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Microwave Rabi resonances beyond the small-signal regime
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The coupling between microwave fields and atoms (or atomlike systems) is inherently weaker than for optical
fields, making microwave signal manipulation for applications like quantum information processing technically
challenging. In order to better understand this coupling and to develop tools for measuring it, we explore
the microwave coupling to atoms using the “atomic candle” technique, and push it beyond the bounds of the
small-signal regime in order to deliver a larger signal. In familiar two-level systems, responses beyond the usual
Rabi oscillations can arise when a single-tone drive is phase modulated, causing the steady-state populations
to oscillate at integer harmonics of the modulation frequency. Resonant behavior of the first two harmonics for
frequencies near the Rabi frequency, known as α and β Rabi resonances, is widely used for microwave-field
magnetometry and as a power standard known as the atomic candle. Here, we explore Rabi resonances beyond
the small-signal approximation and report upon experimental observations of higher-order-harmonic population
response for microwave hyperfine transitions in cold 87Rb atoms, which we compare to numerical simulations.
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I. INTRODUCTION

The control and manipulation of microwave signals with
atoms is undergoing a renaissance in the scientific world,
moving beyond traditional applications such as providing the
definition of the second [1–4], towards precision metrology
in direct current (dc) [5] and alternating current (ac) [6]
magnetometers, and novel applications for quantum informa-
tion processing, such as microwave-to-optical transduction of
qubits [7–9]. These two examples highlight two different ways
atoms are used: first, as a measurement tool to detect the
fields, and second, as the interaction medium through which
the fields are manipulated. Both cases demand an intimate
understanding of the microwave-to-atom coupling, and a way
to measure it precisely and with a large signal-to-noise ratio.

Very generally, an oscillating electromagnetic field with a
frequency near the resonance of a two-level system periodi-
cally drives population transfer between levels, in a process
commonly known as Rabi oscillation. In the presence of
relaxation between these levels (due to one or more of many
possible decoherence mechanisms), the steady-state popula-
tions tend towards a constant value. In contrast, these steady-
state populations oscillate when the phase of the oscillating
field is modulated at a frequency ωm, and the amplitude of
the population oscillations is enhanced when ωm is equal to
the Rabi frequency, �R. This phenomenon, known as “Rabi
resonance” [10–12], can be used to find the the system’s Rabi
frequency and, correspondingly, the power of the oscillating
field at the position of the atom(s). The Rabi-flopping atoms
respond to ac and dc fields in exactly the same way in all
laboratories, so by measuring the rate of flopping we have
a fundamental measure of the field strength at the atoms. In
analogy to “candlepower,” a measure of luminous intensity,
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such measurement schemes in Rabi-flopping atomic systems
are known as “atomic candles” [12,13] and are used as electro-
magnetic power standards. This technique has also attracted
significant interest for its applications for ac magnetometry
inside microwave (MW) cavities [5,14], MW wave guides
[15–17], and in free space [5,18–21]. Applying static mag-
netic fields [14] and using multispecies vapor cells [5] adds
frequency tunability and expands the operational bandwidth
of this technique.

In previous work, the Rabi resonance was analyzed and
measured only in the small-signal regime, where a sufficiently
small modulation depth permits an approximate analytic so-
lution to the Maxwell-Bloch equations for the populations.
These population oscillations, which have frequency compo-
nents at ωm and 2ωm, can be described analytically, including
an amplitude that depends on ωm. Here, we explore the atomic
candle technique beyond the small-signal approximation both
numerically and experimentally. Using large-deviation phase
modulation on the MW field, we observe higher-order spectral
features whose characteristics and scaling behave differently
than the first and second harmonics. In this work, we focus
our attention on the component oscillating at 4ωm, namely, the
fourth harmonic, and discuss how it may be used to extend the
atomic candle technique.

II. THEORY: RABI OSCILLATIONS WITH A
PHASE-MODULATED DRIVING FIELD

As we explore higher-order Rabi resonances theoretically,
we consider the two-level system used in our experiments
(Fig. 1), which is comprised of two Zeeman states in different
hyperfine levels of an alkali metal, which are described by
the total angular momentum F and projections mF . For this
two-level system, separated by energy h̄ω0, the levels can be
coupled by a nonzero matrix element for magnetic dipole tran-
sitions, V12 = 〈2| μ̂ · B0 |1〉, where μ̂ is the magnetic dipole
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FIG. 1. Schematic of phase-modulated microwave signals ap-
plied and measured in an atomic system, as used in experimental
demonstrations. After optical molasses 87Rb atoms are optically
pumped into the F = 1 state transparent for a probe light, resonant
with the F = 2 → F ′ = 2 transition. Change in the F = 2 popula-
tion due to microwave field is monitored in real time as a change in
transmission signal of the probe light.

operator, and |1〉 and |2〉 represent the two levels. Here, the
ac driving field B(t ) = B0eB0 cos ωt is described by the peak
field B0 = B0eB0, with ac-field amplitude B0 and direction
eB0. When the ac field is resonant (ω = ω0), the population
oscillates at the Rabi frequency �R = V12/h̄. When the de-
tuning δ = ω − ω0 is nonzero, the oscillations occur at the
generalized Rabi frequency � =

√
�2

R + δ2 .
In the presence of decoherence or damping, the oscillatory

behavior of the two-level system damps out and the
system equilibrates to a steady population ratio (e.g., equal
populations for a strong resonant ac field and small damping).
These dynamics are well described by the Maxwell-Bloch
equations [22].

A phase-modulated oscillating field changes these dynam-
ics. Here, we consider the case where a time-dependent phase
θ (t ) modulates the ac field: B(t ) = B0eB0 cos [ωt + θ (t )]. In
this case, the standard Maxwell-Bloch equations can be mod-
ified to include additional time-dependent terms:

u̇ = [δ + θ̇ (t )]v − �2u, (1)

v̇ = −[δ + θ̇ (t )]u + �Rw − �2v, (2)

ẇ = −�Rv − �1[w + 1], (3)

where u and v are the in- and out-of-phase coherences [u =
2Re(ρ12) and v = 2Im(ρ12)] and w = ρ22 − ρ11 is the popula-
tion difference between levels, and where ρ is the usual 2 × 2
density matrix of the two-level system (ρ11 is the ground-state
population and ρ22 is the excited-state population). In the
loss terms, �1 and �2 represent longitudinal and transverse
damping rates, respectively. We consider the case where the
ac field is modulated about a constant phase offset θ0 with
frequency ωm, modulation depth m, and offset phase φm:

θ (t ) = θ0 + m sin(ωmt + φm ). (4)
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FIG. 2. Ground-state population of a two-level system as a
function of time in the case of a phase-modulated coupling (solid
line). The simulation is made for modulation depth m = 1, Rabi
frequency �R = 2ωm, longitudinal and transverse relaxation rates
�1 = 0.8ωm and �2 = 0.4ωm, respectively, and carrier frequency
detuning δ = ωm, where ωm is the modulation frequency. The dashed
curve corresponds to the steady-state solution without modulation.
Inset: Spectrum of the steady-state oscillations in the ground-state
population for δ = 0.1ωm (blue solid curve) and δ = 0 (red dashed
curve), obtained using fast Fourier transform (FFT).

We explore the numerical solutions of Eqs. (1)–(3) to
find the time-dependent coherences and population dynamics
under a variety of parameters. In particular, we are interested
in the excited-state population ρ22 = (w + 1)/2 in the steady-
state regime (�1t � 1), which is found to oscillate, even long
after the damping times associated with �1 and �2 (Fig. 2).

Below, we have a closer look at the time dependence
of the steady-state populations of the ground and excited
states, which is directly related to a measurable quantity: the
absorption of light from one of these levels to an optically
excitable third level.

A. Small-modulation approximation

Treating the modulation term as a perturbation allows
us to assume that in the steady-state regime the parameters
describing the atomic state evolve around their unmodulated
steady-state values u0, v0, ρ22,0:

ρ22(t ) = ρ22,0 + ρ22,m(t ),

v(t ) = v0 + vm(t ),

u(t ) = u0 + um(t ),

where ρ22,m, vm, um describe the evolution due to the phase
modulation.

Figure 2 shows that in the case of a weak modulation, the
steady-state ground-state population ρ11(t ) oscillates around
its unmodulated value. Indeed, it can be shown [13] that in
this case the excited-state population evolution is described
by

ρ̈22,m + �1ρ̇22,m + �2
Rρ22,m

= 2�R�2vm + 2�R(δ + θ̇ )um + u0�Rθ̇ ,
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which is a damped harmonic oscillator equation, where the
driving is due to coherence between the levels (vm and um)
and phase modulation θ̇ .

For small modulations (m <
√

2�1/ωm) and low decoher-
ence (�2 � ωm), known as the small-signal approximation,
the steady-state solution for the excited-state population has
been found analytically [13]. The population dynamics in this
regime are represented by the first two harmonics of ωm,
and the excited-state dynamics with respect to its unperturbed
value may be expressed as

ρ22,m(t ) = P1 sin(ωmt + φ1) + P2 sin(2ωmt + φ2), (5)

with amplitudes

P1 =
m
2 ωm�2

Rδ

[
�2

2 + δ2 + �2
�1

�2
R

]√(
ω2

m − �2
R

)2 + �2
1ω

2
m

, (6)

P2 =
(

m
2

)2
ωm�2

R�2[
�2

2 + δ2 + �2
�1

�2
R

]√(
4ω2

m − �R
)2 + 4�2

1ω
2
m

. (7)

The main feature of these solutions is that the amplitudes
P1(ωm,�R) and P2(ωm,�R) peak when the frequency of the
corresponding harmonic is resonant with the Rabi frequency,
ωm = �R and 2ωm = �R, respectively, which are known as
the α and β Rabi resonances. Experimentally, scanning the
modulation frequency ωm in search of this peak provides a
tool for measuring �R and, thus, the power of the driving
field, since �R ∝ B2

0 [5]. In addition, the amplitude of the first
harmonic disappears at zero carrier detuning, δ = 0 (P1 ∝ δ).
By tuning the carrier frequency ω to field-sensitive transitions
[5], this dependence provides a means by which to measure
static magnetic fields.

The inset of Fig. 2 compares the spectra of the steady-state
ρ11, simulated for δ = 0 and δ = 0.1ωm. As is expected, the
first harmonic vanishes at zero carrier detuning. In the simula-
tion, the magnitudes of the decoherence rates are comparable
with the modulation frequency, which violates the small-
signal approximation and leads to additional oscillations at
third and fourth harmonics, even though their amplitudes are
a few orders of magnitude smaller than P1 and P2.

B. Large modulation: Numerical analysis

A general solution of the phase-modulated oscillatory
dynamics of a two-level system, with arbitrary phase and
amplitude modulation, was obtained in Ref. [23].

Still, there is no simple analytical expression for the case
where the phase is modulated according to Eq. (4). Numerical
simulations of the large-modulation condition (Fig. 3) show
that the steady-state ground-state population has a periodic so-
lution, but, unlike in the small-modulation case, its average is
shifted from the unmodulated value and its spectrum consists
of many harmonics at multiples of ωm:

ρ11(t ) =
∑

n

Pn sin(nωmt + φn),

where n can be any positive integer and φn is the phase of
the response. As might be expected from small-signal theory,
the relative height of the spectral constituents Pn depends on
m, ωm, �R, �1,2, and δ. In the case when δ = 0, all odd
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FIG. 3. Excited-state population of a two-level system as a func-
tion of time in the case of a phase-modulated coupling (solid line)
with m = 6 rad, �R = 1.5ωm, �1 = 0.8ωm, �2 = 0.4ωm, and δ = 0.
The dashed line corresponds to the steady-state solution without
modulation. Inset: Spectrum of the steady-state oscillations in the
excited-state population for δ = ωm (blue solid curve) and δ = 0 (red
dashed curve).

components disappear, which is consistent with the analytical
small-signal solutions [Eq. (5)]. However, compared to the
small-signal solution, the large-modulation dynamics include
additional spectral peaks, and thus more (correlated) informa-
tion from which to extract the field calibration, providing more
options for extracting the final results.

Next, we evaluate the response of the excited-state popula-
tion when the carrier frequency is equal to the frequency of the
transition between the ground and excited states (i.e., δ = 0),
which is the regime of practical interest. Here, the ground-
state population’s response to phase modulation includes only
the even harmonics of ωm and we study, in particular, the
second and fourth harmonics for different values of the mod-
ulation index m. We are interested only in the steady-state
response, where �1t1 � 1 and any “normal” Rabi oscillations
would have damped out.

To extract values of the spectral amplitudes Pn of the
steady-state ground-state population signal ρ11(t ) from our
numerical simulations, we consider both the in- and out-of-
phase responses of the signal at frequency nωm:

an = 1

N

N∑
k=1

ρ11(tk ) sin nωmtk,

bn = 1

N

N∑
k=1

ρ11(tk ) cos nωmtk,

where the tk represent the evenly spaced discrete time points,
and the index k runs over all time indices. This approach to the
analysis provides the amplitudes of the components at each
harmonic of the modulation frequency ωm, and the overall
amplitude is given by Pn = 2

√
a2

n + b2
n.

This analysis relies on the fact that an and bn approach
zero as N approaches infinity for any frequency other than
the reference frequency (i.e., ω 
= nωm). In the case when N
is finite, the contribution from these unwanted frequencies can
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FIG. 4. Rabi resonances for amplitudes of (a) second (P2) and
(b) fourth (P4) harmonics for m = 0.25 rad and m = 2 rad, respec-
tively. The amplitude of the fourth harmonic is scaled for better
visibility, as indicated. At higher m peaks shift with respect to their
original positions �R = 2ω and �R = 4ω, which is indicated by
�2 and �4, respectively. (c) Shifts of the Rabi resonance peaks
with respect to their weak-modulation positions as a function of the
modulation index. Simulation is made for �1 = 2�2 = 0.08ωm and
δ = 0.

be significant, so we filter them out in the frequency domain
using fast Fourier transform and its inverse. To reduce the
contribution of the numerical artifacts due to finite duration of
the analyzed signal, we apply a Hamming window to ρ11(t )
before calculating an and bn.

1. Rabi resonance: Low decoherence rate

Figure 4(a) shows the simulated amplitude response for
the second and fourth harmonics as a function of the Rabi
frequency with fixed ωm and �1, �2 � ωm. In agreement
with Eq. (7), the amplitude P2 of the second harmonic peaks
when �R = 2ωm. The fourth harmonic has two resonances: at
�R = 2ωm and �R = 4ωm. The latter peak is similar to the
frequency response of a damped harmonic oscillator whose
natural frequency is �R and is driven harmonically at 4ωm.
In contrast, the resonant behavior of the second and fourth
harmonics in the case of large phase modulation deviates from
this small-signal approximation, as seen in Fig. 4(b). Both
harmonics’ resonance peaks shift toward smaller values of
�R/ωm, but the shift of P2’s peak (i.e., �2) is much more
significant than that of P4 (i.e., �4). Additionally, its shape
changes drastically, including an increase in the linewidth.
The value of this shift as a function of m is shown in Fig. 4(c),
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FIG. 5. Height of the Rabi resonance peaks of second (blue
squares) and fourth harmonic (red circles) as a function of modula-
tion depth, determined from numerical simulation with �1 = 2�2 =
0.08ωm and δ = 0. The value for fourth harmonic (P4,r) is calculated
for the right-hand peak in Figs. 4(a) and 4(b), which corresponds to
�R ≈ 4ωm. Black dashed curves correspond to quadratic and quartic
functions normalized to P2,r (m = 1) and P4,r (m = 1), respectively,
to indicate the corresponding power dependence P2,r and P2,r at
lower m.

which indicates that the fourth-harmonic Rabi resonance is
more stable against variation of the modulation depth.

Furthermore, the height P4,r of the fourth-harmonic Rabi-
resonance peak corresponding to �R = 4ωm scales as m4,
compared to quadratic (m2) dependence of the second har-
monic’s peak value P2,r (Fig. 5) [note that the quadratic
behavior also fails at large m, indicating that Eq. (7) is
no longer valid]. Therefore, in the large-phase-modulation
regime, P4’s peak is comparable to that of P2, and thus it may
become advantageous to use a fourth-harmonic atomic candle
(4HAC), where the Rabi resonance of the fourth harmonic is
used.

2. Rabi resonance: High decoherence rate

According to Eq. (7), the width of the P2 peak should
increase with increasing decoherence rates �1,2. Figure 6
shows that this applies to both P4 peaks as well, and when
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FIG. 6. Rabi resonances for second and fourth harmonics in the
case of large decoherence: (a) m = 0.25 rad and (b) m = 6 rad.
Simulation is made for �1 = 2�2 = 0.8ωm and δ = 0. The amplitude
of the fourth harmonic is scaled for better visibility.
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FIG. 7. Typical DR signal for Rabi oscillations as a function of time with a fit according to the model described in the text (red dashed
line) and an FFT spectrum of the tail of the signal (inset) for various parameters of the driving MW field. (a) Unmodulated oscillations;
(b) ωm/2π = 4 kHz, m = 2π , δ/2π = 7 kHz; (c) ωm/2π = 4 kHz, m = 2π , δ ≈ 0. Axes in all insets have the same scaling. (b) In general,
in the case of a phase-modulated driving field the steady-state contains harmonics of the modulation frequency (4 kHz), compared to a flat
spectrum in the case of an unmodulated driving field. From (c), it is seen that the odd harmonics disappear when the carrier frequency of the
driving field is resonant with the transition. The integer numbers next to peaks in the insets indicate harmonics of ωm the peaks correspond to.
For clarity, only the first 1.5 ms of the DR signal is shown. The probe’s power is 46 μW.

the decoherence rate is comparable to ωm, these two peaks
overlap. Even at small m, the P2 peak’s shape is different
from a Lorentzian (as in Fig. 4), which indicates that Eq. (7)
is no longer valid. For stronger modulation, line broadening
and asymmetry make both features unviable for practical
applications.

III. EXPERIMENT

A. Experimental setup

To verify the findings of our numerical calculations, we
tested the 4HAC technique using our cold-atom apparatus
(Fig. 1).

In our experiment we use a cloud of laser-cooled 87Rb
atoms, which have undergone standard magneto-optical trap-
ping, followed by an “optical molasses” step giving a 1-mm-
wide cloud with typical atom number of 108 and temper-
ature of 70 μK. The atoms are optically pumped into the
F = 1 ground state by switching off the repumping light 1
ms before the cooling and trapping beams are turned off
and the atoms begin to expand in time of flight. Next, the
cloud is illuminated by a traveling MW field emitted from an
open-ended rectangular waveguide, whose phase is modulated
periodically with frequency ωm using built-in functions of the
MW source (SRS SG384). The near-resonant MW field (with
carrier frequency ω/2π ≈ 6.8 GHz) transfers the population
between the ground states F = 1 and F = 2. This transfer
is observed by monitoring the absorption of a weak probe
laser beam resonant with F = 2 → F ′ = 2 transition (Fig. 1),
which is proportional to the population of state F = 2. Since
the best signal is produced when both the optical and MW
fields are on resonance with the corresponding transitions,
this technique is known as the double resonance (DR) [1].
The transmission signal is measured by a high-sensitivity
photodetector and recorded with an oscilloscope. During the

laser trapping and cooling stages, the MW source is detuned
by δ/2π = 100 MHz from the hyperfine splitting, but during
the DR interrogation it is quickly brought back to resonance
by mixing with an external 100-MHz radio-frequency signal.
The MW signal is amplified by a separate amplifier, providing
about 2 W of power to the waveguide.

To measure the response of the atoms to the modulated
microwave fields, and to test the 4HAC technique, we sys-
tematically varied the carrier detuning δ to find the resonant
condition. Next, once resonance was found (δ = 0), the phase-
modulation frequency was varied to find the Rabi-resonance
condition δm = 0. The time-dependent transmission of the
resonant optical beam served as a measure of the population
in the F = 1 ground state, and a frequency analysis of the
transmission dynamics was performed numerically following
the data acquisition.

B. Results and analysis

Using large modulation depths, phase-modulated MW sig-
nals applied to our cold atomic samples revealed the multi-
harmonic nature of the steady oscillations beyond the small-
signal regime. Figure 7 shows the first 1.2 ms of the measured
transmission signals (total duration is 5 ms) and derived
spectra for three different conditions in our atomic candle
experiments. First, we demonstrate “pure” Rabi oscillations
[Fig. 7(a)] by applying a resonant but unmodulated MW field.
The spectrum here is featureless. Next, when the MW field is
strongly modulated but detuned from the hyperfine transition
(m = 2π, δ 
= 0), the population and thus the transmission
signal have additional modulations [Fig. 7(b)], and the spec-
trum contains peaks at integer values of ωm. Finally, when the
carrier frequency is resonant (δ = 0), the odd harmonics of the
frequency of the phase modulation are suppressed in the trans-
mission signal [Fig. 7(c)]. We observed that the amplitudes
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of the spectral components slightly varied from shot to shot
under constant parameters of the MW field setup, and during
some of the shots we do not see the total elimination of the odd
harmonics. This might be due to noise in the response of the
radio-frequency mixer, and for later analysis of the amplitudes
we take average values over a few trials.

Because our experiment allows us to record only a very
limited number of oscillations in the time domain, spectral
analysis using numerical FFTs does not yield a consistent set
of results. Instead, we retrieve the spectral information by us-
ing the same numerical routine as in Sec. II B. To demonstrate
that the steady-state dynamics driven by a phase-modulated
field can be qualitatively interpreted as a damped oscillator
with natural frequency �R driven at multiples of ωm, we fit
the time-series of the transmission signal f (t ) to a model

f (t ) =
√

A2 + (Bt )2 + C1e−�1t + C2e−�2t sin2

(
�R

2
t + φ

)

+
6∑

n=1

Pn sin(nωmt + φn),

where the first term accounts for the loss of atoms due to
interaction with the probe, the second term accounts for longi-
tudinal damping, the third describes damped Rabi oscillations,
and the final terms correspond to the population dynamics at
the harmonics of the modulation frequency. In this model, A,
B, C1,2, Pn, φ, and φn are all fit parameters, where A represents
the initial density of atoms at the position of the probe; B is the
rate of hole burning due to momentum kicks from the probe;
C1 and C2 the amplitude of the transmission oscillations,
which are proportional to the amplitude oscillations; φ and
φn represent the initial phase of the carrier and modulation
frequencies at the start of the transmission measurement; and
Pn are the steady-state amplitudes of the population oscillation
components that we are looking for in this atomic candle
measurement.

To investigate practicability of the 4HAC, we analyzed the
amplitudes of the second and fourth harmonics, P2 and P4,
as a function of the modulation frequency ωm at a fixed MW
power. (For these analyses, we use only the tail of the data,
which corresponds to the steady-state regime.) Figure 8 shows
that the amplitudes of both harmonics peak as ωm is scanned
through �R/2 = 2π × (3.8 ± 0.3) kHz in a manner similar to
Fig. 6(b), where �R was estimated from an analysis of a set
of unmodulated signals. The uncertainty in �R is largely of
the same origin as the uncertainties in the amplitudes (as was
discussed before), since when the carrier wave is not exactly
on resonance with the transition, the oscillation response is at
a higher frequency. By fitting a set of transmission data cor-
responding to the unmodulated driving field, we estimate the
decoherence rates in our experiment to be �1 = (2.0 ± 0.1) ×
104 s−1 and �2 = (0.97 ± 0.04) × 104 s−1. Even though in
this regime Rabi resonances are not practically useful, the
qualitative behavior supports our model in numerical analysis.

C. Experimental considerations

In Ref. [13] it was shown that increasing the probe’s power
leads to a broadening of the line shapes of the atomic-candle
Rabi resonances. The absorption and subsequent spontaneous
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FIG. 8. Rabi resonance features of the second (red squares) and
fourth (blues circles) harmonics for m = 2π , δ = 0 and the probe’s
power of 46 μW. Each point and its error bar correspond to an
average and variance of five values extracted from a tail of a DR
signal, respectively. (a) Amplitudes were found by using a quadrature
detection discussed in Sec. II B. (b) Amplitudes were found by fitting
the DR signal to a model described in Sec. III B. Two vertical dashed
lines correspond to ωm = �R/4 and ωm = �R/2.

emission of a photon by the atom from the upper ground state
contributes to the longitudinal relaxation, and thus �1 is pro-
portional to the absorption rate, which in turn is proportional
to the probe’s intensity.

In our experiment we can observe a similar effect, where
by varying the power of the probe beam we can obtain
qualitatively different oscillation patterns. Figure 9 shows that
increased probe power leads to a higher decoherence rate and
changing it by a factor of 10 from 0.54 to 0.06 μW brings
the system from highly damped [Fig. 9(a)] to underdamped
[Fig. 9(b)] oscillations. This is in a good qualitative agreement
with our simulations, where the damped case corresponds to
Fig. 3, and a simulation of the underdamped case is shown
in Fig. 9(c). Since our simulation model is based on the atom
as a two-level system and does not describe the absorption
of the probe, it does not capture the monotonically increasing
transmission over time that is experimentally observed in the
case of the higher probe power. The fact that the average
transmission level does not change significantly in the case of
the smaller probe intensity indicates that the nonzero steady-
state slope of the transmission signal is due to the hole burning
in the cloud rather than thermal expansion.

For our steady-state analysis, we want to work in a regime
where the Rabi oscillations are damped. Since in our case the
interrogation time is limited, this can be achieved by using
a higher probe power, corresponding to a strongly damped
regime. In addition, higher probe power gives a better signal-
to-noise ratio.

The main limitation in our experiment was the short in-
terrogation time, limited by thermal expansion of the atomic
cloud and interaction with the probe beam, which was “burn-
ing” a hole in the cloud. In addition, we observed slight
discrepancies between several successive measurements of
the DR signal at constant MW field parameters, which are
probably due to fluctuations in the turn-on time of the field.
These should not be an issue in the real-world configurations,
such as vapor cells, where interaction with the buffer gas
keeps the atoms in place, or in cold atoms whose interrogation
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FIG. 9. (a, b) Influence of the probe’s power on the double resonance signal in the case of a phase-modulated (blue) and unmodulated (red)
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damping corresponding to (b), with simulation parameters �R = 2ωm, �1 = 2�2 = 0.02ωm.

time is increased by adding a trapping potential, e.g., an
optical dipole trap. Another issue is that, due to the geometry
of our experiment, it is hard to select a specific Zeeman
transition by applying a bias magnetic field with a particular
direction with respect to the polarization of the MW field.
Again, in vapor-cell applications this problem usually is not
present.

IV. CONCLUDING REMARKS

In summary, using double-resonance measurements in
cold atoms, we have shown that the steady-state populations
of two-level atoms interacting with a phase-modulated mi-
crowave field oscillate at multiples of the modulation fre-
quency. We have applied the Rabi-resonance technique to
cold atoms, and made the first observations of higher-order
harmonics in any system. In the case when the carrier wave
is exactly on resonance, we observe that only the even har-
monics are present, which is confirmed by numerical solution
of modified Maxwell-Bloch equations. Finally, we find that
it is experimentally advantageous to use large optical probe
powers in these measurements to damp “regular” Rabi oscilla-
tions and observe only the response to the modulation. These
observations shed new light on the dynamics of a two-level
system, which is currently a workhorse of many practical
quantum information applications.

In addition, we have shown that the amplitude of the
oscillations at 4ωm has a resonance when ωm is varied. Our
simulations show that at weak modulation the fourth harmonic
has two resonance peaks: when �R = 2ωm and �R = 4ωm.

The quartic dependence of the height of the latter peak and its
smaller linewidth compared to that of the Rabi β resonance
make a possible alternative for atomic-candle applications
in experiments with a weak absorption signal, e.g., in cold
atoms.

By exploring in depth the interactions between atoms and
phase-modulated microwave fields, we have provided the
foundations for a high signal-to-noise tool for measuring mi-
crowave fields, and thus the coupling to atomic systems. With
the increasing use of three-dimensional microwave cavities
[24,25], including with atomic systems [9], atomic-candle
techniques can play an important role in calibrating the mi-
crowave field strengths for accurate measures of the coupling
strength between the cavity field and, for instance, a mi-
crowave qubit [26–28]. These calibrations will be especially
important for techniques that rely on precise timing, such
as pulse-area-based quantum memories [29–31] and quantum
transduction protocols [7,8,32,33].
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