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The stopping cross section for protons passing through hydrogen is calculated for the energy range between
10 keV and 3 MeV. Both the positive and neutral charge states of the projectile are accounted for. The two-center
convergent close-coupling method is used to model proton collisions with hydrogen. In this approach, electron-
capture channels are explicitly included by expanding the scattering wave function in a basis of both target and
projectile pseudostates. Hydrogen collisions with hydrogen are modeled using two methods: the single-center
convergent close-coupling approach is used for the calculation of one-electron processes, while two-electron
processes are calculated using the Born approximation. The aforementioned approaches are also applied to the
calculation of the charge-state fractions. These are then used to combine the proton-hydrogen and hydrogen-
hydrogen stopping cross sections to yield the total stopping cross section for protons passing through hydrogen.
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I. INTRODUCTION

Any application of ion transport through matter is de-
pendent on knowledge of energy losses during ion-atom
collisions. Therefore, stopping power data is fundamentally
important in a great number of fields, including medical
radiation therapy [1,2], aviation and space exploration [3], and
astrophysics [4].

In this work we explore the topic of stopping powers
from a theoretical perspective. Specifically, we focus on
the simplest target—atomic hydrogen—and look at how
the stopping power of this atom is calculated for proton
projectiles. When calculating the stopping power of hydrogen,
energy losses due to electronic excitation and ionization
processes must be included. On top of this, collisions
involving protons include the possibility for electron capture,
in which the proton grabs the target electron, forming a
hydrogen atom. This process plays an important role in the
calculation of the stopping power and, therefore, must also be
included if one wishes to obtain accurate results. However,
including electron-capture processes significantly increases
the complexity of calculations, as the problem requires
a two-center approach. Additionally, the electron-capture
process in proton-hydrogen collisions further complicates
the calculations, as the newly formed hydrogen atom will
continue interacting with the stopping medium. Therefore,
when calculating the stopping power of hydrogen for protons
one must also consider the collisions of hydrogen with
hydrogen. Not only does the aforementioned collision system
have a possibility of excitation and ionization of the target, but
now excitation and ionization of the projectile is also possible.
These processes can occur individually, resulting in single
excitation or ionization, or simultaneously, resulting in double
excitation, double ionization, or ionization with excitation.

All these reaction channels must be included in the calculation
of the stopping power. The total stopping power of hydrogen
for protons then becomes the sum of the proton-hydrogen
and hydrogen-hydrogen stopping powers weighted by their
corresponding charge-state fractions. Here we present our
approach to calculating the stopping power of hydrogen for
protons and compare the results to the experimental data and
theoretical calculations by other groups. There is currently no
experimental data for proton stopping in atomic hydrogen. For
this reason theoretical calculations are usually compared to
experimental measurements involving a molecular hydrogen
target. Measurements of the stopping cross section for protons
passing through a H2 gas, which cover the range from 10 keV
to 2 MeV, have been performed by Reynolds et al. [5], Reiter
et al. [6], and Golser and Semrad [7].

The first theoretical study of proton stopping in atomic
hydrogen was performed by Dalgarno and Griffing [8]. They
applied the first Born approximation (FBA) to calculate
the proton-hydrogen and hydrogen-hydrogen stopping cross
sections. Rearrangement processes in the case of proton-
hydrogen scattering and two-electron processes in the case
of hydrogen-hydrogen scattering were included. The results
were combined by weighting each contribution by its charge-
state fraction to obtain the total stopping cross section. Agree-
ment with the experimental data for protons passing through
H2 was obtained above 120 keV; however, their calculations
underestimated the data at low energies. This discrepancy was
attributed to the failure of the Bragg additivity rule in the
proton-hydrogen fraction.

Schiwietz [9] performed single-center coupled-channel
atomic-orbital (AO) calculations for the proton fraction of
the beam. They used the FBA calculations for the hydro-
gen fraction (including only single-excitation and single-
ionization processes) and the experimental H2 charge-state
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fractions of Allison [10] to obtain the total stopping cross
section. Agreement with the calculations of Dalgarno and
Griffing [8] above 125 keV was obtained. Also, agreement
with experiment within 5% was achieved at low and high
energies; however, results underestimated the experiment by
10%–15% at intermediate energies. It was suggested that
the deterioration was due to an inaccurate ionization cross
section in hydrogen-hydrogen collisions as electron-electron
correlations were neglected.

Schiwietz and Grande [11] further developed the afore-
mentioned AO method of Schiwietz [9] by replacing the
single-center AO results below 30 keV with two-center
(AO+) ones, which included electron capture. The result was
a significant reduction in the proton-hydrogen stopping cross
section in this region. Additionally, a screened potential was
used to perform AO calculations for hydrogen-hydrogen col-
lisions, including only single excitation and single ionization.
Continuing to use the experimental H2 charge-state fractions,
these authors achieved 5% agreement with the H2 stopping
power experiments over the whole energy range from 10 to
500 keV.

Fainstein et al. [12] used the continuum distorted-wave
eikonal initial-state (CDW-EIS) method to calculate the stop-
ping cross section for protons impinging on atomic hydrogen.
When combined with the FBA hydrogen-hydrogen results of
Dalgarno and Griffing [8], good agreement with experiment
was obtained above 70 keV. Disagreement with the experi-
ment below 70 keV was attributed to the usage of the FBA in
the hydrogen-hydrogen channel. Agreement with all previous
calculations was obtained above 125 keV; however, different
results were obtained below this.

In this work the stopping cross sections corresponding to
both the positive and neutral charge states of the projectile are
calculated and combined to yield the total stopping cross sec-
tion for protons passing through hydrogen. To model proton-
hydrogen collisions, we use the two-center convergent close-
coupling (CCC) method. In this approach electron-capture
channels are explicitly included by expanding the scattering
wave function in a basis made of both target and projectile
states. This is important for calculating both the stopping cross
section and charge-state fractions. These calculations improve
upon the work of Schiwietz and Grande [11] by employing a
two-center approach over the whole energy region considered,
as well as by including more target and projectile states in
the expansion of the scattering wave function required for
convergence. To model hydrogen-hydrogen collisions we use
a combination of two approaches: the first is the single-center
CCC method and the second is the FBA. The usage of the
single-center approach is justified as the probability of H−
formation is very small. In the single-center CCC approach
one atom remains fixed in the ground state. Therefore, only
single excitation and single ionization can be taken into ac-
count; however, coupling between the channels is included.
Subsequently, the first Born approximation is used to account
for the two-electron processes of double excitation, double
ionization, and ionization with excitation. These calculations
improve upon those of Dalgarno and Griffing [8] by including
excitations up to the n = 8 shell as opposed to n = 3.

We neglect electron exchange in the H-H channels as
it was done in all the aforementioned calculations of the

stopping power. The spin effects are expected to be small
in the energy range between 10 keV and 3 MeV where we
apply our method. However, at low energies, in particular
around 10 keV and below, the spin effects become important
[13–16]. Nevertheless, to our best knowledge, there has been
no attempt to include them in stopping power calculations.

In addition to the nonexchange approximation mentioned
above, we neglect electron transfer in H-H collisions. Thus
the solution we present is not complete. Though we neglect
electron transfer in H-H collisions, we do take into account
total electron loss by one of the hydrogen atoms. In other
words, we do not completely neglect electron transfer but take
it into account implicitly (our approach cannot differentiate
whether the lost electron has been captured by the other atom
or not). As we will see later (see Sec. III B), comparison of
the total cross section for electron loss in H-H collisions with
experiment indicates that overall electron-loss processes have
been modeled sufficiently accurately.

The single-center CCC approach has previously been ap-
plied to the calculation of stopping cross sections for an-
tiproton collisions with atoms and molecules [17–19] and
to the calculation of scattering cross sections for antiproton-
hydrogen collisions [20,21]. Additionally, the two-center
CCC approach has been applied to the calculation of scat-
tering cross sections for proton-hydrogen collisions [22–24].
Preliminary results of the proton-hydrogen stopping cross sec-
tion using the two-center CCC approach have been reported in
Ref. [25].

The paper is set out as follows. Section II outlines the
method. The results of calculations are presented and dis-
cussed in Sec. III. Finally, in Sec. IV we draw conclusions.

II. DESCRIPTION OF THE APPROACH

For CCC calculations we use the semiclassical approx-
imation to formulate a set of coupled-channel differential
equations that describe the scattering system. In the semi-
classical approximation the target electron is treated fully
quantum mechanically while the motion of the projectile is
treated classically. In the laboratory frame the projectile is
assumed to be moving with velocity vvv along a straight line
toward the target at an impact parameter b. The position of the
projectile with respect to the target nucleus is then given by
R(t ) = b + vvvt, where t is time and t = 0 corresponds to the
distance of the closest approach. The velocity of the projectile
is taken to be along the z axis and the impact parameter is
taken to be along the x axis. The position of the projectile
along the z axis is hence z = vt .

A. Proton-hydrogen collisions

The two-center CCC approach is based on the exact time-
independent Schrödinger equation and uses an expansion for
the total scattering wave function that correctly represents
both the target and projectile centers. Here we describe the
main steps. More details are given in Refs. [24,26].

To describe the proton-hydrogen system we utilize the
Jacobi coordinates where rT is the position of the electron
relative to the target proton, while rP is the position of the
electron relative to the projectile proton, and σT is the position
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of the projectile proton relative to the center of mass of the
target proton-electron system, while σP is the position of the
center of mass of the projectile proton-electron system relative
to the target proton. Finally, r is the position of the electron
relative to the center of mass of the two-proton system.

The exact nonrelativistic Schrödinger equation for the total
scattering wave function � is written as

H� = E�, (1)

where E is the total energy of the system and H is the full
three-body Hamiltonian. The Hamiltonian can be written in
the following equivalent forms:

H = − 1

2μ
∇2

σT
+ HT + VP = − 1

2μ
∇2

σP
+ HP + VT. (2)

Here μ is the reduced mass of the proton-hydrogen system,
HT and HP are the target and projectile atom Hamiltonians, VT

is the interaction of the target proton with the projectile atom,
and VP is the interaction of the projectile proton with the target
atom. Hamiltonians HT and HP are given by

HT = −1

2
∇2

rT
− 1

rT

, HP = −1

2
∇2

rP
− 1

rP

, (3)

while the interactions VT and VP are given by

VT = 1

R
− 1

rT

, VP = 1

R
− 1

rP

. (4)

The total scattering wave function is expanded in terms
of a set of NT target pseudostates ψα and NP projectile
pseudostates ψβ according to

� =
NT∑

α=1

Aα (σT )ψα (rT )eikα ·σT +
NP∑

β=1

Bβ (σP )ψβ (rP )eikβ ·σP ,

(5)

where kα is the relative momentum of the projectile proton
and the target atom in channel α, and similarly, kβ is the
relative momentum of the target proton and the projectile atom
in channel β. The total energy of the system E is given by

E = k2
α

2μ
+ εα = k2

β

2μ
+ εβ. (6)

Furthermore, the pseudostates ψα and ψβ represent both
bound and continuum states, and are constructed to satisfy the
conditions

〈ψγ ′ |HT(P)|ψγ 〉 = εγ δγ ′γ , 〈ψγ ′ |ψγ 〉 = δγ ′γ . (7)

It must be emphasized that although the pseudostates within
each set are orthogonal to each other, a pseudostate from
one set is not orthogonal to a pseudostate from the other set.
Details of the pseudostates are given in Sec. II C.

The scattering wave function (5) is substituted into the
Schrödinger equation (1) and the result is projected onto to
conjugate of each term in the expansion, i.e., ψ∗

α′ (rT )e−ikα′ ·σT

and ψ∗
β ′ (rP )e−ikβ′ ·σP . After applying the semiclassical approx-

imation and some lengthy algebra, we arrive at the final
set of two-center coupled-channel differential equations that

describes proton scattering from hydrogen:

iȦα′ + i
NP∑

β=1

ḂβKα′β =
NT∑

α=1

AαDα′α +
NP∑

β=1

BβQα′β,

i
NT∑

α=1

ȦαK̃β ′α + iḂβ ′ =
NT∑

α=1

AαQ̃β ′α +
NP∑

β=1

BβD̃β ′β, (8)

α′ = 1, . . . , NT, β ′ = 1, . . . , NP,

where the dots over A and B denote the time derivative. In
Eq. (8) the direct-scattering matrix elements Dα′α and D̃β ′β
are given as

Dα′α = ei(εα′ −εα )t
∫

drTψ
∗
α′ (rT )VPψα (rT ) (9)

and

D̃β ′β = ei(εβ′ −εβ )t
∫

drPψ
∗
β ′ (rP )VTψβ (rP ). (10)

The overlap matrix elements Kα′β and K̃β ′α are

Kα′β = ei(−v2t/2+(εα′−εβ )t )
∫

drTψ
∗
α′ (rT )eivvv·rTψβ (rP ) (11)

and

K̃β ′α = ei(−v2t/2+(εβ′ −εα )t )
∫

drPψ
∗
β ′ (rP )e−ivvv·rPψα (rT ), (12)

and the electron-transfer matrix elements Qα′β and Q̃β ′α are

Qα′β = ei(−v2t/2+(εα′ −εβ )t )

×
∫

drTψ
∗
α′ (rT )eivvv·rT (HP + VT − εβ )ψβ (rP ) (13)

and

Q̃β ′α = ei(−v2t/2+(εβ′−εα )t )

×
∫

drPψ
∗
β ′ (rP )e−ivvv·rP (HT + VP − εα )ψα (rT ). (14)

In Eqs. (8)–(14) the exponential factors arise naturally and
not from the introduction of electron translation factors. For
details see Refs. [24,26].

The system of differential equations (8) is solved with
the initial condition Aα′ (t = −∞, b) = δα′i and Bβ ′ (t =
−∞, b) = 0. This implies the target is in the initial state ψi.
For all calculations we take i = 1s, i.e., the target is initially
in the ground state. The dependence of Aα′ and Bβ ′ on the
orientation of b can be factored such that the probability for
transition from some initial state state of the target i into any
final target state f or any final projectile state k is given by

p f (b) = |A f (t = +∞, b) − δ f i|2,
pk (b) = |Bk (t = +∞, b)|2, (15)

where A f (t = +∞, b) and Bk (t = +∞, b) are the probability
amplitudes. The set of equations (8) is solved within the
region [−zmax, zmax], where the parameter zmax is increased
until convergent results are obtained. Direct-scattering matrix
elements are evaluated in spherical coordinates, while overlap
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and electron-transfer matrix elements are evaluated in prolate
spheroidal coordinates [22,26].

B. Hydrogen-hydrogen collisions

For the collisions of hydrogen with hydrogen we must
introduce the coordinate r′

P, which is the position of the
projectile electron relative to the projectile nucleus. As pre-
viously stated, we use a single-center CCC approach for
the calculation of one-electron processes and the first Born
approximation for the calculation of two-electron processes
(B2e). The details of both methods are given here. Together
we refer to this as the “CCC+B2e” approach.

First, we consider the single-center CCC approach. With
the projectile atom fixed in the ground state, the total scatter-
ing wave function is expanded in terms of a complete set of
NT target pseudostates ψα according to

� =
NT∑

α=1

Aα (σT )ψα (rT )ψ1s(r′
P )eikα ·σT . (16)

Details of target pseudostates are given in Sec. II C. Addition-
ally, the total energy of the system E is given by

E = k2
α

2μ
+ εα + ε1s, (17)

and the total Hamiltonian H is written as

H = − 1

2μ
∇2

σT
+ HT + H ′

P + VP, (18)

where μ is the reduced mass of the hydrogen-hydrogen sys-
tem. Here HT is the target atom Hamiltonian defined earlier in
Eq. (3), and the projectile atom Hamiltonian H ′

P is given by

H ′
P = −1

2
∇2

r′
P
− 1

r′
P

. (19)

Also, VP is the projectile-target interaction, which is given by

VP = 1

R
− 1

|R − rT| − 1

|R + r′
P|

+ 1

|R + r′
P − rT| . (20)

Substituting the scattering wave function (16) into the
Schrödinger equation (1) and following the same procedure
as in Sec. II A we obtain the final set of coupled-channel
differential equations,

iȦα′ =
NT∑

α=1

AαHα′α; α′ = 1, . . . , NT, (21)

where Hα′α are the direct-scattering matrix elements

Hα′α = ei(εα′ −εα )t

×
∫

drTdr′
Pψ

∗
α′ (rT )ψ1s(r′

P )VPψ1s(r′
P )ψα (rT ). (22)

Equation (21) is solved in a similar manner described for the
proton-hydrogen system.

To model two-electron processes, i.e., double excitation,
double ionization, and ionization with excitation, we use the
FBA. In the Born approximation the transition amplitude
for the scattering process H(1s) + H(1s) → H(α) + H(β ) is

given by

Tα,β =
∫∫∫

drTdr′
PdR ψ1s(rT )ψ∗

α (rT )ψ1s(r′
P )ψ∗

β (r′
P )

× eiK·R
(

1

R
− 1

|R + r′
P|

− 1

|R − rT| + 1

|R + r′
P − rT|

)
.

(23)

Here K = ki − k f is the momentum transfer, where ki and k f

are the initial and final momenta of the projectile, respectively.
For FBA calculations we will choose K to be along the z axis.
Additionally, α and β represent the final states of the target
and projectile atoms, respectively. If the final state of the target
is a bound state, then α = nαlαmα , where n, l , and m are the
principal, orbital, and magnetic quantum numbers, and ψα =
ψnα lαmα

is the eigenstate wave function of the hydrogen atom.
On the other hand, if the final state of the target is a continuum
state, then we use the momentum of the ejected electron ke

as the channel index, i.e., α = ke, and ψα = ψ−
ke

is the two-
body Coulomb wave function (see below). Similarly, if the
final state of the projectile is a bound state then β = nβ lβmβ ,
and if it is a continuum state then β = k′

e.
Equation (23) can be evaluated analytically to get

Tα,β = 4π

K2
[δα,1s − Fα (K )][δβ,1s − Fβ (−K )], (24)

where

Fγ (K ) =
∫

drψ1s(r)ψ∗
γ (r)eiK·r. (25)

The latter can be evaluated for any excitation transition. Since
we choose K to be aligned along the z axis, the resulting
amplitudes are nonzero only when the change in magnetic
quantum number is equal to zero. As both atoms are initially
in the ground state, only final states with m = 0 need to be
considered and the amplitude becomes

Fnl (K ) = il
√

2l + 1
∫ ∞

0
r2drR10(r)Rnl (r) jl (Kr), (26)

where Rnl are the radial functions and jl is the spherical
Bessel function of the first kind. Equation (26) is evaluated
analytically for a specific Rnl .

For ionization transitions, the final-state wave function is
taken to be two-body Coulomb wave function. Following the
ideas of Guth and Mullin [27], who calculated the Fourier
transform of the Coulomb wave function, it can be shown that
Fke is given by

Fke (K ) = 2
√

2

π
e−πη/2�(1 + iη)

[K2 − (ke + i)2]iη

[(ke + K )2 + 1]1+iη

×
(

(1 + iη)

[(ke + K )2 + 1]
+ (1 − iη)

[K2 − (ke + i)2]

)
, (27)

where � is the Gamma function and η = −1/ke is the
Sommerfeld parameter.

C. Target structure

The atomic hydrogen pseudostates used in CCC calcu-
lations are generated by following the ideas of Bray and

042701-4



PROTON-BEAM STOPPING IN HYDROGEN PHYSICAL REVIEW A 99, 042701 (2019)

Stelbovics [28]. The radial parts of the pseudostates ψα in
Eqs. (5) and (16) are written as

Rnl (r) = 1

r

Nl∑
k=1

Bl
nkξkl (r), (28)

where ξkl is a complete set of orthonormal basis functions,
Nl is the number of basis functions for a given l , and Bl

nk are
the expansion coefficients that are found by diagonalization
of the target Hamiltonian in the complete basis. In other
words, the pseudostates ψα satisfy the conditions specified in
Eq. (7).

In Eq. (28), we choose the basis functions to be the
Laguerre functions

ξkl (r) =
(

λl (k − 1)!

(2l + 1 + k)!

)1/2

(λl r)l+1 exp(−λl r/2)L2l+2
k−1 (λl r),

(29)

where L2l+2
k−1 (λl r) are the associated Laguerre polynomials and

λl is an exponential fall-off parameter. Choice of λl does not
affect the final result; however, it does affect the speed of
convergence. Specific values of λl are given in Sec. III. The
choice of the basis as a set of orthogonal Laguerre functions
allows us to model the whole spectrum of the target atom.
As the size of the one-electron basis increases, the low-lying
states will converge to the true bound states of the target, while
the remaining negative-energy (pseudo) states will provide
an effective representation of the high-lying bound states of
the target atom. The positive-energy pseudostates provide and
an increasingly dense square-integrable representation of the
target continuum.

D. Stopping power

The stopping power is the energy loss per unit path length
and is defined as

−dE

dx
= NaS(E0), (30)

where S(E0) is referred to as the stopping cross section. It
depends on the incident energy of the projectile E0 and is
related to the stopping power through the density of target
atoms in the stopping medium Na. For heavy projectiles it can
be assumed that the total stopping cross section is the sum
of two contributions—the nuclear and the electronic stopping
cross sections, i.e., S = Se + Sn. In this work we consider
only the electronic part of the stopping cross section, as we
are interested in incident energies above 10 keV where the
nuclear part is insignificant. However, if one is interested in
incident energies below 10 keV, calculation of the nuclear part
is straightforward and is detailed in Ref. [18].

Due to the possibility of electron capture, the incident
proton can grab the electron and form a hydrogen atom. This
newly formed hydrogen atom will continue interacting with
the stopping medium, losing energy and potentially losing
and gaining electrons many times. For this reason all possible
charge states of the beam must be considered when calculating
the total stopping cross section for protons incident on atomic
hydrogen. The total stopping cross section for the proton-
hydrogen system is therefore given by

S(E0) = f H+
SH+ + f H0

SH0
, (31)

where SH+
is the stopping cross sections for a beam consisting

entirely of protons (positive charge), SH0
is the stopping

cross sections for a beam consisting entirely of hydrogen
atoms (neutral charge), and f H+

and f H0
are the positive- and

neutral-charge-state fractions of the beam, respectively. In this
work we neglect the negative charge state as the probability of
H− formation is insignificant. The charge-state fractions f H+

and f H0
are calculated from the total electron-capture (EC)

cross section σEC in proton-hydrogen collisions and the total
electron-loss (EL) cross section σEL in hydrogen-hydrogen
collisions according to

f H+ = σEL/(σEC + σEL), f H0 = σEC/(σEC + σEL). (32)

This highlights the importance of having a two-center ap-
proach that can provide accurate electron-capture cross sec-
tions. Further details on σEC and σEL are given below.

The positive-charge-state electronic stopping cross section
SH+

e is the result of three possible energy-loss processes in the
proton-hydrogen collision system. These are excitation and
ionization of the target, and capture of the target electron to
a bound state of the projectile. The stopping cross section is
therefore written as

SH+
e =

∞∑
f =1

(ε f − εi )σ f i +
∫ E0+εi

0
(ε − εi )

dσ

dε
dε

+
∞∑

k=1

(εk − εi + v2/2)σki, (33)

where εi is the energy of the ground state of the target i, σ f i

is the cross section for excitation to a state f of energy ε f ,
dσ/dε is the single differential cross section for ionization
when the electron is ejected with energy ε, and σki is the
cross section for electron capture to a state k of energy εk .
Additionally, the v2/2 term represents the kinetic energy of an
electron traveling with the speed of the incident proton after
being captured.

To accurately model electron-capture processes we use
a two-center coupled-channel approach with pseudostates
centered on both the target and projectile, as described in
Sec. II A. For the calculation of the stopping cross section
we include bound and continuum pseudostates on the target
center, while we include only negative-energy pseudostates
for the projectile center. This is due to ambiguities in the
calculation of the stopping power associated with electron
capture into the continuum process. Such issues have been
explored in Ref. [24]. With this model the first two terms in
Eq. (33) that represent excitation and ionization become a sin-
gle sum over NT negative- and positive-energy target-centered
pseudostates, while the third term becomes a sum over NP

negative-energy projectile-centered pseudostates. Thus we
obtain

SH+
e ≈

NT∑
f =1

(ε f − εi )σ f i +
NP∑

k=1

(εk − εi + v2/2)σki. (34)

Here the cross sections for the direct transitions σ f i and
rearrangement transitions σki are obtained by integration of
the transition probabilities (15) over the impact parameter
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according to

σ f i = 2π

∫ ∞

0
p f i(b)bdb, σki = 2π

∫ ∞

0
pki(b)bdb. (35)

Furthermore, the total electron-capture cross section σEC,
which is required for the calculation of the charge-state frac-
tions (32), is the sum of all electron-capture cross sections
(35), i.e.,

σEC =
NP∑

k=1

σki. (36)

The neutral-charge-state electronic stopping cross section
SH0

e is the result of many possible energy-loss processes in
the hydrogen-hydrogen collision system. These are excitation
or ionization of either the target or projectile, simultaneous
excitation or ionization of both the target and projectile, and
excitation of either the target or projectile with ionization of
the other. Including all these terms, the stopping cross section
is written as

SH0

e = 2
∞∑

f =1

(ε f − εi )σ f i + 2
∫ E0+εi

0
(ε − εi )

dσ

dε
dε

+
∞∑
f �=i

∞∑
k �=i

(ε f − εi + εk − εi )σ f i,ki

+
∫ E0+εi

0

∫ E0+εi

0
(ε − εi + ε′ − εi )

dσ

dεdε′ dεdε′

+ 2
∞∑
f �=i

∫ E0+εi

0
(ε f − εi + ε − εi )

dσ f i

dε
dε, (37)

where σ f i is now the cross section for excitation of one
hydrogen atom to a state f of energy ε f while the other
remains in the ground state, dσ/dε is the differential cross
section for ionization of one hydrogen atom when the electron
is ejected with energy ε while the other remains in the ground
state, σ f i,ki is the cross section for excitation of both hydrogen
atoms, one to a state f of energy ε f and the other to a state k
of energy εk , dσ/dεdε′ is the differential cross section for
ionization of both hydrogen atoms, one with energy ε and
the other with energy ε′, and dσ f i/dε is the differential cross
section for ionization of one hydrogen atom when the electron
is ejected with energy ε while the other is excited to a state f
of energy ε f . Additionally, the factor of 2 in the first, third,
and last terms of Eq. (37) is due to the symmetry of the
system.

To model one-electron processes we use a single-center
coupled-channel approach. Since the continuum is discretized
in this approach, the first and third terms of Eq. (37), which
represent the stopping cross sections associated with single
excitation and ionization, become a single sum over NT

negative- and positive-energy pseudostates. To model two-
electron processes we use the first Born approximation. In
this approach we limit ourselves to a total of Nb bound
states. Combining these two models, the neutral-charge-state

electronic stopping cross section (37) becomes

SH0

e = 2
NT∑
f =1

(ε f − εi )σ f i +
Nb∑
f �=i

Nb∑
k �=i

(ε f − εi + εk − εi )σ f i,ki

+
∫ E0+εi

0

∫ E0+εi

0
(ε − εi + ε′ − εi )

dσ

dεdε′ dεdε′

+ 2
Nb∑
f �=i

∫ E0+εi

0
(ε f − εi + ε − εi )

dσ f i

dε
dε. (38)

Here the cross sections for one-electron transitions σ f i are
obtained using Eq. (35). Additionally, the cross sections for
the two-electron processes of double excitation, double ion-
ization, and ionization with excitation are calculated from the
Born transition amplitudes (24) according to

σ f i,ki = μ2

2πk2
i

∫ ∣∣Tn f l f ,nk lk

∣∣2
KdK, (39)

dσ

dεdε′ = kek′
e

μ2

2πk2
i

∫∫∫ ∣∣Tke,k
′
e

∣∣2
KdKd�ke�k′

e
, (40)

and

dσ f i

dε
= ke

μ2

2πk2
i

∫∫ ∣∣Tn f l f ,ke

∣∣2
KdKd�ke , (41)

respectively. In Eqs. (39)–(41), the integrals over K are over
the range from Kmin = ki − k f to Kmax = ki + k f and eval-
uated numerically, while the integrals over �ke are evalu-
ated analytically. The final momentum of the projectile k f

is obtained from the energy-conservation law and depends
on the final states of the atoms, while ke is the momentum
of the ejected electron. Furthermore, the total electron-loss
cross section σEL, which is required for the calculation of the
charge-state fractions (32), is the sum of all cross sections
corresponding to ionization of the target atom. Therefore, it
is written as the sum of the total single-ionization (SI) cross
section σSI, total double-ionization (DI) cross section σDI, and
total ionization-with-excitation (IE) cross section σIE, that is,

σEL = σSI + σDI + σIE. (42)

In the aforementioned model the total single-ionization cross
section is given by the sum of all cross sections for one-
electron transitions to positive-energy states:

σSI =
NT∑

f :ε f >0

σ f i. (43)

The total double-ionization and ionization-with-excitation
cross sections are calculated from Eqs. (40) and (41), respec-
tively, as

σDI =
∫ E0+ε1s

0

∫ E0+ε1s

0

dσ

dεdε′ dεdε′, (44)

and

σIE =
Nb∑
f �=i

∫ E0+ε1s

0

dσ f i

dε
dε. (45)
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FIG. 1. Electronic stopping cross section for protons incident on
hydrogen. The two-center CCC calculations are compared with the
results of Dalgarno and Griffing [8], Schiwietz [9] (AO), Schiwietz
and Grande [11] (AO+), and Fainstein et al. [12].

III. RESULTS

In this section the results of our calculations for the proton-
hydrogen electronic stopping cross section are presented and
compared to existing theoretical and experimental results.
When using a coupled-channel approach where the scattering
wave function is expanded in a set of target- and projectile-
centered pseudostates it is important to establish convergence
of the stopping cross section with increasing the size of the
underlying basis. Therefore, we will start by specifying the
basis parameters Nl and lmax, where Nl is the number of
basis functions for a given l and lmax is the maximum value
of orbital angular momentum included in the expansion of
the scattering wave function that produced the convergent
result. Specifically, we say that convergence is achieved when
the stopping cross section varies no more than 2% with an
increase in either Nl or lmax. Therefore, our calculations are
estimated to be accurate to within 2%.

A. Proton-hydrogen stopping cross section

Convergence in calculations of the electronic stopping
cross section for proton-hydrogen collisions was achieved
with lmax = 8 and Nl = 30 − l . These basis parameters result
in a total of 1896 target states and 159 projectile states to
be used in the solution of the coupled-channel differential
equations (8). Also, the basis function exponential fall-off
parameter λl is chosen to be 2 for all l .

In Fig. 1 we present our result for the proton-hydrogen
electronic stopping cross section (SCS) together with the
calculations of Dalgarno and Griffing [8], Schiwietz [9],
Schiwietz and Grande [11], and Fainstein et al. [12]. We use
the two-center CCC approach, meaning energy losses due
to electron-capture processes are explicitly included, as well
as energy losses due to excitation and ionization. The CCC
results are in good agreement with the FBA calculation of
Dalgarno and Griffing [8] above 50 keV. They are also in good
agreement with the AO calculations of Schiwietz [9] and the
CDW-EIS calculations of Fainstein et al. [12] above 130 keV.
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FIG. 2. Individual contributions to the proton-hydrogen elec-
tronic stopping cross section. The curves labeled “Excitation” and
“ionization” are the stopping cross sections associated with excita-
tion and ionization of the target atom, respectively. The curve labeled
“Electron capture” represents the stopping cross section associated
with electron capture.

Furthermore, in the lower energy region we obtain reasonable
agreement with the two-center AO+ calculations of Schiwietz
and Grande [11]. The fact that the CCC results are slightly
higher than the AO+ ones above 15 keV is likely to be due
to the inclusion of more target and projectile states in our
calculations compared to those of Schiwietz and Grande [11].
In addition, comparing the single-center AO calculations of
Schiwietz [9] to the two-center CCC and AO+ calculations
we see that the explicit inclusion of electron-capture channels
results in a significant difference in the proton-hydrogen elec-
tronic stopping cross section below 100 keV.

Individual contributions to the stopping cross section are
presented in Fig. 2. This figure demonstrates that below 35
keV energy loss due to momentum transfer to the electron
during electron capture is the dominant contribution to the
stopping cross section, whereas above 35 keV the dominant
contribution is due to ionization. Additionally, it shows that
energy losses associated with excitation of the target make a
substantial contribution over the whole energy region, while
electron-capture processes make a significant contribution
only below 60 keV.

B. Hydrogen-hydrogen stopping cross section

Convergence in the CCC calculations of the electronic
stopping cross section for hydrogen-hydrogen collisions was
achieved with lmax = 15 and Nl = 30 − l . These basis param-
eters result in a total of 5080 target states used in the solution
of the coupled-channel differential equations (21). Also, the
basis function exponential fall-off parameter λl is chosen to
be 4 for all l . It should be noted that the value for lmax is
significantly larger than that required for proton-hydrogen
collisions due to the single-center approach being used. This
is to generate higher-energy continuum states compared to the
proton calculations. Furthermore, in the Born calculations we
include excitations to all states for which n � 8 and l � 3.
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FIG. 3. Electronic stopping cross section for hydrogen incident
on hydrogen. Calculations are compared with those of Dalgarno
and Griffing [8], and Schiwietz and Grande [11]. The results la-
beled “CCC” and “B1e” include one-electron processes only, while
“CCC+B2e” and “Born” results include one- and two-electron pro-
cesses (see text for details).

In Fig. 3 we present our CCC+B2e results for the
hydrogen-hydrogen electronic stopping cross section together
with the calculations of Dalgarno and Griffing [8], and Schi-
wietz and Grande [11]. The CCC+B2e calculations include
energy losses due to single excitation and single ionization
that are calculated in the single-center CCC approach, as well
as energy losses due to double excitation, double ionization,
and ionization with excitation that are calculated in the FBA.
Also shown in Fig. 3 are the results arising solely from
CCC calculations, meaning only energy losses due to single
excitation and ionization are included, as well as the results of
the Born calculations for all energy-loss processes (labeled as
Born) and one-electron processes only (labeled as B1e). First,
we note that the CCC results are in agreement with the B1e
results at high energies where the latter is considered accurate.
Specifically, good agreement is seen above 300 keV. However,
at lower energies, below 200 keV, the coupling between chan-
nels in the CCC approach results in a significantly larger stop-
ping cross section when compared to the B1e results. In this
energy region CCC calculations are much larger than the AO
calculations of Schiwietz and Grande [11] as well, although
both methods are based on a somewhat similar approach. It
could be that the results of Schiwietz and Grande [11] did not
have a sufficient number of states, as the CCC calculations
include a much larger number of target states. Turning to the
Born results we see a small but systematic disagreement with
the FBA calculations of Dalgarno and Griffing [8] above 40
keV. This is due to the fact that we include excitation to all
states with n � 8 and l � 3, whereas Dalgarno and Griffing
[8] include excitations up to the n = 3 shell only. This fact
has been verified by performing calculations that include the
same number of states as Dalgarno and Griffing [8]. On the
other hand, below 20 keV the FBA calculations of Dalgarno
and Griffing [8] are slightly higher, as they have included
an estimated contribution to the stopping cross section due
to H− formation. Lastly, comparing our calculations that
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FIG. 4. Projectile total electron-loss cross section in hydrogen
collisions with hydrogen. The CCC+B2e calculations (see text for
details) are compared to the experimental data of Wittkower et al.
[29] and McClure [30]. Also shown are the Born calculations for total
electron loss (Born EL), as well as the Born and CCC calculations for
single ionization only, labeled “Born SI” and “CCC SI,” respectively.

include one-electron processes (i.e., CCC and B1e) to those
that include one- and two-electron processes (CCC+B2e and
Born) we conclude that double excitation, double ionization,
and ionization with excitation make a substantial contribution
to the stopping cross section above 20 keV (further evidence
for this conclusion is given in the next paragraph). As such, the
CCC+B2e calculation is considered our most accurate result.

The conclusion drawn above can be validated by consider-
ing the total cross section for electron loss by the projectile as
there is experimental data to compare with. Since the stopping
cross section is dominated by ionization processes (as shown
below), this may prove useful in assessing the accuracy of
the hydrogen-hydrogen stopping cross section. In Fig. 4 we
present our CCC+B2e calculation for the total electron-loss
cross section compared to the experimental data of Wittkower
et al. [29] and McClure [30]. Also shown are the Born
calculations for the total electron-loss cross section (Born EL),
as well as the Born and single-center CCC calculations for the
single-ionization cross section (denoted as Born SI and CCC
SI, respectively). The CCC+B2e results are in good agree-
ment with the experimental data over the whole energy region
considered. On the other hand, the Born EL calculations sig-
nificantly underestimate experiment below 70 keV projectile
energy. This illustrates the benefit of using a coupled-channel
approach for the one-electron processes, as is done presently.
This becomes evident when we compare the CCC SI and Born
SI calculations, where the latter significantly underestimates
the former below 100 keV. Furthermore, the importance of
including the two-electron processes becomes apparent when
two models that include one-electron processes only, i.e.,
CCC SI and Born SI, are compared to those that include
both one- and two-electron processes, i.e., CCC+B2e EL
and Born EL. As can been seen, the CCC SI calculations
underestimate experiment above 20 keV projectile energy,
and the Born SI calculations underestimate experiment at all
projectile energies considered.
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FIG. 5. Individual contributions to the hydrogen-hydrogen elec-
tronic stopping cross section calculated in the Born approximation.
The curves labeled “SE” and “SI” are the stopping cross sections
associated with single excitation and ionization, respectively. While
the curves labeled “DE” and “DI” are the stopping cross sections
associated with double excitation and double ionization, respectively.
Also, “IE” is the stopping cross section due to ionization with
excitation.

Individual contributions to the Born stopping cross section
are presented in Fig. 5. This figure demonstrates that at high
incident energies the stopping cross section is dominated
by single- and double-ionization processes, each making an
almost equal contribution. In the intermediate energy region,
energy losses due to single ionization are the main contribu-
tion to the stopping cross section, while double ionization and
ionization with excitation make a smaller but still significant
addition. Double excitation also makes relatively small but
important contribution in this region. Lastly, at lower incident
energies the contribution from single-excitation processes in-
creases and becomes significant; however, single ionization
remains dominant.

The same but for the CCC stopping cross section are
presented in Fig. 6. The figure shows that energy losses due to
ionization dominate the stopping cross section at all incident
energies considered, while energy losses due to excitation
make a significant contribution only below 50 keV.

C. Total stopping cross section

As discussed previously, the total stopping cross section
for protons passing through hydrogen is calculated by sum-
ming the proton-hydrogen and hydrogen-hydrogen stopping
cross sections weighted by their respective charge-state frac-
tions. We remember that for the hydrogen-hydrogen stopping
cross section we use the CCC+B2e result. Subsequently, the
hydrogen-hydrogen total electron-loss cross section, which is
required for the calculation of charge-state fractions, is the
sum of the single-ionization cross that is calculated in the
single-center CCC approach and the double-ionization and
ionization-with-excitation cross sections that are calculated
using the Born approximation.
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FIG. 6. Individual contributions to the hydrogen-hydrogen elec-
tronic stopping cross section calculated with the CCC method.
The curves labeled “Excitation” and “ionization” are the stopping
cross sections associated with single excitation and single ionization,
respectively.

In Fig. 7 we present our results for the positive ( f H+
)

and neutral ( f H0
) charge-state fractions for a beam of pro-

tons passing through hydrogen. They are displayed alongside
the calculations of Dalgarno and Griffing [8] and Fainstein
et al. [12], as well as the experimental data of Allison [10]
(which was used in the calculation of the total stopping cross
section by Schiwietz [9] and Schiwietz and Grande [11]).
We obtain good agreement with Dalgarno and Griffing [8]
above 40 keV projectile energy and with Fainstein et al.
[12] above 150 keV. Furthermore, although the experimental
data of Allison [10] were measured for a molecular hydrogen
target, we obtain reasonable agreement with the latter over the
whole energy range. Additionally, from Fig. 7 we can learn
about the composition of the beam passing through the target.
First, above 200 keV projectile energy the beam is comprised
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FIG. 7. Positive ( f H+
) and neutral ( f H0

) charge-state fractions
for protons passing through hydrogen. The present results are com-
pared to those of Dalgarno and Griffing [8], and Fainstein et al. [12].
The experimental data of Allison [10], which were measured for a
molecular hydrogen target, are also shown.
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FIG. 8. Total electronic stopping cross section for protons pass-
ing through hydrogen. The present results have been obtained using
the two-center CCC method for the positive-charge-state contribu-
tion and the CCC+B2e (see text for details) method for the neutral-
charge-state contribution. Also shown are the theoretical calculations
of Dalgarno and Griffing [8], Schiwietz [9], Schiwietz and Grande
[11], and Fainstein et al. [12]. The experimental data of Reynolds
et al. [5], Reiter et al. [6], and Golser and Semrad [7] for protons
passing through molecular hydrogen are shown as well.

almost entirely of protons. As the projectile energy falls the
proportion of hydrogen begins to rise, reaching 50% of the
beam composition at 50 keV. Below 50 keV hydrogen atoms
make up the majority of the beam, reaching 90% of the beam
composition at 10 keV.

In Fig. 8 we present our results for the total electronic
stopping cross section for protons passing through hydrogen
together with the theoretical calculations of Dalgarno and
Griffing [8], Schiwietz [9], Schiwietz and Grande [11], and
Fainstein et al. [12]. Also shown are the experimental results
of Reynolds et al. [5], Reiter et al. [6], and Golser and
Semrad [7] for protons passing through molecular hydrogen
divided by 2, i.e., the results are given per atom as originally
presented. Good agreement with the calculations of Dalgarno
and Griffing [8] is seen above 100 keV projectile energy,
while agreement with the calculations of Schiwietz [9], Schi-
wietz and Grande [11], and Fainstein et al. [12] is obtained
above 125 keV. Furthermore, there is good agreement with
the experimental data above 150 keV. This demonstrates
that the Bragg additivity rule, according to which H2 is an
aggregate of two independent hydrogen atoms, is acceptable
above the aforementioned projectile energy. On the other
hand, our calculations are significantly above other theoretical
estimates and the H2 experimental data below 100 keV. This
fact is discussed in more detail below. Noticeably, in this
region there are substantial deviations between all theoretical
approaches. These deviations cannot be attributed to either
the positive- or neutral-charge-state contributions, since there
are large deviations between theories in both cases, as seen
in Figs. 1 and 3. We can, however, emphasize that our
calculations for the positive-charge-state contribution are the
most sophisticated and accurate, as we employ a large two-
center expansion of the scattering wave function, which ex-
plicitly includes electron-capture channels. Furthermore, for

the neutral-charge-state contribution our approach produces
the most accurate projectile total electron-loss cross section.

We conclude by discussing our calculations for atomic
hydrogen in comparison to the experimental measurements
for molecular hydrogen below 100 keV projectile energy.
As can be seen in Fig. 8, there is a significant difference
between the two results. The reason for the discrepancy is
that Bragg’s additivity rule is not valid in this region and,
hence, the stopping cross for protons passing through atomic
hydrogen cannot be represented as a half of the stopping cross
section for protons passing through molecular hydrogen. This
fact was also demonstrated in our earlier work [18], where
a significant difference between the calculated antiproton-
atomic hydrogen and antiproton-molecular hydrogen stop-
ping cross sections below the maximum was also observed.
Therefore, although some earlier theoretical calculations for
atomic hydrogen showed good agreement with experimental
data for molecular hydrogen divided by 2 and the authors
claimed this to be a positive aspect of their approach, we
emphasize that agreement between the two should not be
expected. To further support this statement we can estimate
how should experimental data for the proton-atomic hydrogen
stopping cross section look like based on the proton-molecular
hydrogen stopping cross section data. To this end we scale
the proton-H2 stopping cross section data of Reynolds et al.
[5], Reiter et al. [6], and Golser and Semrad [7] by the ratio
between the proton-hydrogen and proton-H2 total ionization
cross sections. Ionization is a dominant energy-loss process
and therefore the ratio between the atomic- and molecular-
hydrogen ionization cross sections can provide a reasonable
estimate of the ratio between the atomic- and molecular-
hydrogen stopping cross sections.

For the ratio between the atomic- and molecular-hydrogen
total ionization cross sections we use the experimental result
of Shah and Gilbody [31]. These authors give the ratio from
38 keV to 1.5 MeV. At 1.5 MeV the ratio has plateaued and
therefore above this the ratio is taken to be constant. Below
38 keV we calculate the ratio based on the measurements
of Shah et al. [32] for the atomic target and the measure-
ments of Afrosimov et al. [33] for the molecular target. In
Fig. 9 we present the same theoretical calculations for the
proton-hydrogen total electronic stopping cross section from
Fig. 8 alongside the scaled experimental data of Reynolds
et al. [5], Reiter et al. [6], and Golser and Semrad [7]. With
the aforementioned scaling of experimental data we obtain
excellent agreement over the whole energy range. Note that
the error bars in Fig. 9 are somewhat larger than those in
Fig. 8. This is because, when scaling the data of Reynolds
et al. [5], Reiter et al. [6], and Golser and Semrad [7], we took
into account the uncertainties in the experimental data of Shah
and Gilbody [27], Shah et al. [32] and Afrosimov et al. [33].

IV. CONCLUSION

In conclusion, the total stopping cross section for protons
passing through hydrogen has been calculated. Due to the pos-
sibility of electron capture both the positive and neutral charge
states of the projectile were considered. To model proton-
hydrogen collisions the two-center CCC method was used.
By comparing the results of our two-center calculations to
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FIG. 9. Total electronic stopping cross section for protons pass-
ing through hydrogen. Our present calculations are shown alongside
the calculations of Dalgarno and Griffing [8], Schiwietz [9], Schiwi-
etz and Grande [11], and Fainstein et al. [12]. Also shown are the
experimental data of Reynolds et al. [5], Reiter et al. [6], and Golser
and Semrad [7] for a molecular hydrogen target scaled by the ratio
between the atomic- and molecular-hydrogen total ionization cross
sections to provide an estimate of experimental data for an atomic
target (see text for details).

other single-center calculations we conclude that single-center
approaches cannot produce accurate stopping cross sections at
low and intermediate incident energies. Hydrogen-hydrogen
collisions are modeled using two methods: the single-center
CCC method was used for the calculation of one-electron
processes and the Born approximation was used for the cal-
culation of two-electron processes. From the results of these
calculations we conclude that the coupling between channels
plays an important role in the calculation of one-electron
processes. We also conclude that two-electron processes make
a significant contribution to the stopping cross section. An
evidence is provided that this hybrid approach to modeling
hydrogen-hydrogen collisions to gives reliable results. The
calculations for the positive and neutral charge states of the
projectile were combined by utilizing calculated charge-state
fractions to yield the total stopping cross section for pro-
tons passing through a medium made of atomic hydrogen.
Good agreement with all existing theories is obtained above
125 keV incident energy; however, below this there are sig-
nificant deviations between the theoretical calculations. From

analyzing the results of our calculations and experimental
data for molecular hydrogen we conclude that around and
below the stopping maximum the stopping cross for protons
passing through atomic hydrogen cannot be represented as a
half of the stopping cross section for protons passing through
molecular hydrogen. In addition, although some theoretical
calculations for atomic hydrogen have attempted to obtain
good agreement with experimental data for molecular hydro-
gen divided by 2, we emphasize that agreement between the
two should not be expected.

We conclude by commenting on the approximations used
in this work. As we mentioned earlier, we neglected electron
exchange in the H-H channels. The spin effects are expected
to be small in the energy range between 10 keV and 3
MeV where our method is applied. The approximation is
commonly used in the literature. In fact, all the theoretical
approaches referenced here use this approximation. However,
at low energies, in particular around 10 keV and below, spin
effects become important. Nevertheless, no attempt has been
made in the literature to estimate the role of the spin effects in
stopping the proton beam. We also neglected electron transfer
in H-H collisions. Nevertheless, we did take into account total
electron loss by one of the hydrogen atoms. In other words,
electron transfer was not completely ignored but taken into
account implicitly. Simply, our approach cannot differentiate
whether the lost electron has been captured by the other atom
or not. However, as discussed in Sec. III B, comparison of
the total cross section for electron loss in H-H collisions with
experiment shown in Fig. 4 indicates that overall electron-loss
processes have been modeled sufficiently accurately. Thus, the
solution we presented in this work is not complete and there
is room for improvement. A possible avenue for improving
the current results would be to use an antisymmetrized wave
function in the H-H channels to take into account the spin
effects. However, this would add another dimension to the
extraordinary complexity of the problem.
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