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We discuss and numerically test a method for direct and unambiguous measurement of ultrahigh laser
intensities exceeding 1020 W/cm2. The method is based on the use of multiple sequential tunneling ionization of
heavy atoms with sufficiently high ionization potentials. We show that, due to a highly nonlinear dependence of
tunneling ionization rates on the electromagnetic field strength, an offset in the charge distribution of ions appears
sufficiently sensitive to the peak value of intensity in the laser focus. A simple analytic theory is presented which
helps in estimating the maximal charge state produced at a given intensity via the tunnel-ionization mechanism.
The theory also allows for calculating qualitatively a distribution in charge states generated in different parts of
the laser focus. These qualitative predictions are supported by numerical simulations of the tunneling cascades
developed in the interaction of a short intense laser pulse with a low-density target consisting of noble gases
including argon, krypton, and xenon. Results of these simulations show that, using this technique, intensities in
the range 1020–1024 W/cm2 can be measured with sufficient reliability. The method could be extremely useful
and of high demand in view of the expected commissioning of several new laser facilities capable of delivering
ultrapowerful light pulses in this domain of intensities.
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I. INTRODUCTION

During the past few decades, the continuous development
of high-power laser sources operating at optical and infrared
wavelengths has lead to a considerable growth in intensities of
electromagnetic radiation available in laboratories. Presently,
intensities up to 1019 W/cm2 are being routinely used in many
laser facilities, and several lasers of petawatt (PW) power [1]
deliver pulses of intensity up to 1021 W/cm2. Singular reports
of even higher intensities �1022 W/cm2 [2–4] are still lack-
ing independent and unambiguous evidences. However, the
forthcoming commissioning of several new 10 PW class laser
facilities [5–10] opens a way to a considerable step forward.
For a laser power of 3 PW, expected to be reached at the
ELI-Beamlines facility within the next 2–3 years, the peak
intensity in a 3λ focal spot of an 800 nm laser pulse will
exceed 5 × 1022 W/cm2. With 10 PW laser pulses focused
down to the diffraction limit, intensities on the order of
�1024 W/cm2 or even higher can be achieved.

This breakthrough is expected to make new regimes of
laser-matter interactions accessible for experimental research
including the radiation-dominated regime, where radiation
friction forces play the major role in plasma dynamics, obser-
vation of relativistic tunneling, generation of QED cascades of
elementary particles developed from seed particles in a laser
focus, and many other effects inaccessible at presently avail-
able laser intensities. For the overview of this newly emerging
research area we direct the reader to reviews [11–13] and the
literature quoted there.

In view of these expectations, the problem of precise
and unambiguous determination of the electromagnetic field

intensity in a laser focus becomes of exceptional importance.
Here we suggest using tunneling ionization of multicharged
ions as a probe of laser intensity. The main advantage of this
method has its root in the highly nonlinear dependence of
the tunneling ionization probability on the electromagnetic
field strength, so that a relatively small variation in inten-
sity leads to orders of magnitude change in the ionization
rate. Consequently, the maximal ionic charge observed in a
laser focus becomes a highly sensitive function of the peak
intensity. The shape of photoelectron spectra and positions
of the spectral maximum in a circularly polarized field [14]
and of the high-energy cutoff in a linearly polarized field [15]
are also sensitive to the value of intensity and have been
used for its determination. Generally, at moderate intensities
I � 1015 W/cm2, when single-electron ionization remains
the dominant process, and effects of ponderomotive scattering
play no significant role in laser pulses of femtosecond dura-
tion, photoelectron spectra are the most efficient measure of
intensity [16,17]. With its value growing, multiple ionization
comes into play along two competing mechanisms known
as sequential and nonsequential ionization, with the latter
triggered by recollisions [18–21]. Interplay of the two mech-
anisms makes the interval I � 1015–1017 W/cm2 difficult for
univocal determination of intensity via the ionization process.
A further increase of intensity simplifies the situation again.
As soon as the electron motion after the ionization step
becomes relativistic, which for λ = 800 nm happens at I ≈
1017 W/cm2, the longitudinal photoelectron drift induced by
the Lorentz force suppresses recollisions, so that the sequen-
tial tunnel ionization remains the only relevant mechanism.
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Simultaneously, deeper electronic shells are stripped out by
the laser: helium is fully ionized at I ≈ 5 × 1016 W/cm2

and neon at I ≈ 1020 W/cm2. Thus probing higher inten-
sities with ionization requires a target consisting of high-Z
atoms [22,23].

A large number of experimental works considered multiple
ionization of atoms by intense optical and infrared laser
radiation. As far as ultrahigh intensities are concerned, Walker
et al. [24,25] and Yamakawa et al. [26,27] studied ionization
of noble gases at intensities up to 1019 W/cm2 aiming at
rather the opposite purpose, namely, to check validity of the
tunneling ionization theory assuming the value of intensity
known. Although in their calculations they did not consider
effects of the intensity distribution over the laser focus and
simply estimated the maximal ionic charge number using the
tunneling rate formulas [28–32], a fairly good agreement with
the data was demonstrated.

In this contribution, we suggest using the setup of [24–27]
in the opposite way: the unknown value of the peak intensity
and, to some extent, of the spatial intensity distribution in
the focus can be reconstructed from the distributions of ionic
charge states. This idea has been rather widely spread in
the strong field community (see, e.g., Refs. [22,23]) with,
however, little emphasis on both the experimental constraints
needed for its realization and on the accuracy which can be
achieved within this approach. Additionally, to the best of our
knowledge, a systematic and exhaustive theoretical study of
this method, joint with its limitations, is still missing.

To verify the validity of this idea, we employ the theory of
sequential tunneling ionization and numerically calculate the
charge spectra by varying the laser peak value. Our paper is
organized in the following way. Section II presents qualitative
estimates justifying the theory of single-particle nonrelativis-
tic sequential tunneling which applies for the considered prob-
lem up to intensities of I ≈ 1024 W/cm2. Here also a brief
summary of the tunneling ionization theory is given, in the
part which relates to the total ionization rates. Using analytic
formulas for the rate of tunneling ionization, a simple estimate
for the offset ionization potential corresponding to the highest
charge state present in the spectrum is given. A system of
rate equations based on the ionization rates is formulated for
the case of ionization of argon, krypton, and xenon. Essential
simplifications of the full system, making it accessible for fast
numerical computation, are introduced and discussed here.
Results of numerical calculations are presented as well and
compared to the theoretical predictions of Sec. III. The last
section contains a brief conclusion. A complete description
of the systems of rate equations as well as all the parameters
needed for their numerical implementation are given in the
Appendices. Atomic units e = me = h̄ = 1 with the speed of
light c = 1/α, where α is the fine-structure constant, are used
unless stated otherwise.

II. THEORY

A. Qualitative considerations

Our theoretical approach is based on the following physical
picture.

(1) A gas in the laser focus is kept at sufficiently low
pressure, so that neither nonlinear propagation and plasma

effects in the medium nor electron-ion collisions play any
significant role. At a concentration of atoms n0 = 1014 cm−3

and an average ionic charge z̄ = 20 the plasma frequency is
of the order of ωp � 1012 s−1, so that no plasma oscillations
take place during the interaction with a laser pulse of a 100 fs
or shorter duration. Photoelectron energies εe in a laser field
are of the order of the ponderomotive energy, so that in the
ultrarelativistic case we are interested in results

εe ≈
√

1 + a2
0(1 + ρ2)

2
c2 � a0c2, (1)

where a0 is the dimensionless field amplitude defined as

a0 = E0

ωc
, (2)

with E0 and ω being the laser field amplitude and frequency,
respectively, and ρ being the laser field ellipticity (ρ = 0 for
linear and ρ = ±1 for circular polarization). Equation (1)
gives energies εe ≈ 4 × 106 eV and εe ≈ 4 × 108 eV for I =
1020 W/cm2 and I = 1024 W/cm2, respectively. At such en-
ergies, cross sections of elastic and inelastic electron-ion
collisions are comparable to that of bremsstrahlung, with none
of them exceeding 10−20 cm2, even at the lower boundary of
the intensity interval (for numerical values and formulas see,
e.g., Refs. [33,34]). As a result, the mean free path of electrons
exceeds the focal size (which is limited by several microns
for the tight focusing necessary to reach the highest values
of intensity) by several orders in magnitude. At the same
time, the number of atoms in the interaction volume, estimated
assuming the diffraction-limit focusing Na � n0λ

3 ≈ 102, re-
mains sufficiently high to reliably record the distribution in
charge states with a typical time of flight (TOF) ion detector.

(2) We assume multiple ionization to be sequential, so that
electrons leave an atom independently, one after another. This
assumption can be justied by noting that the time of flight of
the electron under the potential barrier

τsb � b

v0
≈

√
Ip√

2E0

, (3a)

where b = Ip/E0 is the barrier width and v0 = √
2Ip is the

characteristic electron velocity in a bound state with ioniza-
tion potential Ip, is much longer than the characteristic time of
the electron motion in the same bound state

τcorr � aB

v0
≈ 1

2Ip
. (3b)

Here aB � 1/
√

2Ip is the characteristic size of the bound state
(Bohr radius). The ratio of these two times is

τcorr

τsb
� E0

Ech
≡ F, Ech = (2Ip)3/2, (3c)

where Ech is the characteristic electric-field strength at the
Bohr orbit of the bound state and F is known as the reduced
field [31]. For tunneling or multiphoton ionization the reduced
field is always numerically small, F � 1, and its typical value
decreases with increase of both the ionization potential and
laser intensity, as we will demonstrate below.

(3) Although the electron motion after the ionization event
quickly becomes ultrarelativistic, the tunneling itself proceeds
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FIG. 1. Ionization offset, Eq. (14), shown by a thick black line
as a function of laser intensity. Ionization potentials of several
highly charged ions are shown by horizontal lines, including neon
(blue), argon (red), krypton (green), and xenon (brown). Ionization
potentials of Xe52+ and Xe53+ exceed 40 keV and lay above the
selected energy range. The plot allows estimating the charge numbers
whose distribution should be calculated numerically in order to cal-
ibrate the intensity within some certain interval. If only noble gases
are used, two gaps in the laser energy determination appear, i.e., there
exists a range in the laser intensity that cannot be covered using
only these atomic species. The respective intervals of intensity are
I ≈ 3 × 1022–2 × 1023 W/cm2 and I > 2.5 × 1023 W/cm2. These
gaps can be filled using other elements than noble gases. Dashed lines
show ionization potentials of several metals with only one electron
left in the ground 1s state. Here the notation An+ relates to the
ionization potential of the respective ion, so that after its ionization
the ion with z = n + 1 is produced.

nonrelativistically as long as the ionization potential is small
compared to the rest energy of the electron, Ip � c2. Quan-
titatively, relativistic effects in laser-induced tunneling are
determined by the value of the parameter [31]

ξ 2 = 1 − 1

2
ε[

√
ε2 + 8 − ε], ε = c2 − Ip

c2
. (4a)

In all the cases we consider here, it remains small, i.e.,

ξ 2 ≈ 2Ip

3c2
� 1. (4b)

As an example, consider the ground 1s state of the Ar17+

ion with Ip = 4426 eV ≈ 163 a.u. Below we show that inten-
sities I ≈ 2 × 1021 W/cm2 are required to ionize this state
producing bare Ar18+ ions. In this case ξ 2 = 0.0058, showing
that the relativistic effect on the tunneling remains on the level
of 1%. For intensities I ≈ 1024 W/cm2 and Ip ≈ 30 keV (see
Fig. 1), ξ 2 ≈ 0.04, so that the nonrelativistic approximation
remains quite accurate even at such otherwise ultrarelativistic
intensities. This considerable extension of the nonrelativistic
regime of tunneling toward ultrahigh intensities, roughly six
orders in magnitude above that corresponding to a0 = 1,
where the electron motion becomes fully relativistic, can be
qualitatively explained in the following way. The ionization

event can be viewed as a detachment of the electron from its
atomic orbital taking place at a distance of the order of the
tunnel barrier width

b = Ip

E0
� aB. (5)

The electron covers this distance b during the time given by
Eq. (3a), which is a small fraction of the laser period and can
be estimated as

τsbω =
√

Ipω√
2E0

≡ γ

2
� 1. (6)

Here the parameter γ , also known as the Keldysh parame-
ter [35], is introduced. During this time interval the electron
cannot be accelerated to relativistic kinetic energies, so that
the magnetic component of the Lorentz force remains a small
correction, unless the electron has had a relativistic velocity
already in the beginning of its subbarrier motion. The latter is
only possible for Ip � c2. As a result, at ξ 2 � 1 [see Eqs. (4a)
and (4b)] the process of the electron’s escape from an atom
(ion) proceeds nonrelativistically.

(4) Finally, note that ionization occurs in a deep tunneling
regime when the Keldysh parameter (6) is small. For a laser
with wavelength λ � 1 μm the value of (6) varies from γ �
10−2 for I = 1020 W/cm2 and Ip = 103 eV to γ < 10−3

for I = 1024 W/cm2 and Ip = 3 × 104 eV. This means that
instantaneous static-field ionization rates are applicable for
the calculation of the ionization probability. For the following,
it will be useful to relate the laser electric field amplitude to
the value of intensity expressed in units of 1020 W/cm2. In
this way the electric-field amplitude results, in atomic units, as

E0 = 53.4
√
I√

1 + ρ2
, (7)

where ρ is the laser field ellipticity. In the following we
consider linear polarization with ρ = 0.

B. Tunneling ionization rates

Under the assumptions formulated in the previous sub-
section, the ionization rate of a level in an ion with the
residual charge z, i.e., z = 1 for neutral atoms and z = N
for ionization of an A(N−1)+ ion, with the effective principal
quantum number [31,32]

ν = z√
2Ip

, (8)

and orbital and magnetic quantum numbers l and m, is
given by the celebrated Perelomov-Popov-Terentiev (PPT)
formula [28,31]:

w(ν, l, m; t ) = C2
νlBlmIpF 1+|m|−2ν (t ) exp

{
− 2

3F (t )

}
,

(9a)
with

C2
νl = 22ν−2

ν�(ν + l + 1)�(ν − l )
, (9b)

Blm = (2l + 1)(l + |m|)!
22|m||m|!(l − |m|)! , (9c)
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and the time-dependent reduced field F (t ) defined as

F (t ) =
√

E2
L(t )

(2Ip)3/2
, (10)

where EL(t ) is the laser electric field of the amplitude value
E0. The asymptotic coefficient Cνl in (9b) is taken in the
approximate form introduced by Hartree [36].

By knowing the ionization rates, a system of rate equa-
tions determining populations 0 � cz(t ) � 1 of different ionic
states can be written in the form∑

z

cz(t ) = 1, (11a)

cz(t ) =
∑

j,l

cz( j, l; t ), (11b)

dcz( j, l; t )

dt
=

∑
j′,l ′

cz−1( j′, l ′; t )
n j′,l ′

2l ′ + 1

∑
m′

w(ν ′, l ′, m′; t )

− cz( j, l; t )
n j,l

2l + 1

∑
m′′

w(ν, l, m′′; t ). (11c)

Here the index j denotes the ionization pathway (see the
Appendices for a more detailed explanation and examples),
cz( j, l; t ) are partial populations of orbitals with quantum
number l along a fixed ionization pathway, and n jl is the
number of equivalent electrons at the orbital. The system of
rate equations is truncated either at z = Z , where the Z is the
atomic number of the element, or earlier if the intensity is
not sufficient to fully ionize the atom. It can also be truncated
from the side of small z, owing to the fact that all states with
relatively small ionization potentials appear quickly depleted
at high intensities. Truncated systems of rate equations for
argon, krypton, and xenon are presented in the Appendices.

C. Intensity-dependent ionization offset

Before solving numerically the system (11a)–(11c), which
is done in the next section, we derive an estimate for the
maximal charge state which can be achieved via tunneling
ionization for a given value of laser intensity. The purpose
of this estimate is twofold. First, it allows for approximately
finding, without demanding numerical calculations, the inter-
val of charge states expected to be observed if the value of
intensity is known, and vice versa. Secondly, and not less
important, it will help us to considerably reduce the number of
terms in the system defined in (11a)–(11c) by omitting those
ones which, at a given intensity, correspond either to levels
which are ionized quickly, so that for them cz = 0 or, instead,
to those which remain almost unaffected for the field, i.e.,
cz ≈ 1. For high-Z ions, where the number of rate equations
becomes excessively large, this enormously simplifies the
actual numerical calculations.

In order to estimate the maximal charge number which can
be produced at a given intensity with a high probability, we
discard the (l, m) dependence in Eq. (9a) and consider the
total ionization probability per laser period for an s state at
the maximal intensity (to simplify notations, we set time such

that the maximum is achieved at t = 0):

W = 2π

ω
w(ν, 0, 0; 0) = πC2

κ K022ν+2F 1−2ν exp

{
− 2

3F

}
,

(12)

where K0 = Ip/ω is the multiquantum parameter [31,32] and
the reduced field F (10) is calculated for the amplitude value
E0 of the laser field. The exponential factor dominates the
intensity dependence of the rate (12). For a given value of
intensity (and therefore of E0) we estimate the threshold
ionization potential I∗

p (I ), such that the probability of ion-
ization per laser cycle is of the order of unity, W � 1. This
condition is essentially approximate as it ignores the pulse
duration, the (l, m) dependence, and the ionization saturation
effect. However, thanks to the exponential factor in Eq. (12),
which changes very rapidly with variations of the laser field
amplitude, it provides a logarithmically accurate estimate:

F ∗ = 2
3 ln−1 [

22ν+2C2
κπK0(F ∗)1−2ν

]
. (13)

As is typical for logarithmic asymptotics, the denominator in
the right-hand side (RHS) of Eq. (13) is a numerically large
value of the order of 10. This gives the offset condition in the
form (cf. [37]) F ∗ � 0.05 or

I∗
p � 1

2 (20E0)2/3 ≈ 52.2I1/3. (14)

In Fig. 1 we show the dependence, Eq. (14), versus laser
intensity. Several ionization potentials of noble gases (metals)
are shown by horizontal solid (dashed) lines.

Note that the logarithmic factor in the denominator of
Eq. (13) grows with intensity via the growth of the ionization
potential and therefore the value of K0. This leads to a further
suppression of the threshold value F ∗ at higher intensities.
Solving Eq. (13) numerically one may find that F ∗ ≈ 0.08
for the ground state of hydrogen, while for Ar15+, with
Ip = 918.3 eV, F ∗ ≈ 0.03. This leads to an important con-
clusion simplifying our calculations: ionic states with higher
ionization potentials are efficiently ionized at lower reduced
fields, which makes the sub-barrier tunneling mechanism of
ionization more relevant than in the case of neutral atoms
where one may enter the barrier suppression regime having
F ∗ � 0.1. For model analytic formulas describing multiple
ionization in this intermediate regime see a recent paper [38].

The relativistic generalization of this result, which be-
comes quantitatively important at intensities exceeding
1024 W/cm2, can be obtained by replacing Eq. (12) to its rel-
ativistic counterpart. The structure of the tunneling exponent
remains the same with the difference that the characteristic
field, Eq. (3c), is now determined as [31]

Fch = [
√

3ξ (Ip)]3

1 + ξ 2(Ip)
c3, (15)

with ξ 2(Ip) given by Eq. (4a). A calculation similar to that
given above for the nonrelativistic limit leads to an implicit
formula for the relativistic offset I∗

p

I = 1.57 × 108
ξ 6(I∗

p )

1 + ξ 2(I∗
p )

, (16)
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which coincides with Eq. (14) for I∗
p � c2. Accounting for the

second term in the expansion of (4a) in powers of Ip/c2, we
obtain instead of Eq. (14)

I∗
p ≈ 52.2I1/3(1 + 4.63 × 10−4I1/3). (17)

The relativistic correction in Eq. (17) remains small even at
1024 W/cm2, so that the two curves calculated along Eqs. (14)
and (17) remain visually indistinguishable for the intensity
interval shown in Fig. 1. Thus the nonrelativistic approxima-
tion for the ionization rate continues quantitatively correct at
these intensities. A considerable difference between relativis-
tic and nonrelativistic rates becomes apparent only at I �
1026 W/cm2. This remarkable extension of the nonrelativistic
picture for the particular case of tunneling in a low frequency
electromagnetic field deserves to be pointed out (see also a
discussion in [31], where a comparison between the two rates
is treated in a different way).

D. Effect of the intensity space distribution

The estimate (14) allows for deriving a universal approxi-
mate expression for the charge distribution of ions produced
in the laser focus. To this end, we assume that an atom located
at a point r will be ionized up to the charge corresponding
to the value of ionization potential given by Eq. (14), which
in turn depends on the local maximal value of intensity I (r).
This model presumes that the pulse duration is sufficient to
strip out all levels with lower Ip’s before the field reaches
its maximum. In the next section we check the validity of
this approximation by solving numerically a system of rate
equations (11a)–(11c) for different ionic species. For the time
being, we consider Ip as a continuous value. Then, the number
of ions with ionization potentials in the interval dIp is given by

dN = −n0
dV

dIp
dIp = 3n0

I2
p

I∗3
pm

dV

dδ
dIp, δ = I

Im
. (18)

Here Im is the peak intensity value in the focus and I∗
pm is the

corresponding offset ionization potential given by Eq. (14).
The space volume with intensity equal to or exceeding I is
denoted as V (δ):

V (δ) =
∫

δ�δ′(r)�1
d3r. (19)

For the simplest case of a fundamental Gaussian beam
symmetric with respect to the x axis,

I (r⊥, x) = Im

1 + x2/x2
R

exp

{
− 2r2

⊥
w2

0

(
1 + x2/x2

R

)}
, (20)

with xR = πw2
0/λ being the Rayleigh length and w0 the focal

waist, a trivial calculation gives

V (δ) = 4π2

3

w4
0

λ

{
1

6
y3 + y − atan(y)

}
,

y =
√

1

δ
− 1 =

√
Im

I − 1, (21)

FIG. 2. Charge distributions (22) (in logarithmic scale) calcu-
lated for Im = 1022 W/cm2, 1023 W/cm2, and 1024 W/cm2 as func-
tions of the effective charge zeff = √

2Ip. The distributions are shown
by thick black lines with the values of intensity indicated near each
curve. Selected charge states of argon, krypton, and xenon are shown
by vertical red, green, and brown lines, respectively. The value at
the intersection of vertical lines with the distributions approximately
indicates the relative amount of the respective charge state at a given
intensity.

so that the distribution in ionization potentials (18) takes the
form

f (Ip, Im) ≡ dN

dIp
= π2n0w

4
0

λIp

√
Im

I − 1

(
2 + Im

I

)
. (22)

The distribution is divergent at Ip → 0 due to the formally
unlimited focal volume. This makes, however, no difficulty
for practical calculations, as the effective volume is restricted
either by the minimal value of the ionization potential of a
neutral gas or by the geometry of a TOF detector [39].

Figure 2 shows the distribution (22) for several values of
the peak focus intensity, as a function of the effective ion
charge zeff = √

2Ip, equal to the charge of a hydrogenlike ion
having the same ionization potential. Values of zeff for several
charge states in argon, krypton, and xenon are indicated by
vertical lines to reproduce realistic discrete charge distribu-
tions. In order to estimate a relative amount of different charge
states one has to look at intersections of vertical lines with the
respective distribution curve. As an example, for ionization
of krypton at I = 1024 W/cm2 the number of Kr35+ and
Kr36+ ions in the focus is expected to be approximately
3.5–4.0 orders of magnitude less than that of Kr29+–Kr34+

ions. Instead, for ionization of xenon at I = 1023 W/cm2 the
number of Xe47+ ions is expected to be roughly three times
more than that of Xe52+, while Xe53+ and Xe54+ will not be
produced at this intensity.

More precisely, the number of An+ ions produced in the
focus at a given Im is obtained by calculating the area

043405-5



M. F. CIAPPINA et al. PHYSICAL REVIEW A 99, 043405 (2019)

under the respective curve between the ionization potentials of
A(n−1)+ and An+. Using Eq. (21) this number can be explicitly
expressed as

N (An+) = n0{V (Ip(A(n−1)+)) − V (Ip(A+))}

≈ π2n0w
4
0

λ

√
Im

I − 1

(
2 + Im

I

)
�Ip

Ip
. (23)

Here �Ip = Ip(An+) − Ip(A(n−1)+), Ip = Ip(A(n−1)+), and
I = I (Ip) calculated from (14). For the case of a fully stripped
atom, i.e., for n = Z , the value of Ip(An+) does not exist; there-
fore, Eq. (23) has to be modified by replacing Ip(An+) → I∗

pm.
In particular, this formula allows for estimating the absolute
number of ions N (An+) produced in the focus, which is crucial
to check the experimental availability to detect these ions. As
an example, taking krypton at an intensity 3 × 1023 W/cm2,
which is approximately 1.5 higher than the threshold intensity
for Kr35+ (see Fig. 1), using Ip(Kr35+) ≈ 17936 eV [40], and
assuming n0 = 1013 cm−3, λ = 1 μm, and w0 ≈ 2λ, we esti-
mate N (Kr36+) ≈ 80, which should be sufficient for detection.

III. NUMERICAL RESULTS

In this section, we numerically verify the theory introduced
above. In order to find the distribution of ionic charge states
during and after the interaction with intense laser radiation, we
solve a set of equations (11a)–(11c) using the nonrelativistic
static rates, Eq. (9a), for argon, krypton, and xenon in different
ranges of laser intensities. We employ an adaptive stepsize
Runge-Kutta scheme, based on the Numerical Recipes [41].

In a fully rigorous calculation, one should start the simu-
lation from a neutral atom and take into account all possible
trees of ionic states which develop starting from this initial
condition. A simple analysis shows, however, that the num-
ber of possible pathways grows enormously as the maximal
charge number increases. Even reasonably assuming that (a)
there is no ionization from inner shells until the outer shell
is not fully striped out of electrons, (b) ionization proceeds
without excitation of the residual ion, and (c) one neglects the
fine structure of electronic terms, we obtain that the number of
pathways for ionization of argon is equal to P = 1 for initial
states Arn+ with n � 14, P = 6 for n = 12, P = 28 for n = 8,
etc. Calculation of P for the initial configuration 1s22s22p6
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FIG. 3. (a) Time profile of the laser electric field for an equivalent laser intensity Im = 1021 W/cm2; (b)–(f) populations cn for Arn+ ions
as a function of time calculated by solving numerically the system of rate equations (B1)–(B5). For (b) and (c) the laser intensity is set
to Im = 1021 W/cm2 and for (d)–(f) to Im = 1022 W/cm2. The initial conditions are (b) c14(0) = 1, c15(0) = · · · = c18(0) = 0, (c) c14(0) =
0, c15(0) = 1, c16(0) = · · · = c18(0) = 0, (d) c14(0) = 1, c15(0) = · · · = c18(0) = 0, (e) c14(0) = 0, c15(0) = 1, c16(0) = · · · = c18(0) = 0,
and (f) c14(0) = c15(0) = 0, c16(0) = 1, c17(0) = c18(0) = 0.
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FIG. 4. Populations cn for Arn+ ions at the end of the laser
pulse as functions of the laser peak intensity. The initial con-
ditions are (a) c14(0) = 1, c15(0) = · · · = c18(0) = 0, (b) c14(0) =
0, c15(0) = 1, c16(0) = · · · = c18(0) = 0, and (c) c14(0) = c15(0)
= 0, c16(0) = 1, c17(0) = c18(0) = 0. Arrows mark the saturation
intensities which have to be compared with those extracted from
Eq. (14) or Fig. 1. Note that here we point out the saturation intensity
needed to generate bare ions, which corresponds, in notations of
Fig. 1, to the ionization potential of A(N−1)+ ions.

(corresponding to neutral neon, Ar8+, etc.), based on these
simplifications, is explained in Appendix A.

The analytical estimates of previous sections allow one to
substantially reduce the complexity of the problem. This is
so by assuming that ionization starts from ionic charge states
whose ionization potential can be estimated from Eq. (14),
while all the outermost levels have been quickly ionized
before the peak value of intensity has been reached. Thus our
numerical calculation intends to show the ionization dynamics
of levels with ionization potentials not very much different
from those given by Eq. (14). Such calculation will verify
the accuracy of the analytic estimate and show how quickly
ionization saturation can be achieved at a fixed laser intensity.

For distinctness, we suppose that an experiment aims prob-
ing laser intensities in the interval Im = 1021–1023 W/cm2

at the center of the focus. According to Fig. 1, in this
interval one would expect significant production of Ar18+

(bare argon nucleus) and Kr28+–Kr34+ ions. Ionic states with
lower ionization potentials will be quickly ionized during the
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FIG. 5. Populations cn for Krn+ ions at the end of
the laser pulse as functions of the laser peak intensity
for the case (a) (see Appendix B for details). The initial
conditions are (a) c26(0) = 1, c27(0) = · · · = c33(0) = 0,
(b) c26(0) = 0, c27(0) = 1, c28(0) = · · · = c34(0) = 0, (c) c26(0) =
c27(0) = 0, c28(0) = 1, c29(0) = · · · = c34(0) = 0, and (d) c26(0)
= · · · = c28(0) = 0, c29(0) = 1, c30(0) = · · · = c34(0) = 0. For
clarity, only the relevant ionic state populations are plotted. The
saturation intensity for ionization of Kr34+ ions lies beyond
I = 1023 W/cm2 [see Fig. 1 and Eq. (14)].

pulse intensity growth, while the probability of production
of Kr35+–Kr36+ will remain negligibly small in this range of
intensities. In order to check these qualitative predictions, we
solve the associated systems of rate equations for Ar and Kr
in a spatially homogeneous linearly polarized laser pulse. In
this case the time-dependent laser electric field E (t ) takes the
form

E (t ) = EL f (t ) cos(ωt ), (24)

where the pulse envelope is defined as f (t ) = sin2 ( ωt
2N ), with

N the total number of optical cycles. In our simulations we
use ω = 0.0455 a.u. and N = 10, that correspond to a laser
wavelength λ = 1 μm and a total pulse length T ∼ 33 fs,
respectively.

We consider the following assumptions.
(a) The initial state is chosen to have considerably lower

ionization potential than I∗
p (Imax), but high enough to mini-

mize the number of rate equations in the system. For practical
calculations, we set up for the initial condition a gas of Ak+
with k determined from Eq. (14) with intensity two orders
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FIG. 6. Populations cn for Krn+ ions at the end of
the laser pulse as functions of the laser peak intensity
for the case (b) (see Appendix B for details). The initial
conditions are (a) c30(0) = 1, c31(0) = · · · = c34(0) = 0,
(b) c30(0) = 0, c31(0) = 1, c′

31(0) = · · · = c34(0) = 0, and
(c) c30(0) = c31(0) = 0, c′

31(0) = 1, c32(0) = · · · = c34(0) = 0.
For clarity, only the relevant ionic states populations are plotted.
The saturation intensity for ionization of Kr34+ ions lies beyond
I = 1023 W/cm2 [see Fig. 1 and Eq. (14)].

in magnitude below the peak intensity under consideration.
As an example, considering ionization by pulses with Im =
1021 W/cm2 we assume a first set of calculations setting
c14(0) = 1 for argon (see below for more details). In order
to justify the validity of such model initial conditions, we
ran several calculations with different initial ionic states and
confirmed that the final ionic states distribution remains insen-
sitive to the initial choice.

(b) Ionization is not followed by excitation of the residual
ion. This assumption is amply justified by the deep tunnel
regime of ionization we consider, when the Keldysh parameter
in Eq. (6) remains well below 0.1. However, this assumption
does not imply that an electron with a slightly higher ioniza-
tion potential cannot be removed before that with a smaller
one, provided the difference between the ionization potentials
is relatively not too high. This may happen for shells contain-
ing s and p electrons, as illustrated in Appendix A.

Assumptions (a) and (b) further reduce the number of rate
equations in the system. For simulations, we take the data on
ionization potentials and (l, m) configurations of ionic levels

0.5

1

(c)

(b)

c50

c51

c52

c53

c54

(a)

0.5

1

io
ni

c-
st

at
e 

po
pu

la
tio

n

10 100 1000 10000
0

0.5

1

Intensity (1020 W/cm2 units)

FIG. 7. Populations cn for Xen+ ions at the end of the laser
pulse as functions of the laser peak intensity. The initial conditions
are (a) c50(0) = 1, c51(0) = · · · = c54(0) = 0, (b) c50(0) =
0, c51(0) = 1, c52(0) = · · · = c54(0) = 0, and (c) c50(0) =
c51(0) = 0, c52(0) = 1, c53(0) = c54(0) = 0. Arrows mark the
saturation intensities which have to be compared with those
extracted from Eq. (14).

in argon, krypton, and xenon from the fundamental works by
Saloman [40,42,43]. We first calculate the dependence on time
of the populations c14 . . . c18 for argon in the field (24) with
two different peak intensities: 1021 W/cm2 and 1022 W/cm2.
The results are shown in Fig. 3, where the populations
c14 . . . c18 are present for different initial conditions assuming
that the preionized gas consists of Ar14+ [Figs. 3(b)–3(d)],
Ar15+ [Figs. 3(c)–3(e)], and Ar16+ [Fig. 3(f)], respectively.
In Figs. 3(b) and 3(c) the laser intensity is 1021 W/cm2;
meanwhile, in Figs. 3(d)–3(f) we set the laser intensity at
1022 W/cm2. We expect the subcycle time dynamics of the
ionic-state populations will indeed be sensitive to the pulse
shape, i.e., the curves of Figs. 3(b)–3(f) should change if
we model the laser pulse shape as a Gaussian or sech2, but
the final state values will not. As we are interested in the
ionic-state populations at the end of the laser pulse, its shape
is hardly relevant. In any case, in a detailed simulation, aimed
to compare with experimental data, we will employ a more
realistic pulse shape. By addressing Figs. 1 and 2, one has
to note that there ionization potentials of the respective ions
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are shown, while the coefficients cn describe populations of
states generated in the process of ionization of these ions. As
a result, the value of index n on Figs. 1 and 2 and Figs. 3–7
differs by 1.

In Fig. 4 we plot the ionic states of Ar at the end of
the laser pulse as a function of the laser intensity in a
range of 1019–1022 W/cm2. We employ three different ini-
tial conditions, namely c14(0) = 1, c15(0) = · · · = c18(0) =
0 [Fig. 4(a)], c14(0) = c16(0) = · · · = c18(0) = 0, c15(0) =
1 [Fig. 4(b)], and c14(0) = c15(0) = 0, c16(0) = 1, c17(0) =
c18(0) = 0 [Fig. 4(c)] (see Appendix B for more details).
Here the rates w(νz, l, m; t ) are found from Eq. (9a) with the
effective principal quantum numbers ν14 = 1.89, ν15 = 1.95,
ν16 = 0.98, and ν17 = 1.00 calculated from Eq. (8), using the
ionization potentials taken from [42].

Several conclusions can be drawn at this point. First,
the results shown in Figs. 3 and 4 fully support as-
sumption (a): the final distribution of charge states ap-
pears insensitive to the initial state, provided its ionization
potential is low enough. In this case solutions correspond-
ing to different initial states appear almost indistinguishable.
Second, and even more important, the plots of Figs. 3 and 4
show the reliability of the analytic estimations given by
Eq. (14). The charge state Ar16+ is reached at I ≈ 1.3 ×
1019 W/cm2 and Ar18+ at I ≈ 4 × 1021 W/cm2, in a rea-
sonable agreement with the analytic estimates. The latter
assumes that, as the value of intensity grows, populations of
charge states evolve from zero to 1 and then back to zero in
small intensity intervals, so that the coefficients cn can be
approximated by Heaviside functions. As is seen from the
curves of Figs. 3 and 4, populations of the levels behave
almost as step functions, justifying the validity of the latter
approximation.

A similar calculation was performed for krypton taking as
the initial condition ionic states between Kr26+ and Kr31+ and
in an intensity range between 1019 W/cm2 and 1023 W/cm2.
In the first case we have taken into account only one path-
way corresponding to the removal of the outermost electron
always, i.e., the p electrons are removed first. This pathway
is shown by red arrows on Fig. 8. In the second case all
six relevant pathways are taken into account. The systems of
rate equations are given in Appendix B. The corresponding
distributions of the relevant ionic populations are shown on
Figs. 5 and 6. We can observe that, as in the case of Ar,
the final ionic state is independent of the initial condition.
Interestingly, this behavior remains even when (i) we in-
clude excited states [case (b)] and (ii) we employ a com-
pletely different pathway to reach the same final state [com-
pare the set of rate equations (B6)–(B14) with (B15)–(B23),
Appendix B].

Finally, and for completeness, Fig. 7 shows the popula-
tions of Xe ions at the end of the laser pulse as a function
of the laser intensity in a range 1021–5 × 1024 W/cm2. In
Fig. 7(a) we start our simulations with c50(0) = 1, c51(0) =
· · · = c54(0) = 0, in Fig. 7(b) with c50(0) = 0, c51(0) =
1, c53(0) = · · · = c54(0) = 0, and in Fig. 7(c) with c50(0) =
0, c51(0) = 0, c52(0) = 1, c53(0) = c54(0) = 0. As in the
previous case, we observe a very good agreement between the
saturation intensities obtained numerically with the analytical
estimates derived from Eq. (14).

FIG. 8. Substructure of levels and ionization pathways making
the main contribution into sequential multiple ionization of atomic
systems prepared in the ground 1s22s22p6 state. Ground and excited
states are shown by blue solid and dashed lines correspondingly.
Most of the excited states consist of several sublevels with different
values of the full angular momentum J . The ionization pathway
which involves only the ground states is shown by red arrows; all
other pathways are shown by black arrows.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have demonstrated that using the strong
dependence of the ionization offset in complex atoms on laser
intensity the latter can be reliably estimated. The simple ana-
lytic estimates of Sec. II qualitatively agree with the numerical
results of Sec. III. The former help in identifying intervals
of ionization potentials necessary to probe a certain range
of laser intensities, but do not provide quantitative accuracy.
Therefore, for a precise determination of the maximal laser in-
tensity in the focus, numerical solution of the rate equations is
required along the lines presented in Sec. III and Appendix B.

Two significant experimental-related issues will probably
be faced on the way to an implementation of this diagnostic.
First, a spatial distribution of laser intensity in the focus will
lead to the volume effect analytically examined in Sec. II D re-
sulting in production of a very significant number of relatively
low charged ions which can saturate the signal recorded by the
TOF detector. This problem can be resolved by mechanically
restricting the effective volume accessible for the detector
or by deflecting ions with sufficiently low charge states in a
magnetic field before these ions reach the detector. Second, as
discussed in Sec. II and shown by Fig. 1, there are large gaps
in ionization potentials (and, correspondingly, an impossibil-
ity to estimate intensities in these regions) which cannot be
filled in by noble gases, which are the most common elements
being used as gas targets in strong field physics. Possible
candidates, most likely highly charged ions of metals, such
as Ag, Mo, Cu, etc., have to be examined in virtue of their
feasibility for such an experiment.
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APPENDIX A: IONIZATION CASCADES

Starting from a given ground state of an atom or an ion,
ionization can proceed along different pathways. Clearly, for
multielectron atoms the total number of such paths grows very
quickly with the atomic number. Most of them do not give any
considerable contribution into the production of ionic states
owing to the structure of the tunneling rate. The tunneling
exponent in Eq. (9a) is maximal for the outermost electron
which has the minimal ionization potential. This makes ion-
ization of inner shells highly improbable before the outer
shells have been stripped out, so that such ionization pathways
can be safely discarded. However, when electrons are being
removed from the same shell, ionization of lower s levels
may proceed with comparable or even higher probability than
that of p levels with lower ionization potentials. The reasons
for that are (a) a smaller value of the asymptotic coefficients
C2

νl in Eq. (9b) and (b) the factor F |m| in Eq. (9a), which is
small for nonzero magnetic quantum numbers, owing to the
condition F � 1. As an example, for Kr26+ with the ground-
state configuration 1s22s22p6, ionization of a p electron with
Ip ≈ 2929 eV proceeds with probability comparable to that for
an s electron whose ionization potential is by �Ip ≈ 235 eV
higher [40]. Indeed, taking F � F ∗ = 0.05, one obtains that
the tunneling exponent for the p electron is exp(�Ip/IpF ) ≈ 5
times higher than that for the s electron. At the same time,
for the latter C2

ν0 = 1.088, B00 = 1, while for the p electron
C2

ν1 = 0.315 and B10 = 3, B1±1 = 3/2, and finally the factor
F |m| gives 0.05 for m = ±1. Thus the p-state rate averaged
over the magnetic quantum number appears only five times
greater than that of the s state. For partially stripped p shells
the difference in ionization potentials appears to be even
smaller, so that, for configurations 2s22p or 2s22p2, the s
and p rates are almost equal. These estimates show that the
described submanifold of pathways may play an essential role
in the ionization dynamics.

An example of the structure of levels is shown on Fig. 8 for
the initial configuration 1s22s22p6, which corresponds to the
neutral neon, Ar8+, Kr26+, etc.

For the initial configuration shown on Fig. 8 the total
number of pathways is equal to 28. For the 1s22s22p2 con-
figuration only six relevant pathways are left; starting from
the 1s22s2 configuration ionization proceeds along the unique
pathway.

APPENDIX B: SYSTEMS OF RATE EQUATIONS

We solve numerically the system of rate equations for
argon in the interval of intensities Im = 1019–1022 W/cm2,
for krypton between Im = 1019–1023 W/cm2, and for xenon

between Im = 1021–5 × 1024 W/cm2 using an adaptive step-
size Runge-Kutta scheme [41]. We start with the simplest
configuration 1s22s2 for argon (Ar14+, Ip ≈ 855 eV). The
value of Ip is well below that of Eq. (14) for 1020 W/cm2,
which is I∗

p ≈ 1420 eV. For this initial configuration, only one
relevant pathway contributes (see Fig. 8 and Appendix A).
The resulting system of rate equations is therefore particularly
simple and reads

dc14

dt
= −2c14w(ν14, 0, 0; t ), (B1)

dc15

dt
= 2c14w(ν14, 0, 0; t ) − c15w(ν15, 0, 0; t ), (B2)

dc16

dt
= c15w(ν15, 0, 0; t ) − 2c16w(ν16, 0, 0; t ), (B3)

dc17

dt
= 2c16w(ν16, 0, 0; t ) − c17w(ν17, 0, 0; t ), (B4)

dc18

dt
= c17w(ν17, 0, 0; t ). (B5)

Coefficients 2 in Eqs. (B1)–(B4) are due to the presence of
two equivalent electrons in the subshell.

For the interval of intensities used for Kr, the system of
rate equations has to include p states of the 2p shell. In order
to simplify the calculations, we consider two cases: (a) the
1s22s22p6 state as initial configuration, with only the most
probably pathway accounted for (shown on Fig. 8 by red
arrows) and (b) the 1s22s22p2 as initial configuration with all
relevant pathways accounted for (shown on Fig. 8 by red and
black arrows). For case (a) the system explicitly reads

dc26

dt
= −2c26{w(ν26, 1, 0; t ) + 2w(ν26, 1,±1; t )}, (B6)

dc27

dt
= 2c26{w(ν26, 1, 0; t ) + 2w(ν26, 1,±1; t )}

− 5

3
c27{w(ν27, 1, 0; t ) + 2w(ν27, 1,±1; t )}, (B7)

dc28

dt
= 5

3
c27{w(ν27, 1, 0; t ) + 2w(ν27, 1, pm1; t )}

− 4

3
c28{w(ν28, 1, 0; t ) + 2w(ν28, 1,±1; t )}, (B8)

dc29

dt
= 4

3
c28{w(ν28, 1, 0; t ) + 2w(ν28, 1,±1; t )}

− c29{w(ν29, 1, 0; t ) + 2w(ν29, 1,±1; t )}, (B9)

dc30

dt
= c29{w(ν29, 1, 0; t ) + 2w(ν29, 1,±1; t )}

− 2

3
c30{w(ν30, 1, 0; t ) + 2w(ν30, 1,±1; t )}, (B10)

dc31

dt
= 2

3
c30{w(ν30, 1, 0; t ) + 2w(ν30, 1,±1; t )}

− 1

3
c31{w(ν31, 1, 0; t ) + 2w(ν31, 1,±1; t )},

(B11)
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dc32

dt
= 1

3
c31{w(ν31, 1, 0; t ) + 2w(ν31, 1,±1; t )}

− 2c32w(ν32, 0, 0; t ), (B12)

dc33

dt
= 2c32w(ν32, 0, 0; t ) − c33w(ν33, 0, 0; t ), (B13)

dc34

dt
= c33w(ν33, 0, 0; t ) − 2c34w(ν34, 0, 0; t ). (B14)

The system can be safely truncated by Eq. (B14), as the
ionization potential of Kr34+, Ip = 17296 eV, is too high to
expect any considerable ionization below 1023 W/cm2 (see
Figs. 1 and 2). The effective principal quantum numbers νz

are calculated using data from [40].
For case (b) we take into account all relevant pathways

(see red and black arrows in Fig. 8) up to the same ionic
state as the one used in (a). As a result, excited states of
two types, 1s22s2pn and 1s22pn with n = 1, 2, enter in the
calculation. We denote the values corresponding to these two
sets of excited states by one and two primes, respectively.
Then the system of rate equations reads

dc30

dt
= −c30

{
2

3
[w(ν30, 1, 0; t ) + 2w(ν30, 1,±1; t )]

+ 2w(ν ′
30, 0, 0; t )

}
, (B15)

dc31

dt
= −c31

{
1

3
[w(ν31, 1, 0; t ) + 2w(ν31, 1,±1; t )]

+ 2w(ν ′
31, 0, 0; t )

}
+ c30

2

3
[w(ν30, 1, 0; t )

+ 2w(ν30, 1,±1; t )], (B16)

dc′
31

dt
= −c′

31

{
2

3
[w(ν ′

31, 1, 0; t ) + 2w(ν ′
31, 1,±1; t )]

+w(ν ′′
31, 0, 0; t )

}
+ 2c30w(ν ′

30, 0, 0; t ), (B17)

dc32

dt
= −2c32w(ν32, 0, 0; t ) + c31

{
1

3
[w(ν31, 1, 0; t )

+ 2w(ν31, 1,±1; t )]

}
, (B18)

dc′
32

dt
= −c′

32

{
1

3
[w(ν ′

32, 1, 0; t ) + 2w(ν ′
32, 1,±1; t )]

+w(ν ′′
32, 0, 0; t )

}

+ 2c31w(ν ′
31, 0, 0; t ) + c′

31

{
2

3
[w(ν ′

31, 1, 0; t )

+ 2w(ν ′
31, 1,±1; t )]

}
, (B19)

dc′′
32

dt
= −2

3
c′′

32[w(ν ′′
32, 1, 0; t ) + 2w(ν ′′

32, 1,±1; t )]

+ c′
31w(ν ′′

31, 0, 0; t ), (B20)

TABLE I. Parameters for the first ionization cascade of Kr.

Ionic state e configuration Ip (eV) ν C2 l m Blm

Kr26+ 1s22s22p6 2 929 1.840 0.315 1 0 3
Kr26+ 1s22s22p6 2 929 1.840 0.315 1 ±1 3/2
Kr27+ 1s22s22p5 3 072 1.863 0.319 1 0 3
Kr27+ 1s22s22p5 3 072 1.863 0.319 1 ±1 3/2
Kr28+ 1s22s22p4 3 238 1.882 0.321 1 0 3
Kr28+ 1s22s22p4 3 238 1.882 0.321 1 ±1 3/2
Kr29+ 1s22s22p3 3 381 1.903 0.322 1 0 3
Kr29+ 1s22s22p3 3 381 1.903 0.322 1 ±1 3/2
Kr30+ 1s22s22p2 3 584 1.910 0.325 1 0 3
Kr30+ 1s22s22p2 3 584 1.910 0.325 1 ±1 3/2
Kr31+ 1s22s22p 3 752 1.927 0.327 1 0 3
Kr31+ 1s22s22p 3 752 1.927 0.327 1 ±1 3/2
Kr32+ 1s22s2 3 971 1.931 1.030 0 0 1
Kr33+ 1s22s 4 108 1.956 1.029 0 0 1
Kr34+ 1s2 17 296 0.981 0.990 0 0 1
Kr35+ 1s 17 936 0.995 0.995 0 0 1

dc33

dt
= −c33w(ν33, 0, 0; t ) + 2c32w(ν32, 0, 0; t )

+ 1

3
c′

32[w(ν ′
32, 1, 0; t ) + 2w(ν ′

32, 1,±1; t )], (B21)

dc′′
33

dt
= −1

3
c′′

33[w(ν ′
33, 1, 0; t ) + 2w(ν ′

33, 1,±1; t )]

+ c′
32w(ν ′′

32, 0, 0; t ) + 2

3
c′′

32[w(ν ′′
32, 1, 0; t )

+ 2w(ν ′′
32, 1,±1; t )], (B22)

dc34

dt
= c33w(ν33, 0, 0; t ) + 1

3
c′′

33[w(ν ′
33, 1, 0; t )

+ 2w(ν ′
33, 1,±1; t )] − 2c34w(ν34, 0, 0; t ). (B23)

APPENDIX C: PARAMETERS FOR KRYPTON
AND XENON

Here the values of Ip, ν, C2
νl , and Blm are given for the

two ionization cascades in krypton described by Eqs. (B6)–
(B14) and Eqs. (B15)–(B23) and for the xenon case, that
can be simulated using the same set of rate equations (B1)–
(B5), changing the respective ionic state populations and their
associated parameters.

FIG. 9. Same as on Fig. 8 but for the initial ground state
1s22s22p2. See the text for details about the numeration of transitions
and their parameters.
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TABLE II. Parameters for the second ionization cascade of Kr
(see text and Fig. 9 for more details).

Transition no. z Ip (eV) ν C2 l m Blm

1 31 3 584 1.910 0.325 1 0 3
1 31 3 584 1.910 0.325 1 ±1 3/2
1a 31 3 671 1.887 1.048 0 0 1
2 32 3 752 1.927 0.327 1 0 3
2 32 3 752 1.927 0.327 1 ±1 3/2
2a 32 3 819 1.910 1.039 0 0 1
2′ 32 3 732 1.932 0.327 1 0 3
2′ 32 3 732 1.932 0.327 1 ±1 3/2
2b 32 3 841 1.904 1.041 0 0 1
3 33 3 971 1.931 1.030 0 0 1
3′ 33 3 904 1.949 0.329 1 0 3
3′ 33 3 904 1.949 0.329 1 ±1 3/2
3b 33 3 975 1.930 1.031 0 0 1
3′′ 33 3 865 1.958 0.330 1 0 3
3′′ 33 3 865 1.958 0.330 1 ±1 3/2
4 34 4 109 1.956 1.020 0 0 1
4′′ 33 4 038 1.973 0.331 1 0 3
4′′ 33 4 038 1.973 0.331 1 ±1 3/2
5 35 17 296 0.981 0.990 0 0 1
6 36 17 936 0.991 0.995 0 0 1

TABLE III. Parameters for Xe.

Ionic state e configuration Ip (eV) ν C2 l m Blm

Xe50+ 1s22s2 9 607 1.919 1.035 0 0 1
Xe51+ 1s22s 9 812 1.936 1.028 0 0 1
Xe52+ 1s2 40 272 0.974 0.986 0 0 1
Xe53+ 1s 41 300 0.962 0.979 0 0 1

The first case of Kr corresponds to ionization of the out-
ermost orbitals (red arrows on Fig. 8) and starts from the
1s22s22p6 state of Kr26+. The parameters of the first ioniza-
tion cascade are shown in Table I. The second one starts from
the 1s22s22p2 state of Kr30+ and accounts for all pathways
(shown by red and black arrows on Fig. 8). For this case one
should take into account that several transitions may occur
from or to a given state. These transitions are depicted and
numbered in Fig. 9. The respective parameters are presented
in Table II.

Finally, we run the same system of rate equations (B1)–
(B5) for xenon starting from the ground-state configura-
tion 1s22s2 of the Xe50+ ion. The parameters are shown in
Table III.
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