where
trap-size scaling holds, and in particular in the continuum
Gaudin-Yang model for any interaction coupling. We believe
that the same conclusion applies to two-dimensional systems
for any value of the on-site coupling U , for which the relation
between the trap-size scaling and continuum limit does not
require a rescaling of the coupling.

VII. SUMMARY AND CONCLUSION

We investigate the particle-number scaling behaviors char-
acterizing the out-of-equilibrium quantum dynamics of dilute
d-dimensional Fermi gases, in the limit of a large number N
of particles. We consider protocols entailing variations of the
external potential constraining them within a limited spatial
region, such as those giving rise to a change of the size �

of the trap. We consider generic traps arising from external
power-law potential, in particular the case of harmonic traps
and hard-wall traps. We mostly consider lattice gas models of
noninteracting Fermi particles in the dilute regime, �/a � 1
(where a is the lattice spacing) and N/�d � 1, corresponding
to the large trap-size limit keeping N fixed. In the framework
of the trap-size scaling, the asymptotic large-� behavior can
be related to that of a continuum many-body theory of Fermi
particles in an external confining potential [17,18]. Therefore,
our results apply to lattice Fermi gases in the dilute limit,
and also to continuum Fermi models such as the Gaudin-Yang
model [58,59].

We determine the asymptotic large-N power laws of some
features characterizing the out-of-equilibrium dynamics of
Fermi gases, arising from the change of the trap features,
starting from the equilibrium ground state for the initial trap
size �0. We focus on a number of global quantities, providing
information on the evolution of the quantum state with respect
to the initial one. We consider the ground-state fidelity asso-
ciated with adiabatic changes of the trap size, the quantum
work average and its fluctuations associated with a sudden
change of the trap size, and the overlap of the quantum state at
a given time t with the initial ground state as measured by the
so-called Loschmidt echo. In the case of the quantum work
statistics, we also discuss the effects of short-ranged particle
interactions, in the framework of the Hubbard model and its
continuum limit realized in the trap-size scaling limit.

We show that the N dependence of the first few moments
of the work statistics, associated with the sudden change of
the trap size, can be obtained from the scaling behaviors
of the ground-state particle density and its correlations, see
Secs. IV and VI. Our main results concern the asymptotic
large-N power laws for d-dimensional Fermi gases in the
dilute regime, confined by a generic power-law potential. The
large-N behavior of the average work turns out to be

〈W 〉 ∼ N1+2θ/d , (100)

where θ = p/(p + 2) and p is the power law of the spatial
dependence of the confining potential, cf. Eq. (2). Analogous
power laws are obtained for the square work fluctuations. It is
important to note that the asymptotic large-N behaviors that
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we consider should be always meant within the dilute regime
of the lattice gas models, i.e., when the condition N/�d � 1 is
satisfied. The order of the limits � → ∞ and then N → ∞ is
essential, they cannot be interchanged.

We also argue that short-ranged particle interactions, such
as those described by the Hubbard model and the Gaudin-
Yang model, do not change the large-N power laws in the
dilute regime, within appropriate ranges of their coupling
values, depending on the spatial dimensions, see Sec. VI C. In
particular, for three-dimensional systems the large-N behavior
is expected to be the same as the free Fermi gases for on-
site couplings U larger than a negative value U ∗ < 0, thus
including an interval around U = 0 and for any repulsive
interaction. For one-dimensional models we argue that the
large-N behaviors remain unchanged in the regime of trap-
size scaling, thus for the corresponding continuum Gaudin-
Yang model.

We note that, in the case of one-dimensional systems,
the results for noninteracting Fermi gases extends to one-
dimensional Bose gases in the limit of strong short-ranged
repulsive interactions. The basic model to describe the many-
body features of a boson gas confined to an effective one-
dimensional geometry is the Lieb-Liniger model with an
effective two-particle repulsive contact interaction [66]. The
limit of infinitely strong repulsive interactions corresponds
to a one-dimensional gas of impenetrable bosons [60], the
Tonks-Girardeau gas. One-dimensional Bose gases with re-
pulsive two-particle short-ranged interactions become more
and more nonideal with decreasing the particle density, ac-
quiring fermion-like properties, so that the one-dimensional
gas of impenetrable bosons is expected to provide an effec-
tive description of the low-density regime of confined one-
dimensional bosonic gases [67]. Due to the mapping between
one-dimensional gases of impenetrable bosons and spinless
fermions, the particle density of hard-core bosons, and its
correlations, are identical to those of free fermion gases.
Therefore, the results of this paper for the work statistics apply
to one-dimensional repulsively interacting Bose gases as well,
subject to analogous dynamic protocols.

For one-dimensional Fermi gases we also study the quan-
tum evolution arising from the change of the trap size, in-
cluding the extreme case of the free expansion of the gas
after the drop of the trap. In the case of harmonic traps, we
present results for generic time dependencies of the trap size.
We show that the particle-number dependence of the echo
function Q = − ln LE , where LE is the Loschmidt echo, is
generally characterized by the power-law behavior

Q = − ln |〈�(x1, . . . , xN ; t )|�(x1, . . . , xN ; t = 0)〉| ∼ N2 ,

(101)

independently of the particular protocol varying the trap.
This is compared to the asymptotic behavior obtained when
dropping a hard wall, which turns out to increase more slowly,
i.e., Q ∼ N ln N .

Quite remarkably, the particle-number scaling behaviors
outlined in this paper can be observed for systems with a
relatively small number of particles, i.e., O(102) or even
less. Therefore, even systems with relatively few particles
may show definite signatures of the scaling laws derived in

this work. In this respect, present-day quantum-simulation
platforms already demonstrated their capability to reproduce
and control the dynamics of ultracold atoms in optical lat-
tices. Therefore the properties of the quantum many-body
physics discussed here may be tested with a small number
of controllable objects. In particular, the work statistics may
be accessable experimentally in ultracold-atom systems, see,
e.g., Refs. [68–70].

APPENDIX: GROUND STATE OF FERMI GASES

The ground state of a Fermi gas constituted by N particles
is given by a Slater determinant

�(x1, . . . , xN ) = 1√
N!

det[ψi(x j )], (A1)

where ψi(x) are the lowest N eigensolutions of the one-
particle Schrödinger equation.

In the case of the harmonic potential, the one-particle
energy spectrum in harmonic traps is discrete. The eigen-
solutions can be written as a product of eigenfunctions of
corresponding one-dimensional Schrödinger problems

ψn1,n2,...,nd (x) =
d∏

i=1

φni (xi ),

En1,n2,...,nd =
d∑

i=1

eni , (A2)

where the subscript ni labels the eigenfunctions along the d
directions, which are

φn(x) = ξ−1/2 Hn−1(X )

π1/42(n−1)/2(n − 1)!1/2
e−X 2/2,

ξ = �1/2, X = x/ξ , (A3)

en = �−1(n − 1/2), n = 1, 2, . . . ,

where Hn(x) are the Hermite polynomials. Note, however,
that, although the spatial dependence of the one-particle
eigenfunctions is decoupled along the various directions,
fermion gases in different dimensions present some differ-
ences due to the nontrivial filling of the lowest N states which
provides the ground state of the N-particle system. Exploiting
the properties of the Hermite polynomials, the ground state
(77) of one-dimensional systems with N particles can be
written as in Eq. (17).

In the case of a hard-wall trap, corresponding to finite-
volume systems with open boundary conditions, the eigenso-
lutions can be written as a product of eigenfunctions of the
corresponding one-dimensional Schrödinger problem, analo-
gously to Eqs. (A2) with

φn(x) = �−1/2sin

(
nπ

x + �

2�

)
, en = �−2 π2

8
n2, (A4)

for n = 1, 2, . . ..
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