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Raman-Ramsey resonances in atomic vapor cells: Rabi pulling and optical-density effects
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Raman-Ramsey interference has proved a very effective technique to implement compact and high performing
vapor cell frequency standards. In this paper, we theoretically characterize Raman-Ramsey resonances in an
optically thick atomic vapor. Specifically, some parameters of interest for frequency standards applications, like
contrast and linewidth of the central Raman-Ramsey fringe, are evaluated at different temperatures for 133Cs and
87Rb vapor cells with buffer gas. Density narrowing and broadening effects are described and explained in terms
of a three-level theory where laser field propagation through the atomic medium is taken into account. Also, we
investigate light shift both in low and high atomic density regimes. Light shift, which potentially degrades the
medium- to long-term stability of Raman-Ramsey clocks, is composed of two contributions. The first is a pulling
effect exerted by the wide Rabi profile enclosing the interference pattern on the central Raman-Ramsey fringe.
The second light-shift term is strictly related to the detection time. Calculations derived from our model well
describe already existing experimental results and new behaviors are predicted.
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I. INTRODUCTION

Coherent population trapping (CPT) is a phenomenon
where optical excitation is done by means of two phase-
coherent laser fields coupling two atomic ground-state levels
to a common excited state (� interaction scheme) [1,2]. At
resonance, a quantum interference takes place, resulting in
the absence of light absorption by the atoms. Specifically,
the atoms are pumped in a nonabsorbing coherent super-
position of the ground-state levels and the atomic medium
becomes transparent to the applied optical radiation. Due to
the resonant nature of the phenomenon, CPT has been used
in several applications, including frequency standards [3,4]
and magnetometry [5–7]. It is also exploited in the study of
light-matter interaction, like slow light experiments [8–10]
and velocity-selective laser cooling [11].

First observations of CPT resonances as clock references
were done on atomic beams [12–14]. However, it is with
vapor cell devices that CPT has been extensively applied to
frequency metrology [15]. In the last decade, CPT clocks with
high-frequency stability performances have been developed
by several groups using Rb or Cs vapors in a cell with buffer
gas [16–23]. Also, thanks to the use of microelectromechan-
ical systems, CPT has allowed the implementation of chip-
scale atomic devices [24–26]. More recently, a CPT clock
based on cold atoms has been demonstrated [27].

Compared to a traditional double-resonance approach
[28,29], CPT in principle offers some advantages. First, there
is no need of any microwave cavity to excite the microwave
clock transition: in some sense, the microwave field is carried
by the bichromatic optical field itself. This results in a more
compact physics package and all the effects related to the
cavity (through cavity pulling) disappear. In addition, the
� interaction allows a first-order light-shift compensation
[30–35], with some benefit for the medium-term stability of
the clock. However, CPT clock resonances observed in the

continuous regime suffer for power broadening and are not
immune to laser intensity and/or frequency fluctuations. The
pulsed approach proved one of the most effective techniques
to mitigate these issues and consequently improve the stability
performances of CPT vapor cell clocks. The main idea is to
probe the clock transition in a Ramsey-like experiment. The
atomic sample experiences a first � pulse of duration τ1 which
prepares the atoms in the dark state. Then the atoms freely
evolve for a time T limited by the relaxation phenomena
taking place inside the cell, mainly spin-exchange, buffer gas,
and cell wall collisions. Finally, a second � pulse of duration
τ2 probes the phase of the dark state. This scheme allows the
detection of the so-called Raman-Ramsey interference fringes
[36]: the central fringe is a narrow resonance, the linewidth
�ν1/2 of which is in principle related to the observation time
only (�ν1/2 = 1/2T ) and free of any power broadening. In
addition, the atoms make the clock transition mainly in the
dark, when the laser is off, and a greatly reduced sensitivity
to laser instabilities is expected. Actually, this ideal situation
is not fully observed in experiments. First, the shape of the
central Ramsey fringe appears slightly asymmetric and the
relation 1/2T usually adopted to estimate its linewidth does
not always fit the experimental data. Moreover, the frequency
stability of CPT clocks (Allan deviation) is still affected by
laser-induced frequency fluctuations and only very recently
Allan deviations in the 10−15 range have been measured for
integration times around 10 000 s, thanks to autobalanced
Ramsey techniques [37].

The purpose of this paper is to theoretically discuss a few
phenomena that contribute to define the laser-induced shift of
the clock transition, the shape of Raman-Ramsey fringes, and
the contrast and the linewidth of the central fringe in pulsed
CPT.

We first demonstrate that the detection process gives rise to
a light-shift term which is linear in the detection time and in
the laser pumping rate. It is an unavoidable shift inherent to
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the detection of the clock signal and can be minimized only
by reducing the detection time itself.

We then describe a Rabi pulling-like effect through which
laser instabilities are transferred to the clock transition.
Specifically, we will show that the envelope of Raman-
Ramsey fringes turns out to be affected by off-resonant light
shift which produces a pulling of the central interference
fringe. We point out that this Rabi pulling effect does not orig-
inate from neighboring transitions as that observed in Cs beam
tubes or fountains. Rather, it is due to the fact that the clock
resonance (Ramsey fringe) is embedded in a larger and shifted
profile (Rabi profile) exerting a dragging on the clock fre-
quency, a situation similar, for example, to the cavity pulling.

The last effect we discuss is the role played by atomic
density. We will show that for an optically thick medium (as is
any actual vapor cell arrangement) the linewidth significantly
differs from the well-known relation 1/2T and depends on
the vapor temperature. Two regimes can be distinguished as
the atomic density is increased: a density narrowing of the
linewidth followed by a density broadening when the vapor
temperature, and then the atomic density, is increased above a
certain value. We will explain the behavior of the pulsed CPT
central fringe contrast versus the atomic density, a behavior
observed in experiments but, to our knowledge, not yet fully
explained in the frame of a theoretical model. We will also
study the linewidth dependence on the laser intensity and
we will show that an increase of the laser intensity does not
always produce a broadening.

The paper is organized as follows. Section II is devoted
to CPT in an optically thin atomic medium. We first shortly
review the main properties of CPT resonances observed in
a cell with buffer gas in continuous operation. Even if the
results of this subsection are known and well established in the
literature, this first paragraph is preparatory to the following
sections and allows us to present the formalism we adopt
throughout the paper.

We then describe the pulsed approach, with particular
attention to the light shift induced by the Rabi profile on the
Raman-Ramsey central fringe.

In Sec. III, the previous analysis is extended to an optically
thick medium. Solutions of the Maxwell-Bloch equations for
vapor cell arrangements using either 133Cs or 87Rb in buffer
gas are discussed. We show that our theory is able to describe
the behavior of linewidth and contrast of Raman-Ramsey
resonances versus the vapor temperature and laser intensity,
as observed in [38,39].

Possible impact on clock implementation and conclusions
are reported in Sec. IV.

FIG. 1. (a) Three-level system considered in the theory. �∗ is
the excited-state relaxation rate; γ1 and γ2 are the relaxation rates
for ground-state population and coherence, respectively; �0 is the
laser detuning; ω21 is the ground-state (angular) Bohr frequency.
(b) Setup scheme of the principle: the electro-optic modulator (EOM)
generates the two phase-coherent laser frequencies ω1 and ω2 starting
from the D1 laser carrier; the acousto-optic modulator (AOM) is used
to pulse the laser.

II. THIN ATOMIC MEDIUM

A. CPT resonance in continuous operation

We consider a three-level atomic system where two
ground-state sublevels are coupled to a common excited state
via two phase coherent laser fields. The theoretical model to
describe this system can be found in several works in the
literature; we specifically refer to the framework developed
for the CPT maser [16].

Our analysis is based on the closed three-level system and
on the conceptual arrangement sketched in Fig. 1.

The atoms are diluted in a cell also containing a buffer gas
and interact with a bichromatic laser field propagating along
the ẑ axis and tuned to D1 transition. Along the same axis, a

quantization magnetic field is applied to the atomic sample. The density-matrix equations governing the system can be written
as

ρ̇33 + �∗ρ33 = 1

1 + δ2
0

[
ω2

R1 + ω2
R2

2�∗ + �

(
ω2

R1 − ω2
R2

2�∗

)
+ 2ωR1ωR2

�∗ δr
12

]
,

�̇ +
(

γ1 + ω2
R1 + ω2

R2

2�∗(1 + δ2
0

)
)

� = 1

1 + δ2
0

[
ω2

R1 − ω2
R2

2�∗ + 2δ0ωR1ωR2

�∗ δi
12

]
,

δ̇12 +
[
γ2 + ω2

R1 + ω2
R2

2�∗(1 + δ2
0

) + i(�μ − �ωLS )

]
δ12 = − ωR1ωR2
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0

) − i
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2�∗(1 + δ2
0

)δ0�, (1)
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where ρ33 is the the atomic population of the excited state,
� ≡ ρ22 − ρ11 is the ground-state population difference, and
δ12 (δ12 ≡ δr

12 + iδi
12) is the coherence excited between the

ground-state sublevels; γ1 and γ2 are the relaxation rates for
the ground-state population difference and coherence, respec-
tively.

We consider the excited-state relaxation rate �∗ as result-
ing from the convolution of collision broadening (atom-buffer
gas) and Doppler broadening. Rigorously, Doppler broaden-
ing should be taken into account by averaging the density-
matrix elements over the Maxwell velocity distribution. How-
ever, for buffer-gas pressures typically used in experiments,
we adopt the approximation of homogeneous broadening
since the width �BG equals or even exceeds �D, where �BG

and �D are the homogeneous broadening due to buffer gas
collisions and to the Doppler broadening, respectively. The
residual Doppler broadening is taken into account in the
convoluted relaxation rate evaluated according to the relation
reported in [40], �∗ = 1

2 [�BG +
√

�2
BG + 4�2

D ].
Previous equations are obtained under the rotating-wave

approximation and assuming ωR1,2 � �∗, where ωR is the
optical Rabi frequency and �μ is the two-photon (Raman)
microwave detuning; �0 is the detuning of the laser field from
the optical transition and δ0 ≡ 2�0/�

∗.
The quantity

�ωLS ≡ ω2
R2 − ω2

R1

2�∗
δ0

1 + δ2
0

+ ω2
R1 + ω2

R2

4ω21
(2)

accounts for the light shift and is composed of a dispersive
Lorentzian term versus the laser detuning and of a term
solely depending on the laser intensity. In many experimental
arrangements, the � transition on the D1 line is driven by
the two first-order sidebands created by an electro-optical
modulator and this guarantees that ωR1 = ωR2 ≡ ωR; this hy-
pothesis is supposed to hold throughout the paper. The set
of equations in the typical operating condition (�0, �

∗ �
ω21, δ0 � 1) becomes

�̇ + (γ1 + 2�p)� = 4�pδ0δ
i
12,

δ̇12 +[
γ2 + 2�p + i

(
�μ − ω2

R

/
2ω21

)]
δ12 = −�p − i�pδ0�,

ρ33 =
(ωR

�∗
)2{

1 + 2δr
12

}
, (3)

where we defined the (transversal) pumping rate:

�p = ω2
R

2�∗ . (4)

In the continuous case, the equations can be solved in
steady-state conditions. Specifically, for an optically thin
medium the resonant behavior of the CPT phenomenon is
captured by the fluorescence spectrum Pfl that is propor-
tional to the population of the excited state ρ33. It turns out
that

Pfl ∝ ρ33 =
(ωR

�∗
)2

{
1 − 2�p

�′
�′2 + 4�2

pδ
2
0

�′2 + 4�2
pδ

2
0 + (

�μ − ω2
R

/
2ω21

)2

}
, (5)

where we defined

�′ = γ2 + 2�p. (6)

The CPT resonance turns out to be a Lorentzian slightly
broadened by the term proportional to δ0 (negligible in most
applications) and shifted by the intensity light-shift term.
Therefore, as far as the conditions ωR1 = ωR2 and δ0 � 1 are
satisfied, there is not any frequency modulation-to-frequency
modulation (FM-FM) conversion from the laser to the atomic
resonance.

B. CPT resonances in pulsed operation:
Rabi pulling and detection light shift

To describe CPT resonances in pulsed operation, Eqs. (3)
need to be solved in the transient regime. Specifically, we
are interested in implementing a Raman-Ramsey interaction
scheme where a first � pulse of duration τ1 pumps the atoms
into the dark state. The atoms are then let free to evolve for
a time T and finally the accumulated phase between the dark
state and the local oscillator is probed through a second �

pulse of duration τ2 (see the time sequence in Fig. 2).
We note that the equations for the coherence and the

population are coupled but linear, thereby we can apply the
technique of Laplace transform to solve them. Moreover, since

the end of each phase gives the initial condition for the subse-
quent phase, it is convenient to introduce a matrix formalism
where atomic coherence and population are arranged in a
vector (Bloch vector) [41,42]:

R(t ) =

⎛
⎜⎝

δr
12(t )

δi
12(t )
�(t )

⎞
⎟⎠. (7)

We consider the first � pulse under the assumption that
initially the atomic sample does not have any coherence
(δ12 = 0) and the atomic population is equally distributed
among the two ground-state sublevels (ρ11 = ρ22, i.e., � =
0). Solving Eqs. (3), we find for the Bloch vector R(τ1) the

FIG. 2. Time sequence of the Raman-Ramsey pulses: τ1 is the
duration of the � pulse, T is the free evolution time, and τ2 is the
detection time.
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following components:

R(τ1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− �p�
′

�′2 + �′2
μ

+ e−�′τ1�p(�′ cos �′
μτ1 − �′

μ sin �′
μτ1)

�′2 + �′2
μ

�p�
′
μ

�′2 + �′2
μ

− e−�′τ1�p(�′
μ cos �′

μτ1 + �′ sin �′
μτ1)

�′2 + �′2
μ

4�2
pδ0�

′
μ

�′(�′2 + �′2
μ

) − 4e−�′τ1�2
pδ0

�′�′
μ

+ 4�2
pδ0e−�′τ1

�′
μ

(
�′2 + �′2

μ

) (�′ cos �′
μτ1 − �′

μ sin �′
μτ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where we defined �′
μ ≡ �μ − ω2

R
2ω21

.

The solutions are controlled by the exponential term e−�′τ1 ;
in particular, for �′τ1 � 1 the solutions reproduce the steady-
state behavior: the atomic system is pumped in the dark state
and the Bloch vector simplifies to

R(τ1 � 1/�′) =

⎛
⎜⎜⎜⎜⎝

− �p�
′

�′2+�′2
μ

�p�
′
μ

�′2+�′2
μ

4�2
pδ0�

′
μ

�′(�′2+�′2
μ )

⎞
⎟⎟⎟⎟⎠. (9)

As expressed in Eq. (9), the Bloch vector reproduces a well-
known result of CPT theory: whatever the initial conditions,
the CPT phenomenon drives the atoms in the dark state pro-
vided the � pulse area (intensity times duration) is sufficiently
large.

In the following phase, the Bloch vector evolves for a time
T according to the free evolution matrix M̂D(T ):

M̂D(T ) =

⎛
⎜⎝

e−γ2T cos �μT e−γ2T sin �μT 0

−e−γ2T sin �μT e−γ2T cos �μT 0

0 0 e−γ1T

⎞
⎟⎠,

(10)
so that we have

R(T + τ1) = M̂D(T ) · R(τ1). (11)

Note that during the free evolution the laser is off, conse-
quently the atomic phase evolves at an angular frequency �μ,
whereas during the first � pulse the phase is affected by the
off-resonant light shift term ω2

R/2ω21.

Equation (11) yields

R(T + τ1) =

⎛
⎜⎜⎜⎜⎝

− �p

�′2+�′2
μ

[�′ cos �μT − �′
μ sin �μT ]e−γ2T

�p

�′2+�′2
μ

[�′ sin �μT + �′
μ cos �μT ]e−γ2T

4�2
p

�′
δ0�

′
μ

�′2+�′2
μ

e−γ1T

⎞
⎟⎟⎟⎟⎠. (12)

The evolution of the Bloch vector during the query � pulse of duration τ2 can be obtained by solving Eqs. (3) with
δr

12(T + τ1), δi
12(T + τ1) and �(T + τ1) as initial conditions. In the general case of δ0 	= 0 that solution is rather involute.

However, in the experiments the laser is usually frequency locked with zero or negligible detuning, and, since in the previous
section we have seen that for δ0 � 1 there is not significant FM-FM conversion, in the following we will consider δ0 = 0. The
only quantity of interest is the real part of the coherence [see the third equation of Eqs. (3)] that turns out to be

δr
12(τ1 + T + τ2) = − �p�

′

�′2 + �′2
μ

− �pe−�′τ2

�′2 + �′2
μ

[(�′ cos �μT − �′
μ sin �μT )e−γ2T − �′] cos �′

μτ2

+ �pe−�′τ2

�′2 + �′2
μ

[(�′ sin �μT − �′
μ cos �μT )e−γ2T − �′

μ] sin �′
μτ2. (13)

From the previous equation, it is possible to numerically
evaluate two observables of interest for frequency standards
applications, the linewidth and the shift of the central Ramsey
fringe versus the laser pumping rate.

Figure 3 shows that the linewidth quickly approaches the
expected value 1/2T and eventually overcomes it. As already
observed in [38], the pulsed regime allows us to significantly
reduce the linewidth and its dependence on the laser power
compared to the continuous case. However, power broadening

still affects the resonance linewidth through the length of the
detection process.

In Fig. 4 we report the calculated frequency shifts of
the central Ramsey fringe versus the laser pumping rate for
different values of the detection times. In order to give more
physical insight into the effects contributing to the shift,
it is useful to examine Eq. (13) in two conditions. First,
since we are interested in the central fringe, we consider the
limit �′

μ � �′. In addition, we suppose τ2 � T , a condition
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FIG. 3. Calculated linewidth of the central Ramsey fringe vs
�p; γ2 = 300 s−1; T = 3.5 ms; dash-dotted line, τ2 = 10 μs; dashed
line, τ2 = 100 μs.

generally satisfied in the experiments, so that Eq. (13) reduces
to

δr
12(τ1 + T + τ2) ≈ −�p

�′ e−γ2T −�′τ2 cos

[
�μT − �∗�p

ω21
τ2

]

+ �p

�′ (e−�′τ2 − 1), (14)

which shows that the detection time plays a role also in
affecting the central fringe frequency. Specifically, a linear
light shift �ωDT related to the detection time (DT) τ2 arises:

�ωDT

ω21
≈ �∗�p

ω2
21

τ2

T
. (15)

This detection-time-dependent light shift results in a signifi-
cant amplitude-to-frequency conversion; for the values used
in Fig. 4 (taking, for example, the intermediate curve, τ2 =
50 μs), it is of the order of 2 × 10−12/%.

Another source of shift can be identified by noticing that
the Rabi profile is centered at �′

μ = 0, whereas the Ramsey
fringes are centered at �μ = 0. Therefore, in the more general
case, the role of the Rabi envelope cannot be disregarded
since it induces a shift of the central fringe. To investigate this
pulling effect of the Rabi profile on the central Ramsey fringe,

FIG. 4. Calculated light shift of the central Ramsey fringe vs
�p; γ2 = 300 s−1; T = 3.5 ms; �∗ = 2π × 684 MHz; small-dashed
line, τ2 = 5 μs; dash-dotted line, τ2 = 50 μs; large-dashed line,
τ2 = 100 μs. For each curve, the approximated expression of the
shift given by Eq. (19) has been superimposed to the numerically
calculated behavior.

we specify Eq. (13) in the limit τ2 → 0:

δr
12(τ1 + T + τ2)

≈ − �p

�′2 + �′2
μ

[(�′ cos �μT − �′
μ sin �μT )e−γ2T ]. (16)

The shift can be calculated by deriving Eq. (16) with respect
to �μ; neglecting second-order terms in �μ, we find a Rabi
pulling (RP) induced light shift given by

�ωRP

ω21
≈ �∗

ω2
21T

�p

γ2 + 2�p
. (17)

This light shift is responsible for an amplitude-to-frequency
conversion given by

∂ (�ωRP/ω21)

∂�p/�p
≈ �∗

ω2
21T

γ2�p

(γ2 + 2�p)2
. (18)

For common values of the experimental parameters, the pre-
vious sensitivity coefficient is 1 × 10−13/% and reduces by
increasing the laser power. This behavior is simply explained
by considering that the Rabi profile linewidth is 2�′ and
not 1/τ1, as in the common Ramsey interaction scheme.
Therefore, the Rabi profile broadens with �p and its pulling
effect on the central Ramsey fringes reduces accordingly.

Taking into account both the effects, the central Ramsey
fringe turns out to be shifted by two light-shift terms of
different physical origins:

�ωLS

ω21
= �ωDT

ω21
+ �ωRP

ω21
= �∗�p

ω2
21T

(
τ2 + 1

γ2 + 2�p

)
. (19)

The continuous curves superimposed onto the dashed lines
of Fig. 4 represent Eq. (19) in the same conditions used to
numerically evaluate the shifts. For small �p, the Rabi pulling
effect prevails, while for large �p the shift related to the
detection time becomes dominant. Increasing the detection
times, nonlinear terms cannot be neglected and Eq. (19) fails
to predict the correct behavior for large �p (see the curve
corresponding to τ2 = 100 μs in the figure).

The results obtained so far are valid in the ideal case of a
thin optical medium; we will see in the next section how this
scenario is modified as the atomic density is increased.

III. THICK ATOMIC MEDIUM

A. Theory

To extend the previous analysis to a thick atomic vapor,
we have to consider Maxwell’s equations for the laser fields
propagating in the atomic medium. Due to absorption, the
laser field amplitude is now a function of the position inside
the cell.

In the limit of the slowly varying approximation for the
optical Rabi frequencies ωR1 and ωR2 and assuming a linear
response of the atomic vapor, the rate equations describ-
ing the interaction of the atomic sample with the � pulse
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become [16]

�̇ +
(

γ1 + ω2
R1 + ω2

R2

2�∗

)
� = ω2

R1 − ω2
R2

2�∗ ,

δ̇12 +
[
γ2 + ω2

R1 + ω2
R2

2�∗ + i

(
�μ − ω2

R1 + ω2
R2

4ω21

)]
δ12

= −ωR1ωR2

2�∗ ,

∂ωR1

∂z
= −α

[ ωR1

2�∗ (1 − �) + ωR2

�∗ δr
12

]
,

∂ωR2

∂z
= −α

[ ωR2

2�∗ (1 + �) + ωR1

�∗ δr
12

]
. (20)

In Eqs. (20), α is the absorption coefficient:

α = ωLd2
e

ε0h̄c
n, (21)

where ωL and de are the (angular) frequency and the dipole
moment of the D1 line, respectively; n is the atomic density, ε0

is the vacuum permittivity, h̄ is the (reduced) Planck constant,
and c is the speed of light in vacuum.

We neglected the terms proportional to the laser detuning
δ0, since we suppose the laser is frequency stabilized with a
negligible detuning, and in the previous section we have seen
that when δ0 � 1 neither FM-FM nor frequency modulation-
to-amplitude modulation (FM-AM) conversions affect the
clock signal.

Equations (20) can be further simplified for the D1 line we
consider in this paper: if at the entrance of the cell we have
ωR1(z = 0) = ωR2(z = 0), then a general solution of Eq. (20)
is ωR1(z) = ωR2(z) ≡ ωR(z) for every z and � identically
equal to zero everywhere inside the cell and at any time. Of
course, this result is valid for the three-level model considered
in this paper that neglects the Zeeman structure both in the
ground and in the excited states.

The ground-state Zeeman structure is usually resolved by a
static quantization magnetic field. However, to develop a the-
ory closer to experiments it is important to take into account
the Zeeman structure, at least in a phenomenological way.
The motivation is that all the ground-state atoms contribute
to the absorption process, but only a part of them is involved
in the CPT phenomenon and generates the clock signal we
are interested in. As already done in [43], we then introduce
in the equations a parameter α′ = α

2I+1 (I being the nuclear
spin) which accounts for the fraction of ground-state atoms
effectively excited by CPT and detected in the clock operation.
In other words, α′ gives the weight of the coherent process
induced by CPT with respect to light absorption due to all the
atoms in the ground-state manifold.

Equations (20) can be finally written in terms of the pump-
ing rate �p as

δ̇12 +
[
γ2 + 2�p + i

(
�μ − �∗�p

ω21

)]
δ12 = −�p,

∂�p

∂z
= −�p

�∗
[
α + 2α′δr

12

]
,

(22)

and they can be solved either for 133Cs (I = 7/2) or 87Rb (I =
3/2) or any other alkali-metal atom.

If Eqs. (22) are specified for the first pumping � pulse,
the solution for δ12 is formally the same as that reported by
Eq. (9), but now the coherence also depends on z through
�p [we remind the reader that �′ is also a function of z,
see Eq. (6)]. Notably, we do not assume as in the previ-
ous section that the � pulse pumps all the atoms in the
dark state. Since absorption occurs in the cell, this is in
general not true, especially at the end of the cell where,
for high atomic densities, the laser might be strongly at-
tenuated and the inequality �′τ1 � 1 is not satisfied for
every z.

Thereby, at the end of τ1 we have

δr
12(z, τ1) = − �p�

′

�′2 + �′2
μ

+ e−�′τ1�p(�′ cos �′
μτ1 − �′

μ sin �′
μτ1)

�′2 + �′2
μ

,

δi
12(z, τ1) = + �p�

′
μ

�′2 + �′2
μ

− e−�′τ1�p(�′
μ cos �′

μτ1 + �′ sin �′
μτ1)

�′2 + �′2
μ

,

∂�p(z)

∂z
= −α

�p(z)

�∗

[
1 + 2

2I + 1
δr

12(z, τ1)

]
.

(23)

With the boundary condition �p(z = 0) = �p0, the numerical solution of Eqs. (23) yields the atomic coherence at the end of the
first � pulse in each point of the cell.

As in the optically thin case, the atoms evolve freely for a time T [according to the free evolution matrix, Eq. (10)] so that we
have the coherence at τ1 + T for any z:

δr
12(z, τ1 + T ) = e−γ2T

[
cos �μT δr

12(z, τ1) + sin �μT δi
12(z, τ1)

]
,

δi
12(z, τ1 + T ) = e−γ2T

[ − sin �μT δr
12(z, τ1) + cos �μT δi

12(z, τ1)
]
. (24)
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Later, a second � pulse of duration τ2 detects the clock transition. We then specify the first equation of Eqs. (22) for the detection
pulse, using Eqs. (24) as initial condition; we find

δr
12(z, τ1 + T + τ2) = − �p�

′

�′2 + �′2
μ

+ e−�′τ2

[
δr

12(z, τ1 + T ) + �′�p

�′2 + �′2
μ

]
cos �′

μτ2

+ e−�′τ2

[
δi

12(z, τ1 + T ) − �′
μ�p

�′2 + �′2
μ

]
sin �′

μτ2,

δi
12(z, τ1 + T + τ2) = �p�

′
μ

�′2 + �′2
μ

+ e−�′τ2

[
δi

12(z, τ1 + T ) − �′
μ�p

�′2 + �′2
μ

]
cos �′

μτ2

− e−�′τ2

[
δr

12(z, τ1 + T ) + �′�p

�′2 + �′2
μ

]
sin �′

μτ2. (25)

We are interested in the real part of the coherence, so that the
final equation we have to solve is

∂�det
p (z)

∂z
= −α

�det
p (z)

�∗

{
1 + 2

2I + 1
δr

12(z, τ1 + T + τ2)

}
,

(26)
where �det

p is the pumping rate associated to the detection �

pulse. Indeed, the detection of the clock transition is supposed
to be performed via the transmission signal at the output of the
cell, so it is proportional to �det

p evaluated at z = L, L being
the cell length. We point out that since in the experiments the
pumping and the detection pulse amplitudes are the same we
will assume �p(z = 0) = �det

p (z = 0) = �p0.
As examples, Figs. 5 and 6 report Ramsey fringes as a

result of the numerical solution of the previous equation for
a 133Cs cell at 40 ◦C and for a 87Rb cell at 50 ◦C, respectively.
The laser pumping rate �p0 is set equal to 8000 s−1 for
the 133Cs simulation, corresponding to 140 μW/cm2, and to
10 000 s−1 (230 μW/cm2) for the 87Rb cell. In both cases, we
considered the D1 optical line.

In Figs. 5 and 6 and in all the simulations throughout
the paper, we consider a 133Cs cell with 25 Torr of N2, and
the corresponding homogeneous broadening due to buffer gas
collisions is �BG ≈ 2π × 490 MHz. The Doppler broadening
evaluated for the D1 line in a 133Cs vapor cell at 40 ◦C turns
out to be �D ≈ 2π × 370 MHz; for simplicity we assume that

FIG. 5. Calculated Ramsey fringes for a cell containing 133Cs
and 25 Torr of N2; �p0 = 8000 s−1, cell temperature 35 ◦C; τ1 =
1 ms; T = 3.5 ms; τ2 = 50 μs. Cell length L = 2 cm; radius R =
1 cm.

�D does not change significantly in the range of temperatures
of interest for this paper. For the Rb cell we consider a 25-
Torr buffer gas mixture Ar + N2 in the pressure ratio 1.6; an
analogous evaluation of �BG and �D has been done for the
87Rb cell.

Relaxation rates for ground-state population and coherence
are evaluated according to the cell size, buffer gas content, and
cell temperature [44].

B. Contrast and linewidth of the central Raman-Ramsey fringe

For frequency standards applications, it is interesting to
evaluate the contrast and the linewidth of the central Ramsey
fringe in different experimental conditions [45]. In effect,
these two parameters play a role to determine the clock short-
term frequency stability and it can be convenient for a given
cell to evaluate the temperature, and then the atomic density,
which maximizes their ratio. Contrast and linewidth have
been then calculated at different temperatures, taking into
account that—in addition to cell size, buffer gas content, and
pressure—the ground-state relaxation rate γ2 depends also on
temperature through the spin-exchange contribution [44].

Figure 7 refers to the central Ramsey fringe linewidth for
the same 133Cs and 87Rb cells previously considered. For
convenience, we keep the same Ramsey time T = 3.5 ms
in both cases. Two regimes can be identified as the optical

FIG. 6. Calculated Ramsey fringes for a cell containing 87Rb and
25 Torr of Ar + N2 in the pressure ratio 1.6; �p0 = 10 000 s−1, cell
temperature 50 ◦C; τ1 = 1 ms; T = 3.5 ms; τ2 = 50 μs. Cell length
L = 2 cm; radius R = 1 cm.
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FIG. 7. Linewidth of the central Ramsey fringe for the same Cs
(a) and Rb (b) cells considered in Figs. 5 and 6. The straight line
is the 1/2T value; tp = 1 ms; T = 3.5 ms; τ2 = 50 μs. Continuous
line, �p0 = 3000 s−1; dash-dotted line, �p0 = 10 000 s−1; dashed
line, �p0 = 30 000 s−1.

thickness of the atomic medium is increased. First, we observe
a decrease of the linewidth. This density-dependent spectral
narrowing phenomenon is well known in coherently prepared
atomic media and has been described in several works [46,47].
Basically, in the high-density limit, only spectral components
which are very close to the center of the transparency window
are transmitted. These narrowing effects have been observed
in continuously operated experiments. Here we show that
density narrowing takes place in the pulsed regime as well,
affecting both the Rabi and the central Ramsey fringe. After
reaching a minimum at a certain temperature, a broadening
regime is predicted where the narrowing is compensated and
eventually overcome by the increase of γ2, similarly to what
happens in continuous CPT.

The narrowing behavior depicted in Fig. 7 has been ex-
perimentally observed for a Cs cell in [38,39]. The high-
temperature regime where the linewidth broadening occurs
has not been investigated in those works.

As reported in the previous section for the optically thin
medium, the detection time plays a role to determine the
linewidth of the central Ramsey fringe. In this regard, it is
convenient to consider the linewidth versus �p0 in the low-
density regime where the narrowing phenomenon previously
described barely impacts on the detection-time-dependent
effects we are interested in. The results are reported in Fig. 8.

FIG. 8. Linewidth of the central Ramsey fringe as a function
of the laser pumping rate for different values of the detection time
τ2. (a) Cs cell with the same buffer gas content and pressure of
Fig. 5 at 30 ◦C. (b) Rb cell with the same buffer gas content and
pressure of Fig. 6 at 40 ◦C. The straight line is the 1/2T value;
tp = 1 ms; T = 3.5 ms. Continuous line, τ2 = 5 μs; dash-dotted line,
τ2 = 20 μs; dashed line, τ2 = 50 μs.

We observe that an increase of τ2 enhances the laser power
broadening both in Cs and in Rb. In Rb, the linewidth may
even overcome the expected 1/2T value, as already observed
for the optically thin medium. The reason for this behavior is
that as the detection time is increased the circular functions
containing τ2 [see, for example, Eq. (13)] cannot be neglected
anymore and contribute in a significant way to determine
the linewidth (and also the shift as shown later on) of the
resonance signal.

The linewidth can be also characterized in terms of its
dependence on the laser intensity for different temperatures
of the atomic vapor, as shown in Fig. 9. High-temperature
regimes enhance the coherence properties of the atomic
medium and the power broadening is compensated by a line
narrowing for increasing laser pumping rates. Definitely, the
linewidth becomes nearly insensitive to �p0. We point out that
a similar behavior is typical of coherently prepared media and
has been already observed in the CPT maser under continuous
operation and in high atomic density conditions [48].

As discussed in [38], it might not be surprising that the
central fringe linewidth is narrower than 1/2T . Indeed, in a
common Ramsey interaction scheme where two microwave
pulses are separated by a time T , the linewidth of the central
fringe is 1/2T only in the limit of perfectly sharp microwave
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FIG. 9. Linewidth of the central Ramsey fringe of Raman-
Ramsey resonances vs the laser pumping rate. The straight line is
the 1/2T value; τ1 = 1 ms; T = 3.5 ms; τ2 = 50 μs. (a) Cs cell:
continuous line, 30 ◦C; dash-dotted line, 40 ◦C; dashed line, 50 ◦C.
(b) Rb cell: continuous line, 40 ◦C; dash-dotted line, 50 ◦C; dashed
line, 60 ◦C.

pulses. For a finite duration t1 of the microwave pulses, the
linewidth turns out to be 1

2(T +4t1/π ) [49]. A similar argument
might be also applied to the Raman-Ramsey approach. How-
ever, what is unexpected is that in a Ramsey-like scheme the
linewidth exhibits a significant dependence on the detection
time, the vapor temperature, and the laser intensity. The
physical reason behind this behavior is that, even in the pulsed
regime, the CPT interaction always involves three levels: the
two clock levels and the excited state. Optical coherences are
excited and they make the clock signal linewidth sensitive to a
number of parameters, including vapor temperature and laser
intensity.

In Fig. 10 we report on the contrast of the central Ramsey
fringe as a function of temperature for different laser pumping
rates. We notice that the temperature which maximizes the
contrast is very close to that minimizing the linewidth, as
already observed in [38].

A comparison between Cs and Rb can be done with cau-
tion. Even if the behaviors depicted in Figs. 7, 9, and 10 have
been obtained for the same Ramsey time and pumping rate,
the other cell parameters are different, including relaxation
rates and absorption coefficients. Most importantly, according
to the respective vapor pressure laws, Rb and Cs atomic den-
sities can significantly differ at equal temperature, especially
in the high-temperature regimes. However, to give an insight

FIG. 10. Contrast of the central fringe of Raman-Ramsey reso-
nances for the same Cs (a) and Rb (b) cells considered in Figs. 5
and 6; τ1 = 1 ms; T = 3.5 ms; τ2 = 50 μs. Continuous line, �p0 =
3000 s−1; dash-dotted line, �p0 = 10 000 s−1; dashed line, �p0 =
30 000 s−1.

into the results of the previous figures, we observe that due
to its lower nuclear spin 87Rb approaches the situation of an
ideal three-level system better than 133Cs. This means that at
equal atomic densities in Rb there are more atoms in the two
clock levels, and therefore coherent phenomena, like density
narrowing effects, are expected to be more pronounced. For
the same reason, contrasts for Rb are in general larger than
in Cs.

C. Light shift in an optically thick vapor

Light shift in Raman-Ramsey resonances has been the
subject of several recent works [50,51] and has been also
studied in a cold-atom clock [52–54]. In this subsection, we
assess light shift in an optically thick hot vapor.

Figure 11 reports the calculated light shift versus the
laser pumping rate for different cell temperatures. As for
the optically thin medium, the behavior can be explained in
terms of a Rabi pulling effect, for small laser pumping rates,
and a detection-time-dependent linear light shift when �p0

is increased. This linear behavior of the light shift has been
already observed in Cs experiments for a cell working at 42 ◦C
[51].

For both Cs and Rb cells, the conversion of laser in-
tensity fluctuations to the clock frequency can benefit from
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FIG. 11. Fractional light shift of the central fringe of Raman-
Ramsey resonances vs the laser pumping rate; τ1 = 1 ms; T =
3.5 ms; τ2 = 50 μs. (a) Cs cell: continuous line, 30 ◦C; dash-dotted
line, 40 ◦C; dashed line, 50 ◦C. (b) Rb cell: continuous line, 40 ◦C;
dash-dotted line, 50 ◦C; dashed line, 60 ◦C.

high-temperature regimes. For the Cs cell, the conversion
coefficient around �p0 = 20 000 s−1 is 1.3 × 10−12/% at a
temperature of 30 ◦C; it reduces to 8.6 × 10−14/% at a temper-
ature of 50 ◦C, a value comparable to that of better performing
vapor cell clocks. Similarly, for the Rb cell, the conversion
factor decreases from 1.3 × 10−12 to 6.8 × 10−13/% when the
temperature is raised from 40 to 60 ◦C.

IV. DISCUSSION AND CONCLUSIONS

The main purpose of this paper was to give physical insight
into light shift in pulsed CPT frequency standards and to
provide a theoretical framework predicting the main features
(linewidth and contrast) of dark resonances when observed in
an optically thick vapor.

Pulsing the different operation phases of vapor cell clocks
has been demonstrated to be very effective to reduce light shift
and to improve their frequency stability performances. In this
regard, pulsed CPT standards exhibit better performances than
continuously operated CPT clocks, even though light shift
remains one of the main sources of frequency instability in
the medium to long term. Light shift should be negligible
when the resonance is detected in the pulsed regime: the
atoms make the clock transition in the dark and no transfer
of laser instabilities to the clock levels is expected. However,
even if CPT coherently superimposes the two ground-state
levels, this coherence turns out to be coupled to the excited
state. The pulsed technique mitigates the interplay between

microwave and optical coherences; nevertheless, the Rabi
interaction keeps memory of the laser field and induces a
pulling effect on the central Ramsey fringe: basically, with
reference to Eq. (16), the Rabi profile is centered in �μ =
ω2

R/2ω21, whereas the Ramsey fringe is centered in �μ = 0.
In other words, the Rabi interaction is the mechanism through
which laser intensity instabilities are transferred to the clock
signal.

To be noticed is the difference with the pulsed optical
pumping (POP) approach [55,56] where the laser is used to
solely invert the ground-state population, the coherence being
generated by a microwave signal. In this case light shift is
truly almost negligible. At any rate, the theory here reported
shows that it is possible to reduce the transfer of laser intensity
fluctuations to pulsed CPT resonances by increasing the laser
intensity itself.

We analyzed the effect of the atomic density on the contrast
and on the linewidth of the central Ramsey fringe. Two
different behaviors have been identified for the linewidth:
a density narrowing followed by a line broadening above a
certain temperature.

The theory well describes the density narrowing and the
contrast as observed in Cs vapors. Raman-Ramsey resonances
have been also analyzed in Rb experiments [57–59] that can
therefore provide an additional test bench of the theory.

We also pointed out the role played by the detection time
to determine the linewidth and the shift of the clock signal.
Specifically, fluctuations of the laser intensity affect the clock
transition through a term proportional to τ2, as also reported
in [54] for a cold atom sample under CPT. This detection-
time-dependent light shift is inherent to the detection process
and may be an important cause of frequency instability in
the medium- to long-term period. On the other hand, a long
detection time yields a good signal-to-noise ratio and then a
good short-term stability. Therefore, in experiments a tradeoff
between these two situations must be found.

Further refinements of the theory are workable. A multi-
level approach, similar to that reported in [60,61], including
the whole ground-state manifold might lead to an even closer
matching between theory and experiments.

Other phenomena may contribute to affect the linewidth
and the line shape of pulsed CPT resonances. For example,
also for an optically thin medium, the shape of continuously
operated CPT resonances is sensitive to transverse intensity
distribution of the light beam [62,63]. Moreover, in a cell
with buffer gas, it is well known that the CPT resonance can
experience a diffusion-induced spectral narrowing [64]. These
phenomena may play a role also in pulsed operation; however,
they are not considered in this paper.

As discussed in the previous section, it is not surprising
that the linewidth of the central Ramsey fringe is narrower
than 1/2T , but its significant dependence on temperature and
on laser intensity could be unexpected. Again, a comparison
with the POP clock can shed some light on this behavior. In
the case of the POP clock, after the optical pumping phase
the atoms are interrogated by a couple of microwave pulses
followed by a laser pulse which probes the number of atoms
making the clock transition. This makes the central Ramsey
fringe very robust against the variation of several parameters,
including laser and microwave powers, and temperature. Only
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for very high vapor temperatures, nonlinear phenomena af-
fecting the clock linewidth have been observed [49]. In the
pulsed CPT, the atomic population cannot be probed, being
almost negligible. The information about the clock transition
is contained in the ground-state coherence that, as previously
mentioned, is coupled to the excited state. In other words, the
CPT phenomenon, even in the pulsed regime, always involves
three atomic levels and this makes CPT resonances more
susceptible to the variations of the physical parameters.

However, due to its intrinsic simplicity, the CPT technique
remains very attractive in view of implementing particularly
compact devices. The theoretical analysis reported here is of
interest in this regard since it can predict several important
parameters, like contrast and linewidth, that have an impact
on the clock frequency stability. Also, the theory presented
here is absolutely general and can be applied, as well, to
study dark resonances in optically thick media observed in
microcells.
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