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Critical stability for two-electron ions with Yukawa potentials and varying Z
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We investigate the stability of two-electron ions interacting with Yukawa potentials with varying Z using
correlated exponential wave functions based on the Ritz variational method. The critical screening parameter μC

as a function of the nuclear charge Z , the critical nuclear charge ZC as a function of the screening parameter μ,
and the ionization energies in terms of the screening parameter μ and Z are reported. The critical charge for the
bare Coulomb system (Z , e, e) obtained using 700-term correlated exponential wave functions is in reasonable
agreement with the reported results in the literature. The critical screening parameter, critical nuclear charge,
and ionization energy for the Yukawa system (Z , e, e) exhibit interesting behaviors. The possible existence of
Borromean states and quasibound resonant states is also discussed.
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I. INTRODUCTION

The problem of stability of a given quantum system made
up of charged particles is of fundamental interest in many ar-
eas of physics such as atomic, molecular, and nuclear physics.
The system might lose the stable configuration if the charge of
one of the particles varies. Our study deals with the problem of
stability of a two-electron system in which the nuclear charge
has been considered as a real continuous variable. We aim to
calculate the critical nuclear charge ZC for the (Z , e, e) system
using correlated exponential wave functions in such a way that
the system ceases to have a bound state when the charge Z is
less than critical nuclear charge ZC . It is pertinent to mention
here that the positive integer nuclear charges for the (Z , e, e)
systems correspond to the stable systems. In recent years,
there has been a renewed interest in studying the stability of
two-electron systems as a function of the continuously varying
nuclear charge Z [1–5]. The precise determination of the
critical nuclear charge ZC for the heliumlike system (Z , e, e)
is of particular interest as it is the minimum value of Z for
which the system still has one bound state. In other words, the
system (Z , e, e) does not support any bound state for Z < ZC ,
and supports at least one bound state for Z � ZC . The value
of ZC has been reported in the literature by several authors
[1–3,6–14] using a variety of sophisticated calculations, but
the value of ZC obtained by Estienne et al. [1] based on a
variational calculation using 2276 terms of a triple basis set is
the most accurate one. The ZC reported by Estienne et al. [1] is
accurate up to 17 decimal digits. An independent calculation
by Pilón and Turbiner [3] using the Lagrange mesh method
coincides with the best value of ZC [1] up to 11 decimal digits.
A detailed survey of the critical stability of nonrelativistic
systems in quantum mechanics is found in the review article
of Armour et al. [12].
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The knowledge of stability of a quantum system of charged
particles under the influence of external environments is also
of great importance in atomic, molecular, nuclear, and plasma
physics, as summarized in recent reviews [15–17]. The atomic
systems interacting with screened Coulomb potentials have
also been a topic of considerable interest due to their im-
portance in various branches of physical sciences. In view
of the importance of the screened Coulomb potentials in
several branches of physics and chemistry, it is of interest
to investigate the critical screening parameter and the critical
nuclear charge of the (Z , e, e) system interacting with screened
Coulomb potentials. The atomic systems interacting with
screened Coulomb potentials like the Yukawa atoms and the
Debye atoms [4,5] can be defined, respectively, by the Yukawa
potentials [18] and the Debye potentials [19]. Despite the sim-
ilar mathematical forms, the Debye potentials are of interest
to plasma physicists and the Yukawa potentials are of interest
to nuclear physicists. At this point, it is of interest to refer to
the atomic model without screening environments as the bare
Coulomb atom. Apart from the works on the bare Coulomb
atoms, the critical stability of one- and two-electron Yukawa
atoms has been studied recently by Montgomery et al. [5] and
Sen et al. [4]. However, more detail and independent study
appears worthwhile with screening and without screening
environments. It is imperative to point out two recent articles
on the two-electron Debye atoms: the doubly excited states
calculations by Ho [20] for the (Z , e, e) systems with varying
nuclear charge, where the particle of charge Z is assumed to
have the mass of a positron, and the bound states calculations
by Katriel et al. [21] for the (Z , e, e) systems where the mass
of the particle with positive charge Z is considered infinite.

In the present work, we are mainly interested in studying
the critical stability of two-electron Yukawa systems (Z , e,
e) as a function of the nuclear charge Z as well as of the
screening parameter. We determine the critical screening
parameter and the critical nuclear charge as Z varies for one-
and two-electron Yukawa atoms using correlated exponential
wave functions. It is to be noted that, by this term, we mean the
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TABLE I. The ground-state energies of two-electron ions (Z , e, e) using 700-term exponential basis functions for selected values of Z
along with the available data and threshold energy.

Z E (Z , e, e) E (Z , e)

1.0 −0.52775101654a −0.5
−0.52775101654438b

0.98 −0.50084718003 −0.4802000000000
0.95 −0.46212469967 −0.4512500000000

−0.4621246996838b

0.92 −0.4254852816 −0.4232000000000
−0.425485281676b

0.9110282243 −0.4149862128 −0.4149862127356
0.9110282242 −0.4149862126 −0.4149862126445
0.9110282241 −0.4149862125 −0.4149862125534
0.911028224077 25573(4)c −0.414 986212532679c

0.91102822407(7) −0.414 98621253b

aKar and Ho [25].
bPilón and Turbiner [3].
cEstienne et al. [1].

one-electron atoms and two-electron ions with
varying or changing nuclear charge Z with Z <

1.0. For the pure Coulomb case, the critical
nuclear charge ZC for a two-electron system
(Z , e, e) obtained from the present calculation is in agreement
with the reported results of Estienne et al. [1] and Pilón and
Turbiner [3]. We exploit the Ritz variational method to obtain
the ground-state energy using highly correlated exponential
wave functions. The nonlinear variational parameters in
the exponents of the proposed wave functions are simply
generated using a pseudorandom technique. The ionization
energies (IEs) as a function of the screening parameter are
also reported.

II. CALCULATIONS

To obtain the ground-state energy E variationally in terms
of the screening parameter and the nuclear charge for one- or
two-electron Yukawa or Debye atoms, one needs to solve the
Schrödinger equation:

H (Z, μ)� = E (Z, μ)�. (1)

The Hamiltonian H (Z, μ) and wave function � for the
two-electron Yukawa system (Z , e, e) can be written as

H (Z, μ) = −1

2
∇2

1 − 1

2
∇2

2 − Z

[
exp (−μr1)

r1
+ exp (−μr2)

r2

]

+ exp (−μr12)

r12
, (2)

� =
NP∑
i=1

Pi[exp (−αir1 − βir2 − γir12) + exchange]. (3)

The parameter μ is known as the Yukawa or Debye
screening parameter. For the free-atom case, we set μ = 0.
A full list of references on atomic systems interacting with
Yukawa or Debye potentials can be found in the review
articles [15–17,22]. The most convenient way to select the
nonlinear variational parameters, αi, βi, γi, can be written in

the following matrix notation,

[αi βi γi]
T = [〈〈k

√
2/2〉〉A 〈〈k

√
3/2〉〉B 〈〈k

√
5/2〉〉C]T , (4)

where k = i(i + 1) and A, B, C are chosen randomly by the
trial and error method. The symbol 〈〈x〉〉 denotes the fractional
part of a real number x.

The Hamiltonian H (Z, μ) and wave function � for a one-
electron (Z , e) ion are as follows:

H (Z, μ) = −1

2
∇2 − Z

exp(−μr)

r
(5)

and

� =
NQ∑
i=1

Qir
i−1 exp(−δr). (6)

Here δ, a nonlinear variational parameter, can be chosen
randomly by the trial and error method. The parameters Pi

and Qi are linear coefficients. NP and NQ indicate the number
of terms in the wave functions (3) and (6), respectively.
The optimization for the upper bound to the true energy has
been calculated here based on the Ritz variation principle.
It is important to mention here that the wave functions in
Eq. (3) are functionally similar to the Hylleraas-type wave
functions [23] and can produce very accurate ground-state
energy of negatively charged hydrogen ions correct up to 24
decimal digits depending on the computational resources [24].
According to our computational capacity, we can calculate the
ground state of the negatively charged hydrogen ions correctly
up to 11 decimal digits [25,26].

III. RESULTS AND DISCUSSIONS

Following the above computational procedure, we calcu-
late the upper bound to the ground-state energies of one-
electron atoms and two-electron ions for different Z and μ

by diagonalizing the Hamiltonian using the proposed wave
functions. For the bare Coulomb system (Z , e, e), we are able
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FIG. 1. The ground-state first ionization energies (IEs) for the
two-electron ions at Z = 0.90, 0.88, 0.86, 0.84, 0.82.

to obtain the critical charge ZC correct up to nine decimal
digits. Table I shows the ground-state energy of the bare
Coulomb system (Z , e, e) for selected values of Z along
with the threshold energy. The result for Z = 1 has been
taken from earlier work [25] using the 700-term correlated
exponential wave functions. Table I also exhibits the shift
in energy eigenvalues for Z > Zc. It is evident from Table I
that the ground-state energies of the bare Coulomb system
for Z > Zc are in good accord with the available results. The
ground-state energies of the Yukawa systems (Z , e, e) and (Z ,
e) for selected values of Z and μ are presented in Table A1 of
the Supplemental Material [27]. We studied the convergence
of our calculation with increasing number of terms in the
basis functions and the stability of our computations with
optimization using different sets of nonlinear parameters. The
results presented in the tables are converged and stable up
to the quoted digits. We restrict our calculations up to the
700-term wave functions for practical purposes.
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FIG. 2. The ground-state first ionization energies (IEs) for the
two-electron ions at Z = 0.80, 0.76, 0.68, 0.64.

(a
to

m
ic

 u
ni

ts
)

FIG. 3. The ground-state first ionization energies (IEs) for the
two-electron ions at Z = 0.60, 0.56, 0.50, 0.45, 0.40, 0.35, 0.30,
0.25.

The ground-state first ionization energies (IEs) for different
values of Z as functions of the screening parameters are
presented in Figs. 1–3. It appears from Figs. 1–3 and Table A1
in the Supplemental Material [27] that the IEs depend on
μ nonmonotonically, rising from zero at a lower critical μ,
increasing up to a maximum value at μ = μmax, and then
decreasing until they vanish at an upper critical μ. Here we
denote the critical μ as μC and the lower and upper μC as
μL and μU , respectively. The values of μmax at which the
IEs approach a maximum in terms of Z are listed Table A2
[27]. The upper and lower critical values are presented in
Fig. 4. The μmax increases up to a point between Z = 0.68
and Z = 0.64, then starts to decrease with decreasing Z .

The values of μL for Z = 0.90 and 0.2 are determined,
respectively, as 0.030 13 and 0.231. The detailed values in
between are shown in Table A3 in the Supplemental Material
[27]. The μL first increases up to about 0.60 with decreasing
Z and then starts to decrease and finally meets the curve for
the upper critical value at Z = 0.20. It should be noted that
the values of μU for Z = 0.90 and 0.2 are determined, respec-
tively, as 1.066 and 0.231. The detailed values in between are

FIG. 4. The critical screening parameter μC (units of a−1
0 ) vs the

nuclear charge.
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also shown in Table A3 [27]. It is worthwhile to mention here
that the upper and lower critical parameters obtained from
these calculations for Z = 0.9 are in agreement qualitatively
with those reported by Sen et al. [4]. The values at Z = 0.9
reported by Sen et al. [4] are 0.029 83 and 1.001 68 for μL

and μU , respectively. The upper critical values are also the
critical values for the Yukawa system (Z , e).

We now provide an explanation for the phenomenon shown
in Fig. 1. For the pure Coulomb case, the binding of the system
results from the competition of the Z-dependent attractive po-
tential −Z (1/r1 + 1/r2) between the nucleus (the positively
charged particle) and the electrons, with the Z-independent
repulsive potential +1/r12 between the two electrons. For
Z > Zc, the system is bound as the force due to the attractive
potential is stronger than that of the repulsive potential. As Z
is decreased to below the critical charge, and as Z only affects
the attractive part, the force due to the repulsive potential
hence overtakes the attractive contribution and the three-
particle system becomes unbound. Next, this three-particle
system is placed in a screening environment. The stability of
the whole system now depends on the competition between
the screened attractive potential and the screened repulsive
potential. The screening effect is to reduce the strength of
the interaction potential between any given pair of charge
particles. Taking the case with Z = 0.9 as an example, the
system is unbound for the pure Coulomb case, but when the
screening effect is increased to μ > 0.030 13, for the first
critical (lower) μ, denoted as μL, the system becomes bound
again. This indicates that the screening has a stronger effect on
the repulsive part of the potential than on the attractive part.
As a result, the force due to the screened attractive potential
overtakes that of the screened repulsive potential, and the
system becomes bound with ionization energy increasing as
μ increases. When μ is increased further to reach about μ =
0.24 (for the case Z = 0.9), the ionization energy begins to
decrease with increasing μ, as both the attractive and repulsive
potentials are reduced sufficiently, leading to the decrease of
the overall ionization energy. When μ is increased further to
values larger than 1.066, the upper critical μU , the screening
effect is so strong that the three-particle system becomes
unbound again, as demonstrated in Fig. 1.

Next, when Z is decreased further to Z = 0.86, for ex-
ample, it is found that μL is increased to 0.1329 and μU

is decreased to 1.018. For μL, this is due to the fact that
as Z decreases, it would take a stronger screening strength
(increasing μL) to reduce the repulsive potential to make the
system bound. For μU , to achieve unboundedness it would
need a weaker screening strength (decreasing μU ) for de-
creasing Z , as the system is a more loosely bound entity. The
trend for μU continues to show decreasing behavior, like a
straight line, for decreasing Z (more on this issue later in
the paper). For the lower critical screening parameter μL,
as seen in Fig. 4, the trend shows increasing behavior when
Z is decreased from 0.86 to about 0.6, but the trend for
μL turns decreasing for decreasing Z when Z is decreased
further from 0.6, and eventually these two curves for μL and
μU meet each other at Z = 0.20. This phenomenon can be
explained as follows. Figures 1–3 and Table A1 [27] show the
ionization energies for various Z values with different ranges
of screening parameters. The IE for a given pair of (Z , μ)

FIG. 5. The critical charge as a function of the screening param-
eter μ (units of a−1

0 ).

is the energy difference between the ground-state energy of
the three-particle system and that of the two-particle system.
When Z is reduced to a sufficiently small value, such as a
value lower than 0.6, the screening has a stronger reduction
effect on the two-particle attractive potential than on the
overall reduction to the three-particle potential. As a result, it
would need a smaller screening parameter to yield a positive
IE when Z is decreased below the value of about 0.6, showing
the decreasing behavior of μL for decreasing Z (see Fig. 4).

Now, we comment on the “meeting” place between the
curve for the upper critical μU and the curve for the lower
critical μL. We estimate that they “meet” around 0.20, and
this Z value is denoted as the “final critical charge, ZFC,” This
is the maximum Z value below which no bound state can be
found for any given screening strength with Yukawa-Debye
interacting potentials. We also estimate the critical charge ZC

for a given μ using a polynomial fitting based on the technique
prescribed below. First, we draw the horizontal lines for μ

(say 1.0, 0.8, etc.) in Fig. 4. The intersections between these
horizontal lines and the two critical μC curves would indicate
what the critical Z should be for those μC values. For μ = 1.0,
0.8, and 0.6, the place of intersection is denoted as ZC1 for a
given μ. When Z = 0.4 or 0.3, the horizontal line would cross
the two curves at three places, and we denote them as (from
left to right) ZC1, ZC2, ZC3. For Z = 0.1, the horizontal line
crosses the line for the critical Z curve at ZC3.

We show our results in the form of ZC vs μ in Fig. 5,
from which we can determine what the values of critical
Z are for a given μ. For μ ranging from 0.0 to 0.2, the
system is bound for Z > ZC3. For μ ranging from 0.25 to
0.5247, the system is bound when Z > ZC3 or ZC1 < Z < ZC2.
For μ ranging from 0.53 to 1.0, the system remains bound
for Z > ZC1. The values of ZC1, ZC2, ZC3 obtained from the
fifth-degree polynomial fittings of the data in Table A2 in the
Supplemental Material [27] are plotted in Fig. 5 and listed in
Table A4 [27]. We have also checked the values of ZC from
the direct calculations, and those are correct up to an accuracy
of four or five digits compared to the results obtained from the
polynomial fitting. As we have shown in Table I, the ZC for
the bare Coulombic system obtained from our work for μ = 0
is 0.911 028 224 using 700-term correlated exponential wave
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functions. Similarly the critical charges ZC1 obtained from this
work for μ = 0.05, 0.1 are 0.891 81 and 0.87 85, respectively.
As observed from a close look at Fig. 5, a critical screening
parameter, say μX , at a given Z value can also inversely
determine the critical charge ZC at μ = μX . It appears from
Figs. 4 and 5 that the μC (Z ) can also be written as ZC (μ)
directly using the method prescribed above. So the “curves”
for ZC1(μ) and μU (Z ) have a similar nature.

It should be mentioned that in Ref. [5] the authors esti-
mated ZFC as 0.68. They also remarked that for the actual
calculations “approaching this critical value would pose a
significant computational challenge.” In the present work, we
extend calculations beyond Z = 0.68, and found that ZFC

should be 0.20. In Ref. [5], the authors scaled the screen-
ing parameter of two-body systems by the nuclear charge
Z for better optimization. In fact, exploiting the Rayleigh-
Schrödinger 1/Z perturbation theory, if one resets the formu-
lations of the proposed Yukawa system (Z , e, e) by the scaling
transformation of coordinates r → r/Z , screening parameter
μ → μ/Z , and energy E (Z, μ/Z ) → Z2E (Z, μ/Z ), the solu-
tion of the transformed Hamiltonian

2∑
i=1

[
−1

2
∇2

i − exp(−μ′ri )

ri

]
+ 1

Z

exp(−μ′r12)

r12
(7)

can be obtained as

E (Z, μ′) =
∞∑

n=0

En(μ′)Z−n, (8)

where μ′ = μ/Z . Along this line, if one increases the electron-
electron repulsion at a fixed threshold, say, near the lower
critical stability, the three-body Yukawa system would not
support a bound state. However, it is a common fact that
the three-body Yukawa system is more and more loosely
bound while approaching the threshold or approaching critical
screening. The energy levels lying above the two-body system
represent quasibound states. These quasibound states indicate
the existence of shape resonances (see [28] for an example).
One can find the quasibound states for the Yukawa system
(Z , e, e), beyond the lower critical screening, using, for
example, the complex scaling method [29]. However, it is
outside the scope of the present investigation to study shape
resonances in these three-particle systems. For the present
study the upper critical screening parameters for the three-
body Yukawa system are similar to the critical screening
parameters for the two-body Yukawa systems, and it shows
a straight line for μU vs Z (see Fig. 4). In any case, the

disagreement between our present finding for determining
ZFC and that reported in Refs. [4,5] suggested that further
independent investigations on this issue are called for in order
to shed light on this intriguing phenomenon.

Next, we present in brief the possible phenomena that
occurred due to the Efimov [30,31] physics (see the review
in Ref. [32] for details) while studying the bound states for
two-body and three-body systems interacting with Yukawa
potentials. It is a known fact that the Efimov effect, since its
discovery, appears in several areas such as induced long-range
interactions, discrete scale invariance, and Borromean bind-
ing. A three-body Yukawa system is defined as Borromean
when it supports bound states for a fixed range of screening
parameters (called the Borromean window) while none of
their two-body subsystems are bound in such a range of
screening parameters. From our present study, we may find the
range for the Borromean binding [32–34] close to the upper
critical screening parameter of the three-body Yukawa (Z , e,
e) system, as the upper critical screening parameter for each Z
is similar to the critical screening of the respective two-body
subsystem (see Table A1 in the Supplemental Material [27]).
However, our calculations show that the Borromean window,
if it existed, would be too narrow and close to the upper critical
screening parameter. As for the region associated with the
lower critical screening parameters, there is no Borromean
binding. In other words, for a screening parameter that is less
than the lower critical screening parameter of the three-body
Yukawa system, the two-body system supports a bound state
while the three-body system may support a quasibound state,
and such a situation does not fall into the Borromean binding
criteria.

IV. CONCLUSIONS

In this article, we presented a calculation based on the Ritz
variational method to obtain critical values of the screening
parameter and the critical charge for two-electron ions inter-
acting with Yukawa-Debye potentials, referred to throughout
this paper as Yukawa systems (Z , e, e). The ground-state first
ionization energies in terms of the nuclear charge and the
screening parameters are also reported. The present study also
confirms the best critical nuclear charge for the bare Coulomb
system (Z , e, e) up to nine decimal digits using 700-term
correlated exponential wave functions. We also conclude that
the “final” critical Z , below which the two-electron ion would
not form a bound state for any given screening strength under
the influence of Yukawa-Debye potentials, is about 0.20. We
hope our findings will serve as a benchmark reference for
future studies on this topic.
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