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The scrambling rate λL associated with the exponential growth of out-of-time-ordered correlators can be used
to characterize quantum chaos. Here we use a particular Majorana fermion representation of spin-1/2 systems
to study quantum chaos in the Dicke model. We take the system to be in thermal equilibrium and compute λL

throughout the phase diagram to leading order in 1/N . We find that the chaotic behavior is strongest close to
the critical point. At high temperatures λL is nonzero over an extended region that includes both the normal and
superradiant phases. At low temperatures λL is nonzero in (a) close vicinity of the critical point and (b) a region
within the superradiant phase. In the process we also derive an effective theory for the superradiant phase at
finite temperatures. Our formalism does not rely on the assumption of total spin conservation.
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I. INTRODUCTION

Understanding quantum chaos and its relation to the ther-
malization process is one of the greatest challenges of quan-
tum statistical physics. Traditionally, the study of quantum
chaos has been limited to statistics of energy level spacings
in combination with a series of semiclassical methods. In
the past few years, study of four-point out-of-time-ordered
correlators (OTOCs) [1–3] as a signature of quantum chaos
has attracted a surge of theoretical and experimental interest.
The exponential growth rate of OTOCs, i.e., scrambling rate
(λL), generalizes the notion of the Lyapunov exponent from
classical physics to quantum chaos [4].

OTOCs were first introduced in the context of quasi-
classical methods in superconductivity [1]. More recently
Refs. [2,3] revived OTOCs by discovering a fundamental
bound on λL. Following these seminal works, OTOCs have
been studied in a plethora of many-body quantum systems
[5–23]. On the experimental side, a series of proposals on
how to measure OTOCs [24–32] as well as some preliminary
measurements [33–36] have already been reported.

The main motivation of the present work is to study the
scrambling rate λL in the iconic example of the Dicke model
(DM) [37,38]. The DM describes a zero-dimensional (no
spatial structure) collection of N spin-1/2 degrees of free-
dom (e.g., two-level atoms) interacting with a single bosonic
mode. Above some critical value of coupling g = gc, the
DM undergoes a phase transition to a superradiant phase
that is characterized by a nonzero mean displacement of the
bosonic field [39,40]. The DM hosts a series of quantum and
classical signatures of chaos that are particularly strong in the
superradiant phase [39–47]. In addition to theoretical interest,
experimental platforms to measure OTOCs in the DM already
exist [33,48]. These features make the DM a particularly good
candidate to study quantum signatures of chaos.

In this article, we use a particular Majorana fermion repre-
sentation of spin-1/2 systems [49–53] in combination with the
diagrammatic method of Ref. [54] to compute λL throughout
the phase diagram to leading order in 1/N . We take the system

to be in thermal equilibrium and study OTOCs associated with
two different operators. Our formalism does not rely on the
assumption of total spin conservation which is not justified in
most experimental realizations. We show that the dominant
terms contributing to the scrambling rate are given by two
different sets of diagrams in the normal and superradiant
phases, respectively. We find that at low temperatures, the ap-
pearance of chaotic behavior is limited to (a) close proximity
of the critical point and (b) the superradiant phase, whereas in
high temperatures λL �= 0 in both the normal and superradiant
phases. We provide an example of how the scrambling rates
associated with two different operators can be different. We
provide a discussion of our results in relation with previous
semiclassical studies of chaos in the DM. In the process we
also derive an effective theory for the superradiant phase at
finite temperature.

The rest of this paper is organized as follows: In Sec. II
we introduce the DM Hamiltonian and the OTOCs we are
interested in. Section III presents the Majorana fermion repre-
sentation of spin-1/2 systems. In Secs. IV and V we use the
Majorana operators to obtain effective theories in the normal
and superradiant phases, respectively. In Sec. VI we review
the diagrammatic method used to compute the scrambling
rate. Section VII contains explicit diagrammatic calculations
used to compute λL in the DM. Our final results are stated
and discussed in Sec. VIII. We end with a brief summary and
conclusion in Sec. IX.

II. MODEL

The Hamiltonian describing the DM is given by

H = ω0a†a + ωz

N∑
j=1

σ z
j + 2g√

N

N∑
j=1

σ x
j (a + a†). (1)

Here σ ’s correspond to the usual spin-1/2 operators and a
and a† are the standard bosonic annihilation and creation
operators.
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We also define the real bosonic field φ (“position” degree
of freedom of the harmonic oscillator) as

φ = a + a†. (2)

The total spin S2
tot = (�iσ

x
i )2 + (�iσ

y
i )2 + (�iσ

z
i )2 is con-

served. Furthermore, the Hamiltonian is invariant under a
parity transformation,

� = eiπ (a†a+Sz ), (3)

which rotates the spins around the z axis by π and takes φ to
−φ.

At zero temperature and in the large-N limit (N → ∞),
it can be shown that at a critical value of coupling, gc =√

ω0ωz/2, this model undergoes a phase transition from the
normal phase (〈a〉 = 0) at g < gc to a superradiant phase
(〈a〉 �= 0) at g > gc. The parity symmetry described in Eq. (3)
is spontaneously broken in the superradiant phase.

In this work, we are interested in the following OTOCs:

Cσz (t ) = − 1

N2

N∑
j,k=1

〈[
σ z

j (t ), σ z
k

]2〉
β
,

Cφ (t ) = −〈[φ(t ), φ]2〉β. (4)

However, for the calculations in this paper, it is more conve-
nient to work with a “regulated” form of OTOCs,

Cσz (t ) = − 1

N2

N∑
j,k=1

Tr
{√

ρ
[
σ z

j (t ), σ z
k

]√
ρ
[
σ z

j (t ), σ z
k

]}
,

(5)
Cφ (t ) = −Tr{√ρ[φ(t ), φ]

√
ρ[φ(t ), φ]},

where ρ is the thermal density matrix. The significance of
“regulated” OTOCs is that they remove divergence common
in field theory when operators are inserted at the same space-
time point [54]. Essentially all analytical work on OTOCs
(including the conjectured bound of Ref. [3]) work with
regulated OTOCs. In a chaotic system the early time behavior
of C(t ) is expected to be proportional to eλLt , where λL is the
scrambling rate. We remark that according to a recent study
[55] the early time behavior of C(t ) and C(t ) can be different,
and that the scrambling rate associated with C(t ) is the true
measure of many-body chaos in quantum systems.

Single spin operators σ z
j do not commute with the total

spin operator S2
tot and, therefore, usual methods applied to the

DM that rely on total spin conservation are of limited use in
calculating Cσz (t ).

A powerful diagrammatic method to compute λL has been
described in Ref. [54]. To apply the formalism of Ref. [54]
to our problem, we need to switch from using spin operators
σ j to a form that is amenable to Wick’s theorem (and there-
fore perturbation theory). References [52,53] showed that a
straightforward way to do this is to use the Majorana fermion
representation of the spin-1/2 systems.

Before proceeding further, we would like to clarify that we
will not attempt to calculate Cσz (t ) directly. Instead, we focus
on the OTOC associated with a closely related quantity (σ̃z is
defined in Sec. V as the natural variable describing the system
in the superradiant phase) that reduces to σz in the normal
phase.

III. MAJORANA FERMION REPRESENTATION OF THE
SPIN-1/2 OPERATORS

Following Refs. [49–51] let us consider the following
Majorana fermion representation of the spin-1/2 operators:

σ x
j = 1

2η j ( f j − f †
j ),

σ
y
j = i

2
η j ( f j + f †

j ), (6)

σ z
j = f †

j f j − 1/2,

where f j and f †
j represent fermionic creation and annihilation

operators which satisfy { f j, f †
k } = δ jk , and η j represents a

Majorana fermion obeying {η j, ηk} = 2δ jk . The redundancy
of this fermion representation leads to a “Z2 gauge” symme-
try. The Z2 gauge symmetry generator γ j is given by

γ j = (2 f †
j f j − 1)η j . (7)

The operator γ j commutes with all other spin operators
σ x

k , σ
y
k , σ z

k and is therefore a constant of motion γ j (t ) = γ j (0).
Note that γ 2

j = 1. It is also useful to realize that

σ+
j = f jγ j, σ z

j = 1
2η jγ j . (8)

Using Eq. (8), we can rewrite Eqs. (4) and (5) as

Cσz (t ) = 1

16N2

N∑
j,k=1

〈{η j (t ), ηk}2〉β,

Cσz (t ) = 1

16N2

N∑
j,k=1

Tr{√ρ{η j (t ), ηk}√ρ{η j (t ), ηk}}. (9)

This simple form is a direct consequence of γ being a constant
of motion. If we had naively used Eq. (6) to write Cσz (t ), we
would have ended up with complicated eight-point correlation
functions.

IV. THEORY IN THE NORMAL PHASE

In this section, we follow the approach of Ref. [52] to
describe the theory in the normal phase. Using Eq. (6) we
can rewrite the DM Hamiltonian [Eq. (1)] in terms of the
fermionic variables (up to a constant):

H = ω0a†a + ωz

N∑
j=1

f †
j f j + g√

N

N∑
j=1

η j ( f j − f †
j )(a + a†).

(10)

The advantage of this form is that it allows for a systematic
large-N diagrammatic treatment, in which we still have access
to individual spin operators. The first two terms describe a free
quadratic theory and the last term describes the interaction
vertices shown in Fig. 1(b).

As mentioned before, we use the real bosonic field φ =
a + a†, instead of a, a†. Bare Matsubara Green’s functions can
now be written in the usual form:

G0
φ (iωn) = 2ω0

(iωn)2 + ω2
0

, G0
η(iωn) = 2

iωn
,

G0
f (iωn) = 1

iωn − ωz
, G0

f † (iωn) = 1

iωn + ωz
. (11)
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(a)

(b)

FIG. 1. (a) Bare Green’s functions of boson, Majorana, and
fermionic fields; (b) interaction vertices in the normal phase.

A diagrammatic representation of Green’s functions and inter-
action vertices is shown in Fig. 1.

We then use Eq. (10) to calculate self-energies associated
with the fields η, f , φ. To leading order in 1/N the bosonic
self-energy is given by

Σφ(iωn) = + + O(1/N)

= − 2g2ωz

ω2
n + ω2

z

tanh(βωz/2) + O(1/N). (12)

In the diagrams above, an implicit sum over Majorana and
fermion fields’ index j has been assumed. The sum over the
internal index cancels the factor of 1/N arising from the two
vertices. It is easy to see that Majorana and fermion self-
energies are both zero to zero order in 1/N , i.e., �η(iωn) =
� f (iωn) = O(1/N ). The simple form of this equation is what
makes the model exactly solvable in the large-N limit.

Using the self-energy expression in Eq. (12), we write the
dressed bosonic propagator (to leading order in 1/N) as

Gφ (iωn) = 1

G0−1

φ (iωn) − �φ (iωn)

= 2ω0
[
(iωn)2 − ω2

z

]
[(iωn)2 − ω2+][(iωn)2 − ω2−]

, (13)

where ω± are given by

ω2
± = ω2

0 + ω2
z

2

±
√(

ω2
0 + ω2

z

2

)2

− ω2
0ω

2
z + 4g2ω0ωz tanh(βωz/2).

(14)

Note that at zero temperature the limit of these results is the
same as the spectrum derived using the Holstein-Primakoff
representation [39,40].

This expression signals a finite temperature phase transi-
tion (divergence of Gφ (0)) at

gc = 1

2

√
ω0ωz

tanh(βωz/2)
. (15)

At couplings g > gc one of the poles becomes “positive
imaginary,” which indicates an instability of the perturbation
theory. As we show below this can be remedied by assuming a
nonzero expectation value for the bosonic field, i.e., 〈φ〉 �= 0.

It is worth noting that all Green’s functions’ poles are real
to zero order in 1/N . In order to obtain the leading-order
correction to the imaginary part of the poles (i.e., relaxation
time), one needs to consider two-loop diagrams. In this work
we ignore such corrections and leave their calculation to
future work.

V. EFFECTIVE THEORY IN THE SUPERRADIANT PHASE

The breakdown of perturbation theory for g > gc is related
to the fact that in the strong interaction limit, the bosonic field
acquires a nonzero macroscopic vacuum expectation value:

〈a〉 ∼
√

N . (16)

It can also be understood as the displacement of the action’s
saddle point in the path-integral description of the theory;
consequently, the original bosonic and fermionic fields are no
longer suitable degrees of freedom to describe the low-energy
physics of the system.

To obtain the appropriate fields in the superradiant phase,
we start by defining the new field operator ã as

ã = a − α

2

√
N (17)

for some constant real α. Our goal is to find the value of α

such that the vacuum expectation value of the φ̃ = ã + ã† field
becomes zero.

If we rewrite Hamiltonian (1) in terms of ã we get (up to a
constant)

H = ω0ã†ã − αω0

√
N

2
(ã† + ã) +

N∑
j=1

[
ωzσ

z
j − 2gασ x

j

]

+ 2g√
N

N∑
j=1

σ x
j (ã† + ã). (18)

The form of Hamiltonian (18) suggests defining a new set of
rotated spin operators,

σ̃z = cos(θ )σz + sin(θ )σx,
(19)

σ̃x = − sin(θ )σz + cos(θ )σx,

with the angle θ defined as

sin(θ ) ≡ −2αg

ω̃z
, (20)

where

ω̃z =
√

ω2
z + 4g2α2.

Using these new variables, Hamiltonian (18) can be written as

H = ω0ã†ã + ω̃z

N∑
j=1

σ̃ z
j + 2gcos(θ )√

N

N∑
j=1

σ̃ x
j (ã† + ã)

+ 2g sin(θ )√
N

N∑
j=1

σ̃ z
j (ã† + ã) − αω0

√
N

2
(ã† + ã). (21)
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FIG. 2. The additional interaction vertex in the superradiant
phase.

Finally, we use Majorana representation in this new rotated
frame to exchange spin operators for Majorana fermions,

H = ω0ã†ã + ω̃z

N∑
j=1

f̃ †
j f̃ j

+ gcos(θ )√
N

N∑
j=1

η̃ j ( f̃ j − f̃ †
j )(ã† + ã)

+ 2g sin(θ )√
N

N∑
j=1

f̃ †
j f̃ j (ã

† + ã)

−
√

N

2
[αω0 + 2g sin(θ )](ã† + ã), (22)

where f̃ j and η̃ j are related to operators σ̃x and σ̃z according
to Eq. (6). Note that in this basis, we have an additional
interaction vertex shown in Fig. 2. We emphasize that the pres-
ence of this additional interaction vertex is the main feature
distinguishing normal and superradiant phases. Crucially, this
term breaks the parity symmetry associated with the normal
phase [Eq. (3)].

We assume for a given coupling constant g and temperature
T that the value of α is chosen such that 〈φ̃〉 = 0. Then
we can use the diagrammatic method to solve for the value
of α self-consistently. In the large-N limit, the leading-order
contribution to 〈φ̃〉 is given by the following diagrams:

〈
φ̃
〉

= +

= ×
(

+ .
)

(23)

The first diagram comes from the (ã + ã†) term in the
Hamiltonian and the second term is related to the f̃ †

j f̃ j (ã† +
ã) interaction term. The double wavy line represents the
dressed φ̃ field propagator [56] and the solid line represents
the fermionic propagator. All other contributions to 〈φ̃〉 are of
subleading order in 1/N . To satisfy 〈φ̃〉 = 0, we demand the
expression inside parentheses in Eq. (23) vanish:

−2g sin θ√
N

∑
j

〈 f̃ †
j f̃ j〉 +

√
N

2
[αω0 + 2 sin θ ] = 0. (24)

To leading order in 1/N , we can replace 〈 f̃ †
j f̃ j〉 with a Dirac

distribution function and rearrange the terms to arrive at the

0 1 2
0

1

2

0 1 2 3

(a) (b)

FIG. 3. (a) 〈φ〉/√N = α versus g for fixed value of T .
(b) 〈φ〉/√N versus T for fixed value of g.

following equation for α:

α

[
g2 − ω0ω̃z

4 tanh(βω̃z/2)

]
= 0. (25)

Note that α = 0 always satisfies this equation. This solution
corresponds to the original fields we used to describe the
normal phase. For g > gc the expression in the brackets also
has two real roots with the same magnitude and the opposite
signs. The corresponding solutions are related to each other
by the parity operator defined in Eq. (3). Note that according
to Eq. (17), the root of Eq. (25) corresponds to the vacuum
expectation value of the original bosonic field φ,

〈φ〉 = α
√

N . (26)

As shown in the previous section, the α = 0 solution is
unstable in the superradiant phase and the system chooses one
of the other nonzero roots and hence spontaneously breaks the
parity symmetry.

The value of 〈φ〉/√N versus g at fixed temperature T =
ωz/4 = ω0/4 is plotted in Fig. 3(a).The horizontal axis is
g/gc, where gc is the critical value of g at temperature T as
given in Eq. (15). As expected, for g < gc the system is in the
normal phase and 〈φ〉 = 0, whereas for g > gc, 〈φ〉 becomes
nonzero and grows as one further increases the interaction
strength g.

In Fig. 3(b) we also look at 〈φ〉/√N versus temperature for
a fixed value of coupling constant g0 = √

ω0ωz. Note that by
increasing the temperature, the system will eventually go back
to the normal phase. The critical temperature for a given fixed
g can be calculated by inverting Eq. (15) to solve for Tc:

Tc = ωz

2 tanh−1
(

ωzω0

4g2

) . (27)

This particular form of α(g, T ) in combination with
Eqs. (20) and (22) defines the effective theory in the super-
radiant phase. This theory also applies to the normal phase by
setting α = θ = 0 and, hence, from now on we use this theory
in the entire phase diagram. To the best of our knowledge
this effective theory as well as the average value of 〈a〉 =√

Nα(g, T )/2 at nonzero temperatures (plotted in Fig. 3) were
not known before.

Since α is a function of temperature, the parameters of
Hamiltonian (22) become temperature dependent. Note that
both ω̃z and θ are functions of α and hence functions of g
and T .
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We remark that Eq. (22) implies that the natural variables
describing the system are σ̃z, φ̃. These variables reduce to the
original σz, φ in the normal phase, whereas in the superradiant
phase, they are related to σz, φ via rotation and translation,
respectively.

Green’s functions of the theory in the superradiant phase
can now be calculated using diagrammatic techniques. Note
that by setting Eq. (23) to zero, we have ensured that the
terms associated with (a + a†) and tadpole diagrams always
cancel each other; i.e., neither one needs to be included in any
diagram.

Bare Green’s functions have the same form as in the normal
phase, only with new parameters:

G0
φ̃

(iωn) = 2ω0

(iωn)2 + ω2
0

, G0
η̃(iωn) = 2

iωn
,

G0
f̃ (iωn) = 1

iωn − ω̃z
, G0

f̃ † (iωn) = 1

iωn + ω̃z
. (28)

Similar to the normal phase, self-energies associated with η̃

and f̃ fields are of the order of 1/N and vanish in the large-
N limit. However, the boson’s self-energy has an additional
contribution from the f̃ † f̃ φ̃ vertex,

Σφ̃(iωn) = + + + O(1/N)

= − 2g2 cos2 θω̃z

ω2
n + ω̃2

z

tanh(βω̃z/2)

+ 4g2 sin2 θ n′
F (ω̃z) δωn,0, (29)

where n′
F is the derivative of the Fermi function. The δωn,0

term only adds a time-independent constant to the imaginary-
time Green’s function. This constant can be absorbed in the
definition of the φ̃ field and therefore does not affect the
retarded Green’s function. As we show in the next section,
for computing OTOCs we only need the retarded Green’s
functions. To zero order in 1/N , we can write the dressed
retarded bosonic propagator as

GR
φ̃

(ω) = 2ω0
(
ω2 − ω̃2

z

)
[(ω + iε)2 − ω̃2+][(ω + iε)2 − ω̃2−]

, (30)

where ω̃± are given by the same expression as in Eq. (14),
but with ωz replaced by ω̃z and g replaced by gcos θ . Similar
to the normal phase, these results reproduce the spectrum
derived using the Holstein-Primakoff representation in the
superradiant phase [39,40].

Analogous to the normal phase, the imaginary part of the
Green’s functions’ poles is of subleading order in 1/N and
involves two-loop diagrams. These corrections are ignored
here.

As mentioned earlier the natural variables describing the
system are σ̃z, φ̃. Motivated by this observation, we study
the scrambling rates associated with σ̃z, φ̃, i.e., Cσ̃z (t ), Cφ̃ (t )
[defined similar to Eq. (5)]. However, note that Cφ̃ (t ) = Cφ (t ),
whereas Cσ̃z (t ) is equivalent to Cσz (t ) only in the normal phase.

VI. DIAGRAMMATIC RULES FOR CALCULATING OTOC

Since OTOCs are not time ordered, calculating them using
the usual methods of quantum field theory is difficult. In
this section we review the method developed in Ref. [54] to
calculate OTOCs.

We start by rewriting the “regulated” OTOCs in the follow-
ing form:

Cσ̃z (t ) = 1

N2

N∑
j,k=1

〈{η̃ j (t − iβ/2), η̃k (−iβ/2)}{η̃ j (t ), η̃k}〉,

Cφ̃ (t ) = − 〈[φ̃(t − iβ/2), φ̃(−iβ/2)][φ̃(t ), φ̃]〉. (31)

Operators in this new form are now ordered along a contour c
that goes through both real and imaginary times (Fig. 4). We
then switch to the interaction picture and expand C in powers
of the interaction vertex to arrive at a set of diagrammatic rules
for calculating the OTOC.

Before stating the rules of diagrammatic calculation, we
need to introduce “Wightman functions” that correspond to
propagators along the thermal circle:

GW
φ̃

(t ) = 〈φ̃(t − iβ/2)φ̃(0)〉,
GW

η̃ (t ) = 〈η̃(t − iβ/2)η̃(0)〉,
GW

f̃ (t ) = 〈 f̃ (t − iβ/2) f̃ †(0)〉,
GW

f̃ † (t ) = 〈 f̃ †(t − iβ/2) f̃ (0)〉. (32)

We need the explicit form of fermionic Wightman functions
in frequency space (to leading order in 1/N),

GW
η̃ (ω) = 2πδ(ω),

GW
f̃ (ω) = 2πδ(ω − ω̃z )

2 cosh(βω̃z/2)
,

GW
f̃ † (ω) = 2πδ(ω + ω̃z )

2 cosh(βω̃z/2)
. (33)

Rules of diagrammatic calculation can now be summarized
as follows (for a detailed derivation look at Refs. [7,54]):

(1) The horizontal direction represents the real time and
correspondingly horizontal lines correspond to dressed re-
tarded Green’s functions iGR (self-energy diagrams should
not be included here). The vertical direction represents the
imaginary time and correspondingly nonhorizontal (vertical
and crossed) lines correspond to Wightman propagators GW .

(2) Vertices are only added along the real time folds.
Vertex insertions along the imaginary part of the contour will
dress the thermal density matrix (from ρ0 = exp(−βH0 )

Z of free
theory to the ρ = exp(−βH )

Z of interacting theory). However,
the growth rate of OTOCs is expected to be independent of
the exact form of the thermal state [6,7,11,21,54].

The total sign associated with Wick contractions should be
accounted for in each diagram.

VII. DIAGRAMMATIC CALCULATION OF THE OTOC

In this section we use the diagrammatic method to obtain
explicit integral equations for Cσ̃z (t ) and Cφ̃ (t ). In the next
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FIG. 4. Contour c used for evaluating OTOCs. Horizontal and vertical lines are real and imaginary time axes, respectively. Circles on the
contour represent field operators and their ordering. Plus and minus signs correspond to anticommutator and commutator, respectively (e.g.,
Cσz /Cφ).

section we use these equations to obtain the associated scram-
bling rates λ

φ̃
L and λ

σ̃z
L .

A. Diagrammatic form of Cσ̃z (t )

Cσ̃z (ω) can be written as

Cσ̃z (ω) = 1

N2

∫ ∞

−∞

d p

2π
fσ̃z (ω, p), (34)

where fσ̃z (ω, p) is comprised of diagrams with a pair of Ma-
jorana propagators attached to both the right and left ends of
each diagram (with momenta p, ω − p). This set of diagrams
can be summed over using a Bethe-Saltpeter-type equation. A
diagrammatic equation for fσ̃z (ω, p) is shown in Fig. 5. This
equation can be explicitly written as

fσ̃z (ω, p) = −GR
η̃ (p)GR

η̃ (ω − p)

×
⎡
⎣N+

∑
i, j

∫
dq

2π
Ri, j

σ̃z
(ω, p, q)

(
1

N
fσ̃z (ω, p)

)⎤
⎦.

(35)

As in Ref. [54], we notice that the first term in the square
bracket does not give rise to exponential growth. This term
can then be dropped for the purpose of calculating λL:

fσ̃z (ω, p) = − GR
η̃ (p)GR

η̃ (ω − p)

× 1

N

∑
i, j

∫
dq

2π
Ri, j

σ̃z
(ω, p, q) fσ̃z (ω, p). (36)

To leading order in 1/N the rung function Ri, j
σ̃z

(ω, p, q) can
be approximated by a single diagram,

Ri,j
σ̃z

(ω, p, q) =
∫ ∞

∞

dΩ
2π

=
∫ ∞

−∞

d�

2π

(gcos(θ ))4

N2
GR

φ̃
(�)GR

φ̃
(ω − �)

× (
GW

f̃ (p − �) + GW
f̃ † (p − �)

)
× (

GW
f̃ (� − q) + GW

f̃ † (� − q)
)
. (37)

In this diagram an implicit sum over all four possible orien-
tations of fermionic arrows is assumed. To this order Ri, j is
independent of i, j. A longer and more detailed expression for
Eq. (36) [using Eq. (37)] is given in Appendix A.

The right-hand side of Eq. (36) (also see Appendix A) is
proportional to 1/N . This shows that the normal state is not
chaotic in the N → ∞ limit [57].

The leading-order rung diagram shown above does not
involve the interaction vertex unique to the superradiant phase
(Fig. 2) (though they are present at higher orders and are
discussed in the results section). This suggests that Cσ̃z might
be blind to some features of the superradiant phase. This is a
special and fine-tuned feature of σ̃z. In contrast, leading-order
expressions for OTOCs associated with other spin operators
(e.g., σz) involve also diagrams that are nonzero only in the
superradiant phase.

The two Wightman functions (last two terms) in Eq. (37)
make Ri, j ∝ 1

cosh2(βω̃z/2)
. This already implies that the spin

scrambling rate is exponentially suppressed at very low tem-
peratures βω̃z � 1.

FIG. 5. A diagrammatic equation for fσ̃z (ω, p). Internal indices i, j are summed over.
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fφ̃(ω, p) Rφ̃(ω, p, q)

FIG. 6. A diagrammatic equation for fφ̃ (ω, p).

B. Diagrammatic form of Cφ̃(t )

Similar to fσ̃z (ω, p), fφ̃ (ω, p) can be defined as

Cφ̃ (ω) =
∫ ∞

−∞

d p

2π
fφ̃ (ω, p). (38)

An integral equation for fφ̃ (ω, p) is shown in Fig. 6. This
equation can be explicitly written as

fφ̃ (ω, p) = − GR
φ̃

(p)GR
φ̃

(ω − p)

×
[
1 +

∫ ∞

−∞

dq

2π
Rφ̃ (ω, p, q) fφ̃ (ω, p)

]
. (39)

As in the previous case, we drop the first term to get

fφ̃ (ω, p) = − GR
φ̃

(p)GR
φ̃

(ω − p)

×
∫ ∞

−∞

dq

2π
Rφ̃ (ω, p, q) fφ̃ (ω, p). (40)

A total of 24 diagrams now contribute to the leading-order
approximation of Rφ̃ (ω, p, q) (shown in Fig. 7). In Fig. 7 we
have dropped all diagrams with identical Wightman functions,
because parallel and crossed leg versions of such diagrams
cancel out each other (contribute with the same magnitude and
opposite sign), for example,

= 0. (41)

It is interesting to note that all φ̃ rung functions Rφ̃ (ω, p, q)
shown in Fig. 7 are also present as subleading corrections to
Rσ̃z (ω, p, q).

Similar to the previous case, temperature scaling of the first
two diagrams in Fig. 7 is 1

cosh2(βω̃z/2)
. However, the last four

diagrams which are only nonzero in the superradiant phase
scale with 1

cosh(βω̃z/2) . Both of these terms still decay exponen-
tially as βω̃z → ∞. Nonetheless, there exists an intermediate
temperature regime, where the last four diagrams dominate.

A detailed expression for Eq. (40), using the diagrams in
Fig. 7, is given in Appendix A. We again note that the right-
hand side of Eq. (40) is proportional to 1/N (scrambling is a
finite-N effect).

VIII. RESULTS AND DISCUSSION

In this section we use the integral Eqs. (36) and (40)
to compute λL. To solve these equations numerically, we
discretize them as matrix equations of the following form:

∑
q

Mp,q(ω) fq(ω) = 0. (42)

In fact since the leading-order expressions for Wightman
functions [Eq. (33)] involve δ functions, the integral equations
are straightforward to discretize (see Appendix A).

A nonzero solution of Eq. (42) along the positive imaginary
axis, ω = iλ, indicates an exponential growth of the corre-
sponding OTOC [6]. The scrambling rate λL is then given by
the largest λ where such a solution exists.

Details of the method used to find λL are given in Appendix
B. For simplicity, in all our numerical results, we set ω0 =
ωz = 1.

The σ̃z scrambling rate λ
σ̃z
L as a function of the coupling

strength g, at multiple fixed values of T/ω̃z, is plotted in Fig. 8.
As shown in the figure, at low temperatures T  ω̃z, chaotic
behavior is limited to the close vicinity of the critical point
g ≈ gc. As the temperature is increased the magnitude of λ

σ̃z
L

as well as the size of the region over which λ
σ̃z
L �= 0 are both

monotonically increased. λ
σ̃z
L is nonzero in both the normal

and superradiant phases.
Similarly, the bosonic scrambling rate λ

φ̃
L is plotted in

Fig. 9. As shown in Fig. 9(b) and in contrast to the previous
case (λσ̃z

L ), at low temperature T  ω̃z chaotic behavior is
not limited to the vicinity of the critical point; instead it
now also includes a finite region deep within the superradiant
phase. Similar to the previous case, as the temperature is
increased, the magnitude of λ

φ̃
L as well as the size of the

region over which λ
φ̃
L �= 0 are both increased. However, note

that in this case, chaotic behavior is manifestly stronger in the
superradiant phase. In particular the size of the chaotic region
is significantly larger in the superradiant phase.

As shown in Figs. 8 and 9, λ
φ̃
L and λ

σ̃z
L are similar to

each other in the normal phase, whereas they look qualita-
tively different in the superradiant phase. Their difference in
the superradiant phase can be attributed to the fact that the

+ + + + + + (all arrows reversed)=Rφ̃

FIG. 7. Bosonic rung function Rφ̃ (ω, p, q) to leading order in 1/N . An implicit sum over the internal index is assumed. Double horizontal
lines in the first two terms correspond to the sum of fermion and Majorana propagators (the first two terms correspond to a total of 16 diagrams).
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0 0.5 1 1.5 2
0

1

2

σ̃
z

FIG. 8. Scrambling rate of σ̃z a as function of g/gc, for mul-
tiple fixed values of T/ω̃z. Note that gc is temperature dependent
[Eq. (15)]. Here ω0 = ωz = 1.

leading-order diagrams used to compute λ
σ̃z
L do not involve

the interaction vertex unique to the superradiant phase (see
Sec. VII A). For this reason, signatures of chaos unique to
the superradiant phase are not manifest in λ

σ̃z
L . In contrast,

diagrams used to compute λ
φ̃
L explicitly involve diagrams

specific to the superradiant phase (the last four diagrams in
Fig. 7) and hence, λ

φ̃
L is sensitive to distinctive properties

of the superradiant phase. In fact, the “domelike” feature
displayed in Fig. 9 is directly associated with the last four
diagrams of Fig. 7. To check this, we have artificially set
the value of these diagrams to zero and confirmed that the
resulting behavior is almost identical to Fig. 8. Therefore,
we believe that λ

φ̃
L (as opposed to λ

σ̃z
L ) describes the generic

chaotic features of the DM and that the behavior of σ̃z is
fine tuned (as discussed in Sec. VII A) and does not represent
the generic chaotic behavior of this system. However, their
comparison provides a useful tool to identity chaotic features
unique to the superradiant phase.

Note that since φ̃ and σ̃z are coupled, all diagrams giving
rise to exponential behavior for one operator (say φ̃) also
appear as part of the diagrams for the other operator (σ̃z).
Therefore, one might be led to conclude that the two scram-
bling rates have to be equal. However, note that these diagrams
can be of different orders in perturbation theory. In fact as
mentioned in Sec. VII B all diagrams involved in calculating
λ

φ̃
L are also present as subleading (1/N2) corrections to λ

σ̃z
L .

This suggests an interesting situation where

Cσ̃z (t ) ∼ c1

N
eλ

σ̃z
L t + c2

N2
eλ

φ̃
Lt + · · · . (43)

So for small values of N , either exponent (λφ̃
L or λ

σ̃z
L ) could

dominate the early time behavior. However, for large enough
N the early time behavior is determined by the first term.
Therefore, despite the fact that φ̃ and σ̃z are coupled, the
scrambling rates associated with them are different.

0 0.5 1 1.5 2
0

1

2

0 0.5 1 1.5 2
0

0.3

0.6

λ
φ̃ L

λ
φ̃ L

(a)

(b)

FIG. 9. Boson scrambling rate as a function of g/gc, for multiple
fixed values of T/ω̃z, (a) over a broad range of temperatures and
(b) at low temperatures. Note that gc is temperature dependent
[Eq. (15)]. Here ω0 = ωz = 1.

We also briefly comment on the temperature dependence
of λL. In the low-temperature limit T  ωz (as mentioned in
Sec. VII), λL is exponentially suppressed. In the intermediate
regime T ∼ ωz, the temperature dependence seems to vary
significantly with g. We could not find a simple fit for λL

in this regime. Our formalism is not applicable to the large
T � ωz limit.

The bosonic scrambling rate λ
φ̃
L as a function of N at fixed

values of g/gc and T/ω̃z is plotted in Fig. 10. As expected
the λ

φ̃
L is a monotonically decreasing function of N . At large

values of N , λ
φ̃
L becomes zero. This is expected since in the

parameter regime considered here, in the N → ∞ limit the
system becomes quadratic (the Holstein-Primakoff approx-
imation becomes exact). We emphasize that this N → ∞
limit is different from the semiclassical limit of Refs. [43,44]
(N → ∞ as well as h̄ → 0 while h̄N is kept constant).

We also note that the magnitude of the exponent, for the
parameter range we studied numerically (N � 10), is at least
an order of magnitude (about five times) smaller than the
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0 100 200 300
0

0.5

1

FIG. 10. Boson scrambling rate as a function of N , at fixed values
of g/gc and T/ω̃z. Note that gc is temperature dependent [Eq. (15)].
Here ω0 = ωz = 1.

conjectured bound of Ref. [3]. As is plotted in Fig. 10 the
exponent decreases by increasing the system size and thus
certainly respects the bound in the large-N limit. Although
one may infer from Fig. 10 that by decreasing N , the exponent
would eventually break the bound, it should be noted that for
small N of O(1), our large-N expansion breaks down and our
formalism is no longer applicable.

Note that our results clearly indicate that λL can be nonzero
in the normal phase. This might seem to be counterintu-
itive according to conventional-wisdom-based [39,40] zero-
temperature studies of the DM. However, note that our critical
value of coupling, gc(T ) [Eq. (15)], is temperature depen-
dent, and for this reason regions in the phase diagram where
gc(0) < g < gc(T ) are considered as the normal phase in our
paper. Moreover, multiple more recent semiclassical studies
of chaos in the DM have all found that chaos also exists in the
normal phase, especially at high energies [43–47] (in our case
this translates into high temperatures).

Another potentially confusing point is that Figs. 8 and
9 show that λL becomes zero above some value of g/gc in
the superradiant phase. To understand this, note that at large
values of g � gc the system approaches integrability again.
This issue has already been addressed in Refs. [39,40]. There,
it is shown that in the superradiant phase, as one increases
g/gc, the lower part of the spectrum becomes regular. The size
of the regular part of the spectrum increases with g/gc. In our
results this shows as λ being zero at low temperatures and
being nonzero at high temperatures (see, e.g., Fig. 9).

IX. SUMMARY AND CONCLUSION

We used the Majorana representation of spin 1/2 to obtain
an effective theory for the DM in the superradiant phase
[Eqs. (20) and (22)]. We found a set of natural variables
(σ̃z and φ̃) and an additional interaction vertex (Fig. 2) dis-
tinguishing normal and superradiant phases. This effective

theory was then used to compute the scrambling rate λL asso-
ciated with σ̃z and φ̃. At low temperatures the chaotic behavior
is limited to (a) a region within the superradiant phase and
(b) the vicinity of the critical point. At high temperatures λL

becomes nonzero in an extended region that includes both
the normal and superradiant phases (see Figs. 8 and 9). We
identified the domelike feature of λ

φ̃
L (shown in Fig. 9) as

the key feature distinguishing chaotic behavior in normal and
superradiant phases. We discussed and compared our results
with the existing semiclassical studies of chaos in the DM.

Experimental attempts to measure λL in the DM are already
under way [33,48]. This can potentially make our results of
short-term experimental relevance. Finally, we note that our
formalism can be easily extended to various generalizations
of the DM [38]. Several interesting candidates already exist in
the literature [58–61].

Note added. Recently we became aware of two recent
preprints [62,63] that performed a numerical evaluation of
bosonic OTOCs for some specific eigenstates of the DM.
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APPENDIX A: EXPLICIT FORMS OF fσ̃z (ω, p) AND fφ̃(ω, p)

In this Appendix we present the explicit expressions of
Eqs. (36) and (40). By plugging Eq. (37) into Eq. (36), one ar-
rives at an explicit integral equation for fσ̃z (ω, p) with double
integrals over q and �. Due to δ functions in the expression of
Wightman functions, both integrals can be carried out easily

0 1 2 3
0

0.5

1

FIG. 11. Smallest magnitude eigenvalues of different blocks of
the matrix M(iλ) versus λ.
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to get

fσ̃z (ω, p) = −g4

4N cosh2(βω̃z/2)
GR

η̃ (p)GR
η̃ (ω − p)

[
GR

φ̃
(p − ω̃z )GR

φ̃
(ω + ω̃z − p) fσ̃z (ω, p − 2ω̃z )

+ GR
φ̃

(p + ω̃z )GR
φ̃

(ω − ω̃z − p) fσ̃z (ω, p + 2ω̃z ) + (
GR

φ̃
(p − ω̃z )GR

φ̃
(ω + ω̃z − p)

+ GR
φ̃

(p + ω̃z )GR
φ̃

(ω − ω̃z − p)
)

fσ̃z (ω, p)
]
. (A1)

Similarly, to obtain the explicit form of Eq. (40), we use the diagrammatic expression of Rφ̃ (ω, p, q) in Fig. 7 to find its
algebraic form in terms of fermionic Green’s functions. By plugging in this expression into Eq. (40) and performing the integrals
using the δ functions coming from Wightman functions, we get

fφ̃ (ω, p) = −g4

N
GR

φ̃
(p)GR

φ̃
(ω − p)

[
1

4 cosh2(βω̃z/2)

(
cos2(θ )GR

η̃ (p − ω̃z ) + 4 sin2(θ )GR
f̃ † (p − ω̃z )

)(
cos2(θ )

[
GR

η̃ (ω − p + ω̃z )

− GR
η̃ (ω − p − ω̃z )

] + 4 sin2(θ )
[
GR

f̃ (ω − p + ω̃z ) − GR
f̃ † (ω − p − ω̃z )

])
fφ̃ (ω, p) + 2 sin2(θ ) cos2(θ )

cosh(βω̃z/2)

([
GR

f̃ † (ω − p − ω̃z )

− GR
f̃ (ω − p)

]
GR

f̃ (p + ω̃z ) + [
GR

f̃ (ω − p) − GR
f̃ † (ω − p − ω̃z )

]
GR

f̃ † (p)
)

fφ̃ (ω, p + ω̃z )

]
+ (ω̃z → −ω̃z ). (A2)

APPENDIX B: DETAILS OF COMPUTING λ
φ̃

L

Here we explain how to compute λ
φ̃
L in more detail. λ

σ̃z
L can be obtained in a similar way. We start by writing Eq. (A1) in the

matrix form, ∑
q

Mp,q(ω) fq(ω) = 0, (B1)

where the matrix elements of M(ω) are given by

Mp,q(ω) =
[

1 + g4

4N cosh2(βω̃z/2)
GR

η̃ (p)GR
η̃ (ω − p)

(
GR

φ̃
(p − ω̃z )GR

φ̃
(ω + ω̃z − p) + GR

φ̃
(p + ω̃z )GR

φ̃
(ω − ω̃z − p)

)]
δp,q

+ g4

4N cosh2(βω̃z/2)
GR

η̃ (p)GR
η̃ (ω − p)GR

φ̃
(p − ω̃z )GR

φ̃
(ω + ω̃z − p)δp−2ω̃z,q

+ g4

4N cosh2(βω̃z/2)
GR

η̃ (p)GR
η̃ (ω − p)GR

φ̃
(p + ω̃z )GR

φ̃
(ω − ω̃z − p)δp+2ω̃z,q. (B2)

We call p and q frequency indices. As was mentioned in Sec. VIII, we want to find the largest λ > 0 such that M(iλ) has a zero
eigenvalue. To this end, we probe the positive imaginary axis and compute the smallest-magnitude eigenvalue of M(iλ) in each
point to find the value of λ where this eigenvalue becomes zero. Note that due to the simple form of expression (B2), the M
matrix couples frequency p only to itself and p ± 2ω̃z. As a consequence, M can be written in a block-diagonal form where each
block consists of frequencies

pn = p0 + 2nω̃z, n ∈ Z.

We use p0 to label each block. The block-diagonal form of M makes finding its eigenvalues significantly easier since we can
diagonalize each block separately. A typical plot showing the smallest-magnitude eigenvalue of each block (Ep0 ) versus λ is
given in Fig. 11 where different lines corresponds to different p0’s.

In the main text we reported λL for ε → 0 (ε is the imaginary part of the retarded Green’s function denominator) and discarded
solutions that are strongly sensitive to ε. However, as stated in the main text, the leading-order correction to the imaginary part
of the Green’s functions is of the order 1/N . In anticipation of this, we once choose a fixed ε = O(1/N ) (ε is the imaginary part
of Green’s function denominator) and confirm that the resulting behavior is qualitatively the same as what is reported in the main
text (keeping all solutions).
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[41] M. Kuś, Phys. Rev. Lett. 54, 1343 (1985).
[42] R. Graham and M. Höhnerbach, Phys. Rev. Lett. 57, 1378

(1986).
[43] A. Altland and F. Haake, Phys. Rev. Lett. 108, 073601 (2012).
[44] A. Altland and F. Haake, New J. Phys. 14, 073011 (2012).
[45] L. Bakemeier, A. Alvermann, and H. Fehske, Phys. Rev. A 88,

043835 (2013).
[46] M. A. Bastarrachea-Magnani, B. López-del Carpio, S. Lerma-

Hernández, and J. G. Hirsch, Phys. Scr. 90, 068015 (2015).
[47] J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-

Hernández, and J. G. Hirsch, Phys. Rev. E 94, 022209
(2016).

[48] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner,
K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey,
and J. J. Bollinger, Phys. Rev. Lett. 121, 040503 (2018).

[49] A. Tsvelik, Quantum Field Theory in Condensed Matter Physics
(Cambridge University Press, Cambridge, UK, 2007).

[50] A. Shnirman and Y. Makhlin, Phys. Rev. Lett. 91, 207204
(2003).

[51] W. Mao, P. Coleman, C. Hooley, and D. Langreth, Phys. Rev.
Lett. 91, 207203 (2003).

[52] E. G. Dalla Torre, Y. Shchadilova, E. Y. Wilner, M. D. Lukin,
and E. Demler, Phys. Rev. A 94, 061802 (2016).

[53] Y. Shchadilova, M. M. Roses, E. G. D. Torre, M. D. Lukin, and
E. Demler, arXiv:1804.03543.

[54] D. Stanford, J. High Energy Phys. 10 (2016) 009.
[55] Y. Liao and V. Galitski, Phys. Rev. B 98, 205124 (2018).
[56] Since the Boson propagator is renormalized by the interaction

even in the limit N → ∞, we used the dressed propagator here.
However, its exact form is not important for the purpose of
current calculations.

[57] This does not hold for single highly excited states (as
opposed to the thermal state) with a large fixed total spin. See
Refs. [[63], [62]].

[58] J. Fan, Z. Yang, Y. Zhang, J. Ma, G. Chen, and S. Jia, Phys. Rev.
A 89, 023812 (2014).

[59] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Phys. Rev.
Lett. 107, 277201 (2011).

[60] P. Strack and S. Sachdev, Phys. Rev. Lett. 107, 277202 (2011).
[61] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Nat. Phys. 5,

845 (2009).
[62] J. Chávez-Carlos, B. L. del Carpio, M. A. Bastarrachea-

Magnani, P. Stransky, S. Lerma-Hernández, L. F. Santos, and
J. G. Hirsch, Phys. Rev. Lett. 122, 024101 (2019).

[63] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M.
Rey, arXiv:1808.07134.

043602-11

https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevB.95.134302
https://doi.org/10.1103/PhysRevB.95.134302
https://doi.org/10.1103/PhysRevB.95.134302
https://doi.org/10.1103/PhysRevB.95.134302
https://doi.org/10.21468/SciPostPhys.2.3.018
https://doi.org/10.21468/SciPostPhys.2.3.018
https://doi.org/10.21468/SciPostPhys.2.3.018
https://doi.org/10.21468/SciPostPhys.2.3.018
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevD.96.106008
https://doi.org/10.1103/PhysRevD.96.106008
https://doi.org/10.1103/PhysRevD.96.106008
https://doi.org/10.1103/PhysRevD.96.106008
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1088/1742-5468/aac136
https://doi.org/10.1088/1742-5468/aac136
https://doi.org/10.1088/1742-5468/aac136
https://doi.org/10.1103/PhysRevB.98.045102
https://doi.org/10.1103/PhysRevB.98.045102
https://doi.org/10.1103/PhysRevB.98.045102
https://doi.org/10.1103/PhysRevB.98.045102
https://doi.org/10.1073/pnas.1811033116
https://doi.org/10.1073/pnas.1811033116
https://doi.org/10.1073/pnas.1811033116
http://arxiv.org/abs/arXiv:1803.08483
http://arxiv.org/abs/arXiv:1705.07895
https://doi.org/10.1103/PhysRevB.96.155116
https://doi.org/10.1103/PhysRevB.96.155116
https://doi.org/10.1103/PhysRevB.96.155116
https://doi.org/10.1103/PhysRevB.96.155116
http://arxiv.org/abs/arXiv:1802.00801
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
http://arxiv.org/abs/arXiv:1607.01801
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.97.042105
http://arxiv.org/abs/arXiv:1710.03363
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevA.98.012132
https://doi.org/10.1103/PhysRevA.98.012132
https://doi.org/10.1103/PhysRevA.98.012132
https://doi.org/10.1103/PhysRevA.98.012132
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
http://arxiv.org/abs/arXiv:1705.06714
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.54.1343
https://doi.org/10.1103/PhysRevLett.54.1343
https://doi.org/10.1103/PhysRevLett.54.1343
https://doi.org/10.1103/PhysRevLett.54.1343
https://doi.org/10.1103/PhysRevLett.57.1378
https://doi.org/10.1103/PhysRevLett.57.1378
https://doi.org/10.1103/PhysRevLett.57.1378
https://doi.org/10.1103/PhysRevLett.57.1378
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1088/1367-2630/14/7/073011
https://doi.org/10.1088/1367-2630/14/7/073011
https://doi.org/10.1088/1367-2630/14/7/073011
https://doi.org/10.1088/1367-2630/14/7/073011
https://doi.org/10.1103/PhysRevA.88.043835
https://doi.org/10.1103/PhysRevA.88.043835
https://doi.org/10.1103/PhysRevA.88.043835
https://doi.org/10.1103/PhysRevA.88.043835
https://doi.org/10.1088/0031-8949/90/6/068015
https://doi.org/10.1088/0031-8949/90/6/068015
https://doi.org/10.1088/0031-8949/90/6/068015
https://doi.org/10.1088/0031-8949/90/6/068015
https://doi.org/10.1103/PhysRevE.94.022209
https://doi.org/10.1103/PhysRevE.94.022209
https://doi.org/10.1103/PhysRevE.94.022209
https://doi.org/10.1103/PhysRevE.94.022209
https://doi.org/10.1103/PhysRevLett.121.040503
https://doi.org/10.1103/PhysRevLett.121.040503
https://doi.org/10.1103/PhysRevLett.121.040503
https://doi.org/10.1103/PhysRevLett.121.040503
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevA.94.061802
https://doi.org/10.1103/PhysRevA.94.061802
https://doi.org/10.1103/PhysRevA.94.061802
https://doi.org/10.1103/PhysRevA.94.061802
http://arxiv.org/abs/arXiv:1804.03543
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1103/PhysRevB.98.205124
https://doi.org/10.1103/PhysRevB.98.205124
https://doi.org/10.1103/PhysRevB.98.205124
https://doi.org/10.1103/PhysRevB.98.205124
https://doi.org/10.1103/PhysRevA.89.023812
https://doi.org/10.1103/PhysRevA.89.023812
https://doi.org/10.1103/PhysRevA.89.023812
https://doi.org/10.1103/PhysRevA.89.023812
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1038/nphys1403
https://doi.org/10.1038/nphys1403
https://doi.org/10.1038/nphys1403
https://doi.org/10.1038/nphys1403
https://doi.org/10.1103/PhysRevLett.122.024101
https://doi.org/10.1103/PhysRevLett.122.024101
https://doi.org/10.1103/PhysRevLett.122.024101
https://doi.org/10.1103/PhysRevLett.122.024101
http://arxiv.org/abs/arXiv:1808.07134

