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Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard
device have prompted theoretical investigations of atom-molecule collision processes that characterize its
operation. Such a device will operate as a primary standard for the ultrahigh-vacuum and extreme-high-vacuum
regimes. This device operates by relating loss of ultracold lithium atoms from a conservative trap by collisions
with ambient atoms and molecules to the background density and thus pressure through the ideal gas law. The
predominant background constituent in these environments is molecular hydrogen H2. We compute the relevant
Li+H2 Born-Oppenheimer potential energy surface, paying special attention to its uncertainty. Coupled-channel
calculations are then used to obtain total rate coefficients, which include momentum-changing elastic and
inelastic processes. We find that inelastic rotational quenching of H2 is negligible near room temperature.
For a (T = 300)-K gas of H2 and 1.0-μK gas of Li atoms prepared in a single hyperfine state, the total rate
coefficients are 6.0(1) × 10−9 cm3/s for both 6Li and 7Li isotopes, where the number in parentheses corresponds
to a one-standard-deviation combined statistical and systematic uncertainty. We find that a 10-K increase in the
H2 temperature leads to a 1.9% increase in the rate coefficients for both isotopes. For Li temperatures up to
100 μK, changes are negligible. Finally, a semiclassical Born approximation significantly overestimates the rate
coefficients. The difference is at least ten times the uncertainty of the coupled-channel result.
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I. INTRODUCTION

Efforts are ongoing to utilize laser-cooled atoms to improve
metrological quantities, the most famous of which is the
realization of SI time [1]. The strength of cold-atom real-
izations for metrological purposes comes from the fact that
atoms can be meticulously controlled and manipulated. Here
the focus is on the implementation of a cold-atom vacuum
standard (CAVS) device that utilizes trapped cold atoms with
temperatures on the order of 10 μK to accurately measure
pressures in the ultrahigh-vacuum (UHV) (p < 10−6 Pa) and
extreme-high-vacuum (XHV) (p < 10−10 Pa) regimes, where
there is a lack of primary vacuometer [2,3]. The remaining
background gases are typically near room temperature.

A common device in UHV and XHV vacuum metrology is
the Bayard-Alpert ionization gauge [4]. This device operates
by ionizing the molecules within a helical grid and measuring
the resulting current on a nearby collector wire. Ionization
gauges are calibrated at a known pressure. In contrast, in a
CAVS charge-neutral cold sensor, atoms held in a shallow
trap are ejected by collisions with background atoms and
molecules with near unit likelihood. The number of trapped
atoms exponentially decreases in time and the corresponding

rate is directly related to background pressure, without the
need for calibration.

The CAVS device is a natural outgrowth of cold-atom
experiments that sought to prepare quantum degenerate gases,
such as Bose-Einstein condensates [5–7], with long trap life-
times. Early on, it was observed that a limiting factor to
cold-atom lifetimes is losses from collisions with background
atoms and molecules [8–11]. As these experiments are per-
formed under UHV and XHV conditions, it is then natural
to investigate the possibility to measure ambient pressure
from losses [10,12–17]. In ideal conditions, the relationship
between pressure and loss rates is only limited by the accuracy
of collisional cross sections and collisional rate coefficients
between the cold atoms and the background constituents.
Background collisions are also expected to limit the accuracy
of ultracold optical atomic clocks [18]. More recently, chains
of atomic ions in a linear Paul trap have also been used to
measure pressure [19].

To clarify, we outline the connection between the loss rate
and pressure. First, the time evolution of the number of sensor
atoms NS satisfies [10]

dNS/dt = −�NS + O
(
N2

S

)
, (1)
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where the loss rate

� = KCAVS(TS, TBG)nBG, (2)

with thermalized rate constant KCAVS(TS, TBG) and sensor and
background temperatures TS and TBG, respectively. Finally,
nBG is the background gas density, where we have implicitly
assumed that the background contains only a single con-
stituent.

Formally, contributions to KCAVS include only collisions
that impart enough kinetic energy to eject the cold atom from
its trap. These processes can be elastic momentum-changing,
inelastic state-changing, or even reactive collisions. The effect
of glancing-elastic collisions, which do not eject the atoms
from their trap and simply heat the gas, can be mitigated
by ensuring that the trap depth is sufficiently small [3,10].
Equation (1) additionally indicates the presence of higher-
order effects O(N2

S ). These include inelastic collisions among
the cold sensor atoms that eject one or more of the atoms from
the trap. This effect is mitigated by preparing the cold atom in
a single hyperfine state.

Through the ideal gas law the background pressure is

pBG = nBGkBTBG = �

KCAVS
kBTBG, (3)

where kB is the Boltzmann constant. The background pres-
sure is thus determined though a measurement of � and an
independent determination of KCAVS. The background tem-
perature is typically well characterized in these experiments.
The CAVS is a primary standard for pressure as it relies on
immutable collisional properties of atoms and molecules. In
other words, the device does not need calibration as opposed
to ion gauges, which need to be periodically recertified.

Details of ongoing efforts at the National Institute of
Standards and Technology (NIST) in developing a CAVS
device including the efforts into miniaturization can be found
in Refs. [2,3]. The NIST device will use either 6Li or 7Li
as the cold sensor atom. In UHV and XHV systems, the
most abundant molecule remaining is molecular hydrogen
H2. As such, we specialize this work to the nonreactive
Li+H2 collision and present near-first-principles calcula-
tions of KCAVS(TLi, TH2 ) and its uncertainty using quantum-
mechanical descriptions for both electronic potential surfaces
and nuclear motion.

The LiH2 system has been investigated previously in the
context of chemical reactivity in the early universe [20,21]. In
contrast to our work, these astrophysically important investi-
gations focused on the reactive collision LiH + H → Li +
H2, which is an exothermic reaction releasing approximately
kB × (2 × 104 K) worth of energy [21]. We have asked for
and obtained Born-Oppenheimer potential energy surfaces
(PESs) from Refs. [22,23], which were created by different
computational approaches for the electronic motion. As their
focus was on the reactive process, which is insensitive to the
fine details of the PES near the Li+H2 asymptote, and they do
not provide estimates of the uncertainty in their potentials, we
have opted to recompute the PES near the Li+H2 asymptote.

This paper is organized as follows. A description of the
coupled-channel equations that describe the nuclear motion
is presented in Sec. II. The derivation closely follows the
nonreactive collisions described in Refs. [24,25]. We highlight
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FIG. 1. (a) Jacobi coordinates r, R, and θ for Li+H2 collisions.
(b) Bottom part of the X 1�g

+ potential of H2 as a function of r. The
zero of energy is at its dissociation limit. Energies of rovibrational
states for v = 0, 1, and 2 are depicted by the red, blue, and orange
horizontal lines within the potential, respectively. Energies of j > 0
rotational states are shown as shorter horizontal lines. The horizontal
black dashed line is the total energy of a typical room-temperature
collision of a (v = 0, j = 0) H2 molecule with lithium. Finally,
the v = 0, 1, 2 and j = 0 radial wave functions rφv j (r) are also
shown. (c) Isotropic atom-diatom potentials including the centrifugal
potential h̄2�(� + 1)/2μR2 dissociating to the v = j = 0 state of H2

as a function of R. Red markers indicate the location and energy of
the top of the barriers. Curves for � > 7 are completely repulsive and
have no minimum.

the peculiarities of our system. In Sec. III we describe the
calculation of the Born-Oppenheimer PES. We then present
intermediate results, some physical insights, and discuss the
effect of small changes in the potentials in Sec. IV. Our final
values for KCAVS and its uncertainty are presented in Sec. V.
We conclude in Sec. VI with a few remarks about systematic
effects in the computation of KCAVS.

II. SCATTERING HAMILTONIAN

The Hamiltonian for the relative motion of nonreactive
scattering of a lithium atom by a hydrogen molecule is

H = − h̄2

2μ
∇2

R − h̄2

2μH2

∇2
r + V (R, r, θ ) + Hhf , (4)

in the Jacobi coordinates �R and �r shown in Fig. 1(a). Here
�R is the vector from the center of mass of the hydrogen
molecule to the lithium atom, �r is the vector connecting the
two hydrogen atoms, and θ is the angle between the vectors �R
and �r. The vector differential operator �∇x is with respect to �x.
Moreover, μ is the reduced mass of the 6,7Li + H2 system,
μH2 is the reduced mass of H2, and h̄ = h/2π , where h is
Planck’s constant. The operator V (R, r, θ ) corresponds to the
energetically lowest, doublet Born-Oppenheimer PES, which
is a function of only the separations R and r and angle θ . When
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all interatomic separations are large, V (R, r, θ ) goes to zero.
Its evaluation is discussed in the following section. Finally,
the Hamiltonian Hhf contains the hyperfine interactions of the
ground-state 2S hydrogen and 2S lithium atoms. In a CAVS
device a small magnetic field is applied to be able to prepare
Li in a specific hyperfine state. The corresponding Zeeman
shifts from this magnetic field are negligible compared to
the hyperfine interaction and are ignored in our scattering
Hamiltonian.

The natural basis in which to perform scattering calcula-
tions for room-temperature Li+H2 collisions is

|H2〉|Li〉Y�m�
(R̂), (5)

where the Y�m�
(R̂) are spherical harmonics that describe the

rotation of Li and H2 about each other with orbital angular
momentum quantum number � and space-fixed projection m�,
and R̂ is the orientation of �R in our coordinate system. The kets
|Li〉 and |H2〉 represent atomic basis functions for Li and H2,
respectively. The lithium atom is trapped in a single hyperfine
state |Li〉 = |(SLi, ILi)FLimLi〉, where the total atomic angular
momentum �FLi = �SLi + �ILi, SLi = 1/2, and ILi = 1 and 3/2
for 6Li and 7Li, respectively. Projection quantum numbers are
with respect to a space-fixed coordinate system. We follow
Ref. [26] for angular momentum algebra.

The kets

|H2〉 ≡ φv j (r)Yjmj (r̂)|SmS〉|ImI〉 (6)

represent the rovibrational levels of the X 1�g
+ state of H2,

where φv j (r) are unit-normalized vibrational wave functions
with vibrational quantum number v and orbital angular mo-
mentum quantum j, and Yjmj (r̂) are spherical harmonics that
describe its rotation. The ket |SmS〉 represents the electronic
wave function of the X 1�g

+ state with total electronic angular
momentum quantum number S = 0 and projection mS = 0,
while |ImI〉 describes the nuclear spin wave function of the
two protons. Orthohydrogen and parahydrogen correspond
to states with I = 0 and 1, respectively. Moreover, identical
particle statistics enforces that even rotational states j have
I = 0, while odd j have I = 1. Consequently, H2 wave func-
tions are uniquely specified by |H2〉 = |v, jm j〉 with energy
εv j independent of mj and nuclear spin quantum numbers as
we can neglect the hyperfine interactions of a singlet molecule
in Hhf . The lowest rovibrational energy levels are shown in
Fig. 1(b). It follows that only the lowest few rotational levels
of the v = 0 state are populated in a room-temperature gas.

The implicit approximations in the discussion thus far are
justified in Appendix A. The approximations allow us to
define the coupled basis

|v; ( j, �)JM〉 ≡ φv j (r)|( j, �)JM〉
× |SmS = 00〉|(SLi, ILi)FLimLi〉, (7)

with

|( j, �)JM〉 =
∑
mj m�

〈JM| j�, mjm�〉Yjmj (r̂)Y�m�
(R̂), (8)

where 〈JM| j�, mjm�〉 is a Clebsch-Gordan coefficient. In the
ket |v; ( j, �)JM〉, the labels for the hyperfine states are sup-
pressed as they are conserved independently. Our Hamiltonian
H commutes with Jz and the parity operation and thus only

states with the same p = (−1) j+� are coupled. Finally, we
write the Hamiltonian as

H = − h̄2

2μ
∇2

R + HH2 + U (R, r, θ ), (9)

where HH2 ≡ −h̄2∇2
r /2μH2 + VH2 (r) is the Hamiltonian of

the hydrogen molecule, VH2 (r) is the X 1�g
+ potential, and

U (R, r, θ ) ≡ V (R, r, θ ) − VH2 (r). In this form, HH2 is diago-
nal in our basis |v; ( j, �)JM〉.

Scattering states of H are found by using a coupled-
channel approach, which leads to a set of coupled ordinary
second-order differential equations with respect to R, one
for each basis-set element. We then require matrix elements
of U (R, r, θ ), which will be described in the next section.
The numerical procedure to solve the coupled-channel equa-
tions follows the method of Johnson [27]. Specifically, the
logarithmic derivative of the wave function is propagated to
sufficiently large R with a variable step size that changes
according to variations in the amplitudes of the solutions. The
dimensionless unitary S matrix is formally extracted from the
solutions at R → ∞ [28], however, we find it sufficient to
extract S-matrix elements from the solutions at R = 5000a0.
In particular, for each J , M, and energy E > εv=0, j=0, we
obtain the S-matrix elements s(J )

α′,α (E ) for the transition from
α = {v, j, �} to α′ = {v′, j′, �′}. The matrix elements are in-
dependent of M.

The rate coefficient KCAVS(TLi, TH2 ) includes all collision
processes that remove a sensor atom from the trap. For the
ideal CAVS, where the glancing collisions have a negligible
influence, this corresponds to the computation of the total
cross section or total rate coefficient. We will also show
results for the energy-dependent state-to-state rate coefficients
Kv′ j′,v j (E ) and the corresponding thermally averaged rate
coefficients Lv′ j′,v j (TLi, TH2 ). The exact definition of these
quantities and their connection to KCAVS(TLi, TH2 ) are given
in Appendix B. Specifically, we show that KCAVS is only a
function of

Teff = mH2

mLi + mH2

TLi + mLi

mLi + mH2

TH2 . (10)

III. POTENTIAL ENERGY SURFACE

The rate coefficient KCAVS(TLi, TH2 ) depends on the po-
tentials V (R, r, θ ) and VH2 (r). The trimer potential is the 2A′
ground-state surface, which approaches the X 1�g

+ potential
of H2 when the lithium atom is far away. We have used
the complete active space self-consistent field (CASSCF) and
multireference configuration-interaction (MRCI) programs
within the MOLPRO suite [29] to calculate the two potentials.
The inner 1s electrons of Li form our frozen core. Correlations
in the MRCI program only include those among the three
other electrons in LiH2.

The augmented, correlation-consistent, polarized valence
basis sets [30,31] are used for hydrogen and weighted core
variants for lithium [32]. The bases are aug-cc-pVxZ and aug-
cc-pwCVxZ with x = T, Q, and 5 for hydrogen and lithium,
respectively. The sequence corresponds to a progression of
larger basis sets, leading to ever more accurate PESs, labeled
V xZ(R, r, θ ). We correct for the basis-set superposition error
with the counterpoise (CP) correction algorithm of Ref. [33].
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Next we extrapolate the PESs to the complete-basis-set (CBS)
limit V ∞Z(R, r, θ ). It is found by solving the linear system of
three equations [34,35]

V xZ = V ∞Z + Be−(x−1) + Ce−(x−1)2
(11)

at every R, r, and θ , where V ∞Z, B, and C are the unknowns.
In Eq. (11) we use x = 3, 4, and 5 for basis sets T, Q, and 5,
respectively. We have also computed the X 1�g

+ potential of
H2 with these bases.

The choice of methods, frozen electrons, and other correc-
tions (i.e., counterpoise and Davidson corrections as well as
the CBS extrapolation) is a compromise between computing
the PES sufficiently accurate and the computational cost.
In Appendix C we elucidate our choices and provide an
assessment of the uncertainty in V ∞Z(R, r, θ ). More details
about this uncertainty and its effect on rate coefficients are
found in Sec. V.

Within the coupled-channel approach, it is convenient to
express the PES in terms of Legendre polynomials in cos θ .
That is, we define

U (R, r, θ ) =
∞∑

λ=0

[
Vλ(R, r) − δλ,0VH2 (r)

]
Pλ(cos θ ), (12)

where Vλ(R, r) are radial strength functions, Pλ(cos θ ) are
Legendre polynomials, and δi, j is the Kronecker delta func-
tion. We omit superscripts xZ from the potentials to keep
the expressions simple. The matrix elements of the potential
U (R, r, θ ) in our basis |v; ( j, �)JM〉 are

〈v′; ( j′, �′)JM|U (R, r, θ )|v; ( j, �)JM〉

=
∞∑

λ=0

〈( j′, �′)JM|Pλ(cos θ )|( j, �)JM〉�λ
v′ j′,v j (R), (13)

where 〈( j′, �′)JM|Pλ(cos θ )|( j, �)JM〉 are the Percival-
Seaton coefficients [36], which are only nonzero when both
� + λ + �′ and j + λ + j′ are even. In addition, various trian-
gular conditions hold between the angular momenta; in par-
ticular, it holds for j, λ, and j′. The rovibrationally averaged
matrix elements

�λ
v′ j′,v j (R) =

∫ ∞

0
r2dr φ∗

v′ j′ (r)
[
Vλ(R, r) − δλ,0VH2 (r)

]
φv j (r)

(14)

are functions of R.
Figure 2 shows strength functions V xZ

λ (R, r0) for the family
of potentials and λ = 0, 2, and 4 as functions of R with r0 =
1.4a0, near the equilibrium separation of H2. For the homonu-
clear H2 only the even λ strength functions are nonzero.
The isotropic λ = 0 strength function has a depth of at most
V0/hc = 12 cm−1 at R ≈ 10a0, where c is the speed of light
in vacuum. This isotropic potential conserves partial wave �,
while potential functions with λ > 0 are anisotropic and can
couple different partial waves as long as |�′ − �| � λ. The
λ = 2 strength function is the largest anisotropic potential and
will lead to most of our couplings. The depth and sizes of the
V xZ

λ (R, r) are not unique to our system. Reference [25] shows
similar strength functions as a function of R for Na+N2.

Both the rotational spacings of H2 and the room-
temperature collision energies are at least an order of
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FIG. 2. Radial strength functions V xZ
λ (R, r0) as a function of R

with r0 = 1.4a0, near the equilibrium separation of H2. For each λ,
the solid, dashed, dot-dashed, and double-dot–dashed lines represent
the strength functions for x = T, Q, 5, and ∞, respectively. For λ =
0, we plot V xZ

0 (R, r) − V xZ
0 (R → ∞, r0). For λ > 0, V xZ

λ (R, r0) goes
to zero when R → ∞.

magnitude larger than any of the strength functions within
the classically accessible domain. Consequently, the effects of
coupling by the λ > 0 radial strength functions are expected
to be small and that the scattering is driven by the isotropic
potential.

Figure 2 also shows that the depth of the isotropic λ = 0
strength function increases as the basis-set size increases.
Specifically, the depth of V xZ

λ=0(R, r0)/hc is 11.1, 11.7, 12.1,
and 12.2 cm−1 for x = T, Q, 5, and ∞, respectively. In
contrast, the anisotropic λ = 2 strength function becomes pro-
gressively weaker. These observations will be used in Sec. IV,
where the uncertainty of KCAVS is characterized.

For sufficiently large separations R, the potential U (R, r, θ )
of Eq. (12) connects to the long-range dispersion potential

− 1

R6
[C6,0(r) + C6,2(r)P2(cos θ )], (15)

where C6,0(r) and C6,2(r) are the isotropic and anisotropic
dispersion coefficients between H2 and Li, respectively [37].
Equivalently, Vλ(R, r) → −C6,λ(r)/R6 for λ = 0 and 2. For
λ > 2, the long-range potential falls off as 1/R8 or faster.

Figures 3(a) and 3(b) show C6,0(r) and C6,2(r) as functions
of r, respectively. The isotropic C6,0(r) increases by a factor
of 3 within the range shown. For r > 3.0a0, not shown here,
C6,0(r) turns over and approaches from above twice the value
of the Li-H dispersion coefficient. The markers in Fig. 3 are
from Ref. [39]. The isotropic values have a 0.1% one standard
uncertainty. The solid lines are interpolated and extrapolated
from the markers and are used in our scattering calculation.
The anisotropic C6,2(r) also increases with r, but is at most
1/5 as large as C6,0(r), as is shown in Fig. 3(c).

Appendix D contains details about the grid on which the
ab initio potentials are computed. The chosen grid minimizes
the need to interpolate, thus minimizing fitting errors. We
show how to construct C6,0(r) and C6,2(r) from the values
in Ref. [39] and how to continuously connect the short-range
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FIG. 3. Dispersion coefficients of the Li-H2 system. (a) Isotropic
dispersion coefficient C6,0 as a function of H-H separation r.
The horizontal dot-dashed line corresponds to twice the value
of the dispersion coefficient of Li and H atoms [38]. Also shown are
(b) the anisotropic dispersion coefficient C6,2 and (c) γ ≡ C6,2/C6,0

as a function of r. The vertical dashed line in all panels corresponds
to the equilibrium separation of H2. The markers in all panels are
from Ref. [39] and the curves are our interpolated and extrapolated
values. The uncertainty in the markers in (a) is negligible on the scale
of the graph.

ab initio potentials to the long-range ones by adding a small
corrective 1/R8 potential. For our purposes, we do not require
the dispersion coefficients for r > 2.5a0. Finally, we describe
the evaluation of H2 wave functions φv j (r) and energies εv j .

We supply the necessary data files to compute the ma-
trix elements �λ

v′, j′,c, j (R) in the Supplemental Material [40].
Specifically, the CBS extrapolated radial strength functions
Vλ(R, r) are provided for λ = 0, 2, and 4; r ∈ (rmin, rmax);
and R ∈ (3.5a0, 20.0a0). Here rmin = 0.5a0 and rmax = 2.5a0.
We also supply the interpolated and extrapolated values for
C6,λ(r) for λ = 0 and 2 with r ∈ (rmin, rmax). Finally, we
include the X 1�g

+ H2 potential for r ∈ (rmin, rmax).

IV. RESULTS

We have computed S-matrix elements s(J )
α′,α (E ) for en-

ergies E above εv=0, j=0 up to kB × 3000 K and angular
momenta J up to 125 or 200 (for E < kB × 2000 K we
use J � 125 and 200 otherwise). For these energies, only
the first six rotational states of the v = 0 vibrational state
of H2 can be accessed. The step size in the energy grid
alternates between kB × 0.1 and kB × 1 K. It is 0.1 K when
E/kB ∈ (εv, j − ε0,0)/kB + [0.1 K, 50 K] and kB × 1 K other-
wise. This choice anticipates the presence of shape resonances
in the scattering. Figure 1(c) shows the isotropic potential
�λ=0

00,00(R) + h̄2�(� + 1)/2μR2 for the (v = 0, j = 0) state of
H2. In fact, �λ=0

00,00(R) = Vλ=0(R, re) to a good approximation.
We see that any shape resonance must occur for � � 7 and
E < kB × 15 K, justifying the finer energy grid above each
threshold. The upper bounds on E and J ensure thermalized
rate coefficients that are accurate to better than 0.5% for
temperatures up to 350 K.
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FIG. 4. Elastic rate coefficients Kv j,v j (E ) for 6,7Li + H2(v =
0, j) as functions of energy with respect to εv=0, j=0 based on the ∞Z
potential surface. The black, red, turquoise, blue, and orange lines
correspond to coefficients with j = 0, 1, 2, 3, and 4, respectively.
Solid and dashed lines are for the 6Li and 7Li isotopes, respectively.
Vertical lines indicate energies where rotational states j become
energetically accessible. Purple lines are Born approximations for the
elastic rate of the j = 0 state. The inset shows K00,00(E ) for the low-
energy region where shape resonances are pronounced. The shape
resonances near E/kB = 2 and 6 K are due to g-wave (� = 4) and
h-wave (� = 5) collisions, respectively. The resonances are shifted
to smaller energies for the heavier isotope. (Data up to 3000 K are
available, but not shown.)

Figure 4 shows the energy-dependent elastic rate coeffi-
cient Kv j,v j (E ) for both 6Li and 7Li isotopes based on the
V ∞Z(R, r, θ ) PES. The lithium atoms are prepared in a single
hyperfine state. The difference in Kv j,v j (E ) for the two Li
isotopes is at most 2.5% away from shape resonances. The
figure also shows the rate coefficient based on the Born ap-
proximation for the isotropic long-range dispersion potential.
This theory was developed in the 1960s and is often used in
the description of room-temperature collisions [41,42]. It is
given by

KBA(E ) = κ
h̄β6

μ
(E/E6)3/10, (16)

where κ = 6.125 601 46 . . . , and β6 = (2μC6,0/h̄2)1/4 and
E6 = h̄2/2μβ2

6 are length and energy scales for a −C6,0/R6

potential, respectively. Surprisingly, the disagreement be-
tween this prediction and the coupled-channel result is large,
especially for room-temperature energies and above, where
the approximation might be expected to be valid. This dispar-
ity cannot be accounted for by the uncertainty in the C6,0(r)
coefficients. A detailed explanation for this disagreement can
be found in Appendix E, where we compare scattering phase
shifts.

The inset in Fig. 4 shows two shape resonances in the j = 0
elastic rate coefficient, occurring at energies below kB × 10 K.
The two resonances have partial wave � = 4 and 5 character,
respectively. A broader � = 6 resonance (not shown) around
kB × 12 K also exists. We do not see evidence of shape
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FIG. 5. Inelastic rate coefficients Kv′ j′,v j (E ) as functions of en-
ergy for v′ = v = 0 based on the ∞Z potential surface. The blue and
red curves correspond to transitions from j = 2 to j′ = 0 and from
j = 0 to j ′ = 2, respectively. The vertical dashed line is the channel
opening energy at εv=0, j=2. The inset magnifies the region between
E/kB = 510 and 530 K, where there are two shape resonances.

resonances with widths narrower than kB × 0.1 K. Similar
resonant features are found for (v = 0, j > 0) collisions.

The rate coefficients Kv j,v j (E ) for different j quickly rise
from E = εv, j to E = εv, j + (kB × 30 K) and then show a
gentle increase with energy. For all rotational states of H2, the
Kv j,v j (E ) are functionally similar save for a shift in energy.

The anisotropic strength functions are responsible for in-
elastic j-changing collisions. Parity conservation prevents
even- and odd- j-state coupling, therefore the first energet-
ically allowed inelastic process is between the j = 0 and
2 states. Figure 5 shows Kv′ j′,v j (E ) for these inelastic pro-
cesses. The rate coefficient is zero below the channel opening
threshold at E = εv=0, j=2 − εv=0, j=0 ≈ kB × 510 K and then
increases to a few times 10−11 cm3/s, two orders of magni-
tude smaller than the corresponding elastic rate coefficient.
Consequently, for room-temperature collisions, the effects of
inelastic processes on the CAVS device are weak and indicate
that anisotropic strength functions can be ignored. In fact,
from calculations where only the λ = 0 strength function is
included, we find that the elastic Kv j,v j (E ) changes by less
than 1% away from the shape resonances. A small inelastic
rate coefficient is not unprecedented. Loreau et al. [25] found
similar values for the Na+N2 collision, which has the same
spin structure as Li+H2.

Figure 6(a) shows the thermalized rate constants
Lv j,v j (TLi, TH2 ) for the 6Li isotope as a function of TH2

with TLi = 1 μK, obtained from thermalizing Kv j,v j (E ).
Also shown in Fig. 6(a) is KCAVS(TLi, TH2 ), which is a
weighted sum of the Lv j,v j (TLi, TH2 ). For H2 temperatures
below 100 K, KCAVS is dominated by the contribution
from the j = 0 rotational state, while at room temperatures
j = 0, 1, and 2 states contribute significantly. The shape
resonances do not significantly contribute to the thermalized
rate coefficients near room temperature. Rate constants at
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FIG. 6. (a) Thermalized rate coefficients Lv j,v j (TLi, TH2 ) for
v = 0, j = 0, 1, 2, . . . , and KCAVS(TLi, TH2 ) as functions of the H2

temperature with 6Li cold sensor atoms at TLi = 1 μK, using the ∞Z
PES. The purple line is KCAVS, while the black, red, turquoise, blue,
and orange lines show Lv j,v j for j = 0, 1, 2, 3, and 4, respectively.
(b) Thermalized KCAVS(TLi, TH2 ) as a function of TH2 around room
temperature. The dot-dashed, dashed, dotted, and solid lines corre-
spond to thermalized rate coefficients based on the TZ, QZ, 5Z, and
∞Z PESs.

other 6Li temperatures can be obtained using Teff defined in
Appendix B.

Figure 6(b) shows KCAVS for the four potentials constructed
in the preceding section as a function of TH2 in a 100-K region
centered at 300 K. There is a progression to larger KCAVS for
larger basis sets, corresponding to deeper isotropic potentials.
The difference in the rate coefficients computed for the four
potentials is rather small with the 5Z to QZ difference equal
to approximately 1% at TH2 = 300 K.

Functionally, KCAVS(TLi, TH2 ) is close to linear for each
potential and is well represented by a Taylor expansion to
second order in TH2 around Tref ≡ 300 K and first order in
TLi around 1 μK. Noting that the rate coefficient only depends
on Teff , we have

KCAVS
(
TLi, TH2

) = K0 + K1
(
TH2 − Tref

) + 1

2
K2

(
TH2 − Tref

)2

+ mH2

mLi
K1 (TLi − 1 μK), (17)

with expansion coefficients Ki. This expansion reproduces
the coupled-channel result to about 0.1% for a ±50-K region
around TH2 = Tref for each of the potentials. The dependence
on the Li temperature up to 100 μK is negligible, but included
for completeness.

V. PREDICTIONS FOR RATE COEFFICIENTS AND
THEIR UNCERTAINTIES

Table I contains the final values and uncertainty for KCAVS

for both 6Li-H2 and 7Li-H2 through the expansion coefficients
K0,1,2 defined in Eq. (17). The uncertainty in KCAVS(TLi, TH2 )
is fully determined by those in the interaction potential
V (R, r, θ ). The uncertainty from solving the coupled-channel
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TABLE I. Values and one-standard-deviation uncertainties
for K0, K1, and K2 of the thermalized total rate coefficient
KCAVS(TLi, TH2 ) as defined in Eq. (17) for near-room-temperature
hydrogen molecules and 1-μK 6,7Li sensor atoms with Tref = 300 K.
The uncertainty σ (KCAVS) is found by error propagation with corre-
lation coefficients r(Ki,K j ) = 1 when i = j.

Sensor K0 K1 K2

atom (cm3/s) (cm3/s/K) (cm3/s/K2)

6Li 6.0(1) ×10−9 1.1062(9) ×10−11 −1.1(2) ×10−15

7Li 6.0(1) ×10−9 1.1053(6) ×10−11 −1.8(3) ×10−15

equations is negligible. To be precise, the uncertainty of
and covariances between the Ki follows from the potentials
V xZ(R, r, θ ) with x = T, Q, 5, and ∞ shown in Fig. 2. In
principle, the relationship between V xZ(R, r, θ ) and the ther-
malized rate coefficient is complicated. Instead, we focus on
the isotropic radial strength functions V xZ

λ=0(R, r0) with r0 =
1.4a0 near the equilibrium separation of the H2 molecule. We
define

Vλ=0(R, r0; ξ ) ≡ V 5Z
λ=0(R, r0) + ξW (R), (18)

where W (R) ≡ |V QZ
λ=0(R, r0) − V 5Z

λ=0(R, r0)| is the difference
potential between our two best evaluations of the potential
surface and ξ is an R-independent dimensionless scale factor
that enables us to change the depth of the isotropic potential.
The potential Vλ=0(R, r0; ξ ) reproduces V xZ

λ=0(R, r0) for x =
T, Q, 5, and ∞ reasonably with ξ = 3.5(5), 1.0, 0.0, and
−0.58(2), respectively. The uncertainty reflects the degree to
which ξ is constant as a function of R. Empirically, we also
find that W (R, r0) ≈ W0 exp(−0.5R/a0), which is negligible
for R > 15a0.

We characterize the uncertainties in the potentials by
treating the factor ξ as a Gaussian-distributed random vari-
able, where our best guess of the potential is at ξ = ξ∞Z =
−0.58 with a one-standard-deviation uncertainty σ (ξ ) =
|ξQZ − ξ∞Z| = 1.58. We are led to this conclusion because
the increase in the isotropic potential depth with increasing
basis-set size is incrementally becoming smaller. As such,
the QZ basis serves as an upper bound on the true potential
and the ∞Z potential as our best guess at the true potential.
The 1-σ interval encapsulates the QZ, 5Z, and ∞Z potentials.
The analysis found in Appendix C also suggests that other
approaches in computing the PES lie within this uncertainty.
We reach the same conclusions for different choices of r in
Eq. (18).

For each of our potentials we have computed Ki(ξ ) for i =
0, 1, and 2 and find that

Ki(ξ ) = κi,0 + κi,1(ξ − ξ∞Z) (19)

near ξ = ξ∞Z with coefficients κi, j . The uncertainty in
KCAVS(TLi, TH2 ; ξ ) is then

σ 2(KCAVS) =
∑
i, j

∂KCAVS

∂Ki

∂KCAVS

∂K j
r(Ki,K j )σ (Ki )σ (K j )

(20)
with individual uncertainties

σ (Ki ) = κi,1σ (ξ ) (21)

and correlation coefficients r(Ki,K j ). The distribution of the
Ki are solely characterized by that of the random variable ξ ,
which implies that they are completely correlated and hence
r(Ki,K j ) = 1. In other words, we equivalently write

σ (KCAVS) = [
κ0,1 + κ1,1

(
TH2 − Tref

)
+ 1

2κ2,1
(
TH2 − Tref

)2]
σ (ξ ). (22)

The κ0,1 terms are the dominant contributors to σ (KCAVS) by
at least three orders of magnitude.

VI. CONCLUSION

We have presented our findings on the collisional proper-
ties of the Li+H2 system with applications to a CAVS device.
We find that the elastic collisions dominate the thermally av-
eraged rate coefficient KCAVS(TLi, TH2 ) for a room temperature
H2 gas with a 1-μK temperature Li gas. Table I contains
our final values and their uncertainties of KCAVS(TLi, TH2 ) for
both 6Li and 7Li isotopes. The uncertainty is less than 2%
within a 100-K window centered around room-temperature H2

molecules. The main source of the uncertainty is due to impre-
cisions in the computed potential energy surface and has been
estimated by trends with increasing basis-set size. In principle,
the evaluation of the PES with a larger basis set is expected to
approach the true potential, at the cost of becoming numeri-
cally expensive. Feedback from experimental measurements
can put further constraints on the potentials. This can be
achieved with precise measurements of resonant features in
rate coefficients that occur in collisions below kB × 10 K. For
example, the location of the shape resonance near E ≈ kB ×
2 K shifts when the depth of the isotropic potential is changed,
although the measurement would require approximately
100-mK sensitivity. The spectroscopic determination of trimer
bound states can provide similar constraints.

We finish by describing systematic corrections that have
been left out in our description, such as relativistic and
nonadiabatic corrections. Relativistic effects are important
for heavy systems and can be neglected here as LiH2 is
one of lightest trimers possible. Nonadiabatic effects arising
from the coupling of different electronic states by the nu-
clear kinetic energy operator have been mitigated by using
atomic masses rather than nuclear masses as would be dictated
by the Born-Oppenheimer approximation. We conclude that
nonadiabatic corrections are negligible because the fractional
change in mass is orders of magnitude smaller than the
corresponding change between 6Li and 7Li. The difference in
KCAVS(TLi, TH2 ) for 6Li and 7Li is less than 1% and is encom-
passed by the uncertainty in the PESs. Furthermore, conical
intersections are inaccessible for our collision energies.

Finally, the true loss characteristics of ultracold Li in a
CAVS also depend on collisions with constituents other than
H2 in the vacuum. These constituents include residual hot Li
atoms that are a by-product of the trapping process, other
ambient vacuum molecules, and any deliberately added gases
to the vacuum. The first can be mitigated by careful design
of the CAVS device, while the latter two will be accounted
for by relative gas sensitivity coefficients [2]. Moreover, many
of these nonreactive collisions are computationally tractable.
The number of glancing collisions, which do not lead to sensor
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atom loss, can be minimized by lowering the trap depth. The
uncertainty in pressure (or equivalently background gas den-
sity) is found through error propagation based on Eq. (3) using
the uncertainty in KCAVS and the measurement uncertainty of
the loss rate �. Thus, if the measurement uncertainty in � is
larger than our uncertainty for KCAVS, the resulting uncertainty
in pressure will be limited by the experiment.

APPENDIX A: VALIDITY OF THE
SCATTERING HAMILTONIAN

We have made several implicit approximations in our scat-
tering Hamiltonian and basis set. In particular, we do not allow
the molecule to break up into scattering states of the X 1�g

+
potential or those of the a 3�u

+ potential.1 These approxima-
tion are justified as the X 1�g

+ potential is 100 times deeper
than the room-temperature collision energies. Furthermore,
the reactive channel LiH+H is energetically inaccessible as
it requires a collision energy of E ≈ kB × 25 000 K with a
(v = 0, j = 0) hydrogen molecule.

There exist two doublet Born-Oppenheimer potentials that
dissociate to the same limit for our triatomic system. When the
lithium atom is well separated from the hydrogen atoms, the
lowest trimer Born-Oppenheimer potential approaches that
of the X 1�g

+ state. The second trimer potential approaches
that of the a 3�u

+ state. This then justifies our usage of only
the lower of the two trimer potentials. Equivalently, we have
assumed that the electronic spin wave function of our trimer is
|(s1, s2)S, SLi; Stotmtot〉 = |(1/2, 1/2)0, 1/2; 1/2, mtot〉, where
�s1 and �s2 are the electron spins of the individual hydrogen
atoms, �S = �s1 +�s2, and �Stot = �S + �SLi is the total electronic
spin with projection mtot.

We also note that there exist conical intersections between
the ground and first excited doublet PESs at geometries that lie
in the C2v plane. Fortunately, these intersection points occur at
energies that are classically forbidden for our Li+H2 entrance
channels. The collisional complex thus has negligible proba-
bility of occupying this configuration.

The use of the coupled basis in Eq. (7) is a natural con-
sequence of the aforementioned approximations. In essence,
the H2 electronic spin S and mS are zero in Eq. (6) and
Hhf does not couple basis states, i.e., Hhf does not cou-
ple hyperfine states of lithium and H2 and only leads to
coordinate-independent shifts to the Hamiltonian. Thus, the
orbital angular momentum �J =�j + �� is a conserved quantity
along with its projection M.

APPENDIX B: DEFINITIONS FOR SCATTERING
RATE COEFFICIENTS

Our coupled-channel calculation provides S-matrix ele-
ments s(J )

α′,α , which we are used to construct rate coefficients.
Here α = {v, j, �}, α′ = {v′, j′, �′}, and J is the total angular
momentum quantum number. In particular, we require the

1The a 3�u
+ potential of H2 does not support bound states [43].

energy-dependent state-to-state rate coefficient

Kv′ j′,v j (E ) = 1

2 j + 1
uv j

π

k2
v j

∑
J��′

(2J + 1)
∣∣δα′,α − s(J )

α′,α (E )
∣∣2

,

(B1)

where uv j = √
2(E − εv j )/μ is the relative velocity of the

initial state and kv j = μ uv j/h̄ is the relative wave number. In
the derivation of Kv′ j′,v j (E ), we have made use of the fact that
the mj sublevels in the rovibrational state |v, jm j〉 of H2 have
equal population. The factor 1/(2 j + 1) is included in the
definition of Kv′ j′,v j (E ) so that rate coefficients for different j
can be compared directly as in Fig. 4. Elastic rate coefficients
have v′ j′ = v j, while inelastic ones have v′ j′ = v j.

With this definition and assuming a Maxwell-Boltzmann
distribution for both Li and H2, the thermalized CAVS rate
coefficient is

KCAVS
(
TLi, TH2

) =
∑
v j

(2 j + 1)[2 − (−1) j]

×
∑
v′ j′

Lv′ j′,v j
(
TLi, TH2

)
(B2)

with thermally averaged state-to-state rate coefficients

Lv′ j′,v j
(
TLi, TH2

) = 1

Zint
e−εv j/kBTH2

2√
π

∫ ∞

0

√
ζ dζ Kv′ j′,v j

× (ζkBTeff + εv j )e
−ζ , (B3)

effective temperature

Teff = mH2

mLi + mH2

TLi + mLi

mLi + mH2

TH2 , (B4)

scaled relative kinetic energy ζ , and partition function

Zint =
∑

{v jmImI }
e−εv j/kBTH2 (B5)

=
∑
v j

(2 j + 1)[2 − (−1) j]e−εv j/kBTH2 (B6)

for the internal degrees of freedom. The factor of [2 − (−1) j]
is a consequence of the nuclear spin degeneracy for even and
odd j. The curly brackets around the indices in Eq. (B5)
indicate symmetrization and TLi � Teff < TH2 .

APPENDIX C: COMPARISON OF ELECTRONIC
STRUCTURE METHODS

The PESs can be computed using several combinations
of post-self-consistent-field methods and basis sets. For suf-
ficiently large basis sets and increasing complexity of exci-
tations, these methods should agree; however, as the basis
set and number of correlated electrons gets larger the com-
putational cost will become impractical. Our computational
resources do allow us to compute the PESs for a small number
of geometries R, r, and θ with the most accurate methods and
basis sets available to us and compare them to more tractable
computations. We can then verify the common practice to
correct for the basis superposition error (BSSE) to account
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FIG. 7. Comparison of potential depths D for several combina-
tions of post-self-consistent-field methods and basis sets with fixed
R = 10.0a0, r = 1.4a0, and θ = 90◦. From left to right, the first set of
three curves represents CASSCF and MRCI calculations with the 1s
orbital of Li frozen and closed. The second set represents calculations
with all electrons active and excitations from the 1s orbital are
permitted. In both sets, the black and red curves are determined
using the QZ and 5Z basis sets, respectively. The blue curve is the
CBS extrapolation labeled by ∞Z. The leftmost marker on each
curve is the uncorrected value D. The other two connected markers
include the counterpoise (D+CP, closed circle) and Davidson (D+Q,
open circle) corrections, respectively. The pink closed circle is the
value from a full CI calculation with the QZ basis. The rightmost set
of three curves shows D computed with the coupled-cluster method
using the MRCC program of Kállay et al. [44] with the same basis
as for the MRCI calculations and the 1s orbital of Li frozen (for
clarity, predictions for the TZ basis within MRCI are not shown). The
CCSD curve corresponds to a CC calculation with single and double
excitations. The CCSD(T) curve adds perturbative triple excitations.
Finally, the curve labeled CCSDT has all single, double, and triple
excitations. The thick black horizontal line is our best prediction
for D for R = 10.0a0, r = 1.4a0, and θ = 90◦. Horizontal turquoise
lines indicate the 1-σ confidence interval.

for size-consistency and size-extensivity corrections and to
extrapolate to the CBS for these geometries and set an appro-
priate uncertainty. In the following, we study how the depth
of the potential at a T-shaped geometry, close to the minimum
or optimized geometry, changes as we make different choices.
Changes in this depth are a proxy for the accuracy of the PES.
[This depth should not be confused with the related depth of
the isotropic strength function Vλ=0(R, r) defined in the main
text.] For simplicity, we use TZ, QZ, and 5Z to abbreviate
the basis-set labels aug-cc-pwCVTZ, aug-cc-pwCVQZ, and
aug-cc-pwCV5Z for Li and aug-cc-pVTZ, aug-cc-pVQZ, and
aug-cc-pV5Z for H, respectively.

Figure 7 shows the potential depth D for a T-shaped
configuration, where R = 10.0a0, r = 1.4a0, and θ = 90◦.
We compare three distinct approaches. The first two use
MRCI to include electron correlations, while the third uses
a coupled-cluster (CC) method. The distinction between the
MRCI approaches is that the first freezes the inner 1s electrons

of Li, while the other does not. In the CC calculations the 1s
electrons of Li are also frozen. For each case, we compute D
for the TZ, QZ, and 5Z bases.

The depth D from the all-electron MRCI calculations
is found to be shallower than that from the corresponding
frozen MRCI calculations when no corrections are applied.
In contrast, the CC calculations show a progression to larger
D as the number of excitations is increased from singles and
doubles (CCSD) to triple excitations (CCSDT). As in the
frozen calculations only three electrons are correlated, the
CCSDT calculations is “exact.” Indeed, as shown in Fig. 7,
a full configuration-interaction (FCI) calculation for D using
the QZ basis is consistent with CCSDT.

Full configuration-interaction and CCSDT calculations are
computationally expensive and impractical for computing our
PES for all grid points. The Davidson correction added to
an MRCI calculation is a common procedure to approximate
the full configuration interaction. This procedure attempts to
account for size consistency and size extensivity. Indeed, our
Davidson-corrected MRCI values D+Q in Fig. 7 are much
closer to the FCI and CCSDT predictions. The magnitude of
the Davidson correction is about a factor of 3 larger in the
all-electron case, which is a reflection of the size extensivity
of MRCI. Nevertheless, the Davidson-correction brings the
frozen and all-electron depths to within hc × 0.25 cm−1.

A second correction accounts for the BSSE. The BSSE
arises as a result of limitations on the description of the
atomic orbitals. We use the counterpoise correction algorithm
of Ref. [33] to account for this error as mentioned in the main
text. As the number of atomic orbitals (or size of the basis set)
increases, the CP correction becomes smaller. Figure 7 shows
that the CP correction to D from the 5Z basis set for the MRCI
calculations is small compared to that for the QZ basis. The
complete-basis-set extrapolation for D, Davidson-corrected
D+Q, and the CP-corrected D+CP is computed from the TZ,
QZ, and 5Z values using Eq. (11) and shown in Fig. 7 with
label ∞Z.

The computation of the 8151 R, r, and θ geometries
using the 5Z basis is the most demanding. As such, the
only reasonable choice is performing MRCI calculations with
frozen 1s electrons for Li. Other choices result in runtimes
that are an order of magnitude or more larger. This leaves
the determination of the uncertainty of the PES. We take the
CBS-extrapolated D+CP from MRCI calculations as our best
prediction for the depth and take the one-standard-deviation
uncertainty of the depth as the difference in D+CP between
the QZ and CBS extrapolated values, with the intent of
placing a conservative error bar. These choices span all other
predictions for the depth using QZ and 5Z basis sets, except
for the uncorrected D and D+CP for the all-electron MRCI and
CCSD predictions. The exclusion of these latter predictions is
justified as corrections due to higher-order correlations (triple
and higher) are significant as shown by the larger depth for the
all-electron MRCI D+Q and CCSDT predictions. Addition-
ally, Refs. [35,45] have shown that uncorrected all-electron
basis calculations are less accurate than corresponding frozen-
core calculations. In Sec. V we show how our uncertainty
for a single geometry is translated into an uncertainty of
the PES for all geometries and consequently for the rate
coefficients.
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APPENDIX D: NUMERICAL REPRESENTATION OF THE
POTENTIAL ENERGY SURFACE AND

MATRIX ELEMENTS

The choice of grid for R, r, and θ on which the PES is
computed has been optimized for our scattering calculations
to minimize the need for interpolation. In particular, the grid
for θ is based on Gauss-Legendre quadrature, the grid for r is
equally spaced between rmin and rmax around the equilibrium
separation of the H2 molecule, and the grid in R is separated in
two regions, where in each region the grid is equidistant with
a different spacing.

The nonequidistant Gauss-Legendre quadrature points
for θ are found from cos θi = xi, where the xi are the roots
of the Legendre polynomial with degree λmax + 1, where λmax

is the highest degree used in the expansion in Eq. (12). We
find it sufficient to set λmax = 21. The potential is invariant
under hydrogen atom exchange, therefore the Vλ(R, r) are
only nonzero for even λ and we need only compute the PES
for the eleven θi ∈ [0, π/2]. The radial strength functions
are then simply given by Vλ(R, r) = ∑

i wi U (R, r, θi )Pλ(xi ),
where wi are the weights of the quadrature.

The grid in r is motivated by the procedure to calculate
�λ

v′ j′,v j (R) in Eq. (14). We use a discrete-variable represen-
tation (DVR) [46] to compute the eigenpairs εv j and φv j (r)
of HH2 . The grid for this DVR is equidistant and must have
four or five points per oscillation in φv j (r). We include vi-
brational levels up to v = 2, as its energy is approximately
kB × 15 000 K above the v = 0 state and well above room-
temperature collisional energies. We choose rmin = 0.5a0 and
rmax = 2.5a0 with spacing 0.1a0 leading to 19 grid points.
Figure 1(b) shows the relevant rovibrational eigenenergies and
some of the radial wave functions of HH2 . The integration in
Eq. (14) over r is done using the quadrature for this DVR.

The C6,0(r) dispersion coefficient and ratio
γ (r) ≡ C6,2(r)/C6,0(r) have been computed by Thakkar
et al. [39] from r = 1.0a0 to 4.0a0 in steps of 0.2a0. The
authors report a 0.1% one-standard-deviation uncertainty in
C6,0(r). For 1.0a0 < r < rmax, we interpolate using the Akima
spline [47]. For grid points r < 1.0a0, we linearly extrapolate
γ (r) and compute C6,0(r) from the dynamic polarizabilities
of H2 and Li at imaginary frequencies and integrating the
Casimir-Polder-type integral [38]. The dynamic polarizability
of H2 is computed using CFOUR at the CCSD level, while
that of Li is taken from Ref. [38]. Our computed C6,0(r) for
r < 1.0a0 is uniformly shifted to smoothly connect to that
of Ref. [39] at r = 1.0a0. This shift is less than 5% of its
value. We verified that the shift does not affect our final rate
coefficients within the quoted uncertainties.

Finally, our grid in R is constrained by the shape of the
PES and the connection procedure to its long-range analytical
form. We choose a grid starting at R = 3.5a0 with increments
of 0.5a0 up until R = 15a0, where the increments increase to
1.0a0 up to R = 30.0a0. The intent is to only use points up
to RC < 30a0 and use the long-range form of U (R, r, θ ) for
R > RC . The finer grid spacing at smaller R is required as the
potential is changing more rapidly there.

We choose RC = 20.0a0. At this separation the short-
range potential Vλ=0(RC, r) − VH2 (r) is approximately hc ×
0.05 cm−1 deeper than the long-range −C6,0(r)/R6
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FIG. 8. (a) Elastic phase shift η� as a function of partial wave
� for the scattering of 6Li with a v = j = 0 H2 molecule at energy
E = εv=0, j=0 + kB × 300 K. Here and in all panels, the blue curve
corresponds to the coupled-channel phase shift ηCC

� (E ) extracted
from the S matrix using only the λ = 0 strength function from the 5Z
potential energy surface and the red curve is the Born-approximation
prediction for the phase shift ηBA

� (E ) based on the long-range disper-
sion potential, defined in the text. The vertical dashed black line is the
glory partial wave �g, where ηCC

� (E ) has a maximum. (b) Close-up of
the phase shifts in (a) focusing on the region around �g. (c) Plot of
(2� + 1) sin2 η�(E ) as a function of �. The dashed gray and magenta
dot-dashed lines are the curves 2� + 1 and (2� + 1)/2, respectively.
(d) Cumulative sum over � of (c). The magenta dot-dashed line
corresponds to

∑�

�′=0(2�′ + 1)/2 = (� + 1)2/2.

nearly independent of r. The difference in Vλ=0(RC, r) can
be made smaller by adding higher-order multipolar contribu-
tions −Cn,λ(r)/Rn for n � 8. In practice, however, we find it
sufficient to connect matrix elements �λ

v′ j′,v j (R) for all λ, v,
j, v′, and j′. Specifically, we add −cλ

v′ j′,v, j/R8 to the long-
range form of �λ

v′, j′,v, j (R), computed from the −C6,λ(r)/R6

potential, with the cλ
v′ j′,v, j as fitting parameters.

We have verified that this connection procedure does not
affect our rate coefficients significantly, i.e., does not add
to our quoted uncertainties. First, we find that the fitted
values cλ

v′ j′,v, j are not unrealistic. We have computed C8,λ(r)
coefficients at r = re by using the multipolar polarizabilities
of H2 from Ref. [48] and Li from Ref. [38]. At R = RC , this
additional potential lowers the dispersion potential by hc ×
0.1 cm−1, significantly reducing the discrepancy between the
short- and long-range representations. The fitted cλ

v′ j′,v, j are
only 30% larger than the corresponding matrix elements ob-
tained from −C8,λ(re)/R8. For λ > 0, the differences between
the short- and long-range forms are much smaller and also in
line with the expected −C8,λ(re)/R contribution. (For λ > 2,
the long-range potentials fall off as 1/R8 or faster.)
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Second, we computed Kv′ j′,v j (E ) for a potential with
C6,λ(r) values that are 5% larger than those of Thakkar et al.
[39], well outside their quoted uncertainties. The cλ

v′ j′,v, j are
again fitted. The resulting change in Kv′ j′,v j (E ) is less than
0.1% for all energies and rovibrational states and is an order
of magnitude smaller than our final quoted uncertainty. This
implies that neither the uncertainty in C6,λ(r) nor the fitting
procedure significantly affects our rate coefficients.

APPENDIX E: DISAGREEMENT BETWEEN THE BORN
APPROXIMATION AND COUPLED-CHANNEL

RATE COEFFICIENTS

Figure 4 shows that there exists a significant discrepancy
in Kv j,v j (E ) between the prediction from the Born approx-
imation and the coupled-channel result. To understand this
difference we analyze the partial wave scattering phase shifts
η�(E ) for the two cases. The coupled-channel phase shift
ηCC

� (E ) can be extracted from the diagonal matrix element
s(J )
α,α (E ), when only the λ = 0 strength function is included

in the calculations. The S matrix is then diagonal in our
basis |v( j, �)JM〉 and s(J )

α,α (E ) = exp[2iηCC
� (E )]. The value of

Kv j,v j (E ) based on this approximation agrees to within 1% of
the full calculation as discussed in Sec. IV. For an isotropic
potential, the Born approximation of the phase shift is [41]

ηBA
� (E ) = 3π

32

(
E

E6

)2 1

�5
(E1)

and only depends on the potential’s attractive −C6,0/R6 long-
range shape.

Figures 8(a) and 8(b) show both ηBA
� (E ) and ηCC

� (E ) as
functions of partial wave � at a single collision energy E =
kB × 300 K. The two phase shifts agree for � > 30. This
is not surprising as large-� scattering is dominated by the
centrifugal and long-range potentials as the short-range parts
of the potential are classically forbidden. For smaller values
of �, both phase shifts rapidly change over multiple π phases.
The stationary point of ηCC

� (E ) at � = �g = 21 is called the
glory partial wave [41]. The change in phase shift from � = �g

to � = ∞ is less than π/2. In contrast, in many bi-alkali-metal
collisions this difference is many π .

Figures 8(c) and 8(d) show (2� + 1) sin2 η�(E ) and its
cumulative sum as functions of �, respectively. The former
corresponds to the �-dependent contributions to Kv j,v j (E )
[up to the simple factor uv, jπ/k2

v j/(2 j + 1)] and for � < �g

rapidly oscillates between 0 and 2� + 1, the unitarity limit for
partial wave �. For larger � the contribution rapidly falls off.
The cumulative sum approaches Kv j,v j (E ) (up to the same
simple factor) for � → ∞. The contributions to Kv j,v j (E )
from partial waves � < 15 and � > 25 for the Born approx-
imation and the coupled-channel results are approximately
equal. For � < 15 the phase shifts change over multiple π as
a function of � and we can replace sin2 η� by 1/2, its average,
for any potential, as shown in the figure. For � > 25 the
Born-approximation and the coupled-channel contributions
are the same by construction. The main difference is due the
partial waves around �g, which here corresponds to roughly a
third of the rate. In contrast, in bi-alkali-metal collisions the
contribution from these partial waves is small and the Born
approximation is valid.
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