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Casimir friction between a magnetic and a dielectric material in the nonretarded limit
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The repulsive nature of the static Casimir force between two half-spaces, one perfectly dielectric and the
other purely magnetic, has been known since Boyer’s work [T. H. Boyer, Phys. Rev. A 9, 2078 (1974)]. We
here analyze the corresponding friction force in the magnetodielectric case. Our main method is that of quantum
mechanical statistical mechanics. The basic model we introduce is a harmonic oscillator model: an electric
dipole oscillating in the x direction and a magnetic one oscillating in the y direction, while their separation
is in the z direction. This is then extended to particles with isotropic polarizabilities. We evaluate the friction
force in a variety of cases: forces between moving particles, between a moving particle and a half-plane, and
between half-spaces sliding against each other. At the end, explicit results are obtained both for finite and zero
temperatures. We restrict ourselves to the nonretarded limit.
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I. INTRODUCTION

Casimir friction can take place between moving atoms,
between an atom moving parallel to a plane surface at rest,
or between closely spaced surfaces moving relative to each
other. Being basically a nonequilibrium effect, it is neverthe-
less described usually in terms of the fluctuation-dissipation
theorem, meaning that the two-point function for the field
components are taken to be proportional to the imaginary part
of the retarded Green’s function. This means physically that
the electromagnetic field is assumed to be in local thermal
equilibrium. Usually, magnetic properties of the material are
left out, and the effect is accordingly due to fluctuating
electric dipoles. Some articles on the subject can be found in
Refs. [1–10]; cf. also the extensive 2007 article [11].

If we move on to the case of magnetodielectric media, the
situation becomes more involved. As shown by Boyer [12],
the static Casimir force between two parallel (thick) plates,
the one being perfectly dielectric and the other perfectly
magnetic, will be repulsive. We have recently contributed to
the discussion on this kind of repulsive static forces, both
with the use of macroscopic electrodynamics [13] and from
a statistical mechanical standpoint [14].

The purpose of this paper is to analyze magnetodielectric
friction between a particle and a half-space, as well as between
two half-spaces. This is a topic not discussed earlier in the
literature as far as we know. As one would expect, the friction
force will turn out to be very small, actually much smaller than
in the standard nonmagnetic case. The force must therefore be
regarded as an esoteric quantity, far beyond measurability by
present experimental techniques. The significance of the force
lies in its existence, not in its magnitude. An important point
worth noticing is, however, that it always acts so as to oppose
the motion of the plates, just as friction always behaves in
ordinary hydrodynamics.

Our basic method will be the one of quantum statistical
mechanics. In the next section, we introduce a simplified
model for interacting magnetic and dielectric particles and

consider then, in Sec. III, a harmonic oscillator model of an
electric dipole and a magnetic dipole oscillating respectively
in the x and y directions only while their separation is in
the z direction. The Hamiltonian is derived and the eigen-
frequencies determined. In Sec. IV, we look at the same
oscillator model from another angle, namely by using the
quantum-mechanical path-integral method. We find the results
obtained from the two methods to agree. In Sec. V, we
derive the friction force, via the Kubo formula (equivalent to
the fluctuation-dissipation theorem) from which the response
function needed is obtained. This force turns out to have the
proper sign for a braking force, but the force is much smaller
than in the purely dielectric case. In Sec. VI, we extend our
basic results to a pair of polarizable magnetic and dielectric
particles, and consider in Sec. VII the friction between a
particle and a half-space and between two half spaces.

In Secs. V–VII, where finite temperatures are consid-
ered, the two kinds of particles are assumed to have sharp
eigenfrequencies. This has as a consequence that the friction
force becomes a δ function in the frequency difference. This
singular feature is smoothed out when the eigenfrequencies
are replaced by continuous eigenfrequency spectra. This is
included in Sec. VIII. In Sec. IX, explicit results are obtained
for a pair of half-spaces where both the dielectric as well as
the magnetic frequency spectra follow the dielectric one of
a metal. Results are then also derived and obtained for the
zero-temperature case. The forces obtained are vanishingly
small but can be related in a simple way to established explicit
results where both half-spaces are dielectric.

Note: Much of the material reported in the following sec-
tions builds upon and extends previous papers of ours in this
area [14–21]. Naturally, we have not found it possible to cover
the various assumptions and derivations for each subtopic in
detail here, but we have attempted to give sufficient references
for readers wishing to go into further detail.

We should also mention that we are ignoring retardation
effects throughout. (Some investigators might therefore prefer
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to associate this kind of theory with van der Waals, instead of
with Casimir.)

We use Gaussian units throughout.

II. MODEL FOR AN INTERACTING MAGNETIC
AND A DIELECTRIC PARTICLE

Magnetic and dielectric particles interact via the radiating
electromagnetic field. When a pair of these particles interact
at thermal equilibrium, it has been found, as mentioned above,
that the induced force is repulsive, in contrast to the usual
Casimir force [12,14]. This is not immediately obvious on
physical grounds. However, some physical insight can be
obtained, as shown in Ref. [14], by constructing a model with
three oscillators: two of them interacting with the third one,
the latter playing the role of the electromagnetic field. We
show now that this construction can be simplified a bit further
by use of the quasistatic fields created by electric currents.

Specifically, the quasistatic model may consist of an elec-
tric dipole where a charge oscillates in a given direction. The
magnetic dipole may be a current oscillating in a circular loop.
The current in the electric dipole will create a magnetic field
that interacts with the magnetic dipole moment. Conversely
the changing magnetic field, produced by the current loop
by electromagnetic induction, induces an electric field that
interacts with the electric dipole.

By solution of Maxwell’s equations, the magnetic field H
induced by an oscillating electric dipole moment P is given by
Eq. (28) of Ref. [14] as

H = −ζ (1 + ζ r)
e−ζ r

r2
(r̂ × P). (1)

Here Fourier transform with respect to time has been per-
formed such that H and P mean Fourier transformed quan-
tities, and

ζ = i
ω

c
, (2)

where ω is frequency and c is velocity of light. The r is spatial
separation, and the hat denotes unit vector. For small ζ r in the
quasistatic limit, expression (1) simplifies to

H = −ζ
r̂ × P

r2
. (3)

When transformed back to time dependence, this becomes
(iω → ∂/∂t, t is time)

H = Ṗ × r̂
cr2

= dl × r̂
cr2

I, (4)

where I is the electric current in a wire element of length
and direction dl. Expression (4) is the Biot-Savart law for the
magnetic field created by a current element, where r̂ is the unit
vector for the direction in space. The direction of r̂ is from the
current element toward the point of observation.

Because of the symmetry of Maxwell’s equations, the
electric field E created by an oscillating magnetic dipole M
also follows from Eq. (1) by removing the minus sign in front.
However, the unit vector r̂ may still be directed from the
electric to the magnetic dipole. This will restore the minus
sign, and for small ζ r the equation corresponding to Eq. (4)

becomes

E = ζ
Ṁ × r̂

cr2
. (5)

With Eqs. (4) and (5), we now apparently obtain two
different expressions for the energy of interaction. These are

−�LH = −HM = −2α(Ṗ × r̂)M and

−�LE = −EP = −2α(Ṁ × r̂)P (6)

with α = 1/(2cr2). (Later, in Sec. VI, we will let the same
symbol α stand for polarizability.) As we will find, these
expressions are consistent when used to obtain the equations
of motion.

III. EQUATIONS OF MOTION

Consider the simple harmonic oscillator model of an elec-
tric dipole oscillating in the x direction and a magnetic one
oscillating in the y direction while their separation is along the
z direction. With new coordinates P → x and M → y with r̂
pointing in the positive z direction, interaction (6) becomes

�LH = −2αẋy and �LE = 2αxẏ. (7)

Assume for simplicity that the noninteracting system is two
harmonic oscillators with the same eigenfrequency ω0 = 1.
Their Lagrange function is then

L0 = 1
2 (ẋ2 + ẏ2) − 1

2 (x2 + y2). (8)

Contributions (7) turn out to be equivalent, and we take half
of each to obtain the resulting Lagrange function

L = L0 + 1
2 (�LH + �LE ). (9)

[Other combinations by adding a term const.(�LH − �LE)
do not change the dynamics since ẋy + xẏ = d (xy)/dt .]

From Eqs. (7)–(9), one finds the generalized momenta

px = ∂L

∂ ẋ
= ẋ − αy and py = ∂L

∂ ẏ
= ẏ + αx. (10)

With the variational principle, the classical equations of mo-
tion follow from Lagrange’s equations:

ṗx − ∂L

∂x
= ẍ + x − 2αẏ = 0,

ṗy − ∂L

∂y
= ÿ + y + 2αẋ = 0. (11)

With solution of form x ∼ y ∼ eiωt , the equation for the two
eigenfrequencies becomes

(−ω2 + 1)2 − (−2αiω)(2αiω) = 0. (12)

From this follows −ω2 + 1 = ∓2αω, by which the eigenfre-
quencies (> 0) are

ω± = ±α +
√

1 + α2. (13)

With this result, the ground-state energy of the quantized
harmonic oscillator system is

E0 = 1
2 h̄(ω+ + ω−) = h̄

√
1 + α2. (14)
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Accordingly, at temperature T = 0 there is a repulsive
Casimir force between the two oscillators (provided α de-
creases by increasing separation).

At large temperatures, the classical limit is obtained
with internal energy kBT for each oscillator where kB is
Boltzmann’s constant. This is independent of couplings and
eigenfrequencies of the oscillators. The entropy and free en-
ergy of the system have corresponding temperature-dependent
contributions. In addition, the entropy and thus the free en-
ergy have a contribution that depends upon the logarithm
of the product of eigenfrequencies. In the present case with
eigenfrequencies (13), one finds that this product ω+ω− = 1
does not depend upon the interaction. Thus, in the classical
high-temperature limit, the resulting free energy does not
depend upon α. Therefore, the induced interaction vanishes
too, which is consistent with the result of Ref. [14].

To obtain the Schrödinger equation for the two coupled
oscillators, one needs the Hamiltonian

H = pxẋ + pyẏ − L. (15)

With Eqs. (7)–(9), one finds

H = 1
2 [(px + αy)2 + (py − αx)2 + x2 + y2]. (16)

The solution of the Schrödinger equation recovers the spectra
of two harmonic oscillators with the eigenfrequencies (13).

IV. INDUCED INTERACTION

Because of the special form of the Lagrange function for
the model studied, it is of interest to verify that its evaluation
via the path integral is consistent with the result of Sec. III.
With imaginary time

λ = i
t

h̄
,

1

dt
= i

h̄

1

dλ
, (17)

the Lagrangian (7)–(9) becomes

−L = 1

2

{
1

h̄2

[(
dx

dλ

)2

+
(

dy

dλ

)2
]

+ x2 + y2

}

+ α
i

h̄

[
dx

dλ
y − x

dy

dλ

]
. (18)

With Fourier-transformed quantities

x̃(K )= 1√
β

∫ β

0
x(λ)eiKλ dλ, x(K )= 1√

β

∞∑
n=−∞

x̃(K )e−iKλ,

(19)

and likewise for ỹ(K ) one finds

∫ β

0
L dλ =

∞∑
n=−∞

{
− 1

2

[(
K

h̄

)2

+ 1

]

× [x̃(K )x̃(−K ) + ỹ(K )ỹ(−K )] + �LK

}
, (20)

�LK = −α
i

h̄
{−iKx̃(K )ỹ(−K ) − x̃(K )[iKỹ(−K )]}

= −2α
K

h̄
x̃(K )ỹ(−K ). (21)

The K (= ih̄ω) are the Matsubara frequencies

K = 2πn

β
(22)

with n integer and β = 1/(kBT ), where kB is Boltzmann’s
constant.

Now x̃(−K ) = x̃(K )∗ by which one can introduce real vari-
ables such that x̃(K ) = [bx(K ) + icx(K )]/

√
2, etc., by which

K can be restricted to K > 0 by adding together terms ±K .
We get

�LK + �L−K = −2αi
K

h̄
[cx(K )by(K ) − bx(K )cy(K )]. (23)

In the path integral, the exponential of expression (20) is inte-
grated with respect to bx(K ), cx(K ), etc., that form Gaussian
integrals.

With neglect of �LK , one is left with the reference system
of two independent oscillators, where for the present case one
finds the averages

〈|x̃(K )|2〉 = 〈|ỹ(K )|2〉 = 1

u2 + 1
, u = K

h̄
. (24)

For a given value of K , the perturbation gives a contribution
FK to the free energy. With (21) and (24), this is

−βFK = 1

2
〈�LK�L−K〉 = −2α2 u2

(u2 + 1)2
. (25)

The total contribution follows by summation over K =
2πn/β. At T = 0 (β → ∞), one can integrate, and with du =
dK/h̄ = 2π/(h̄β ) dn, one obtains the free energy contribution

F =
∞∑

n=−∞
FK → 2α2h̄

2π

∫ ∞

−∞

u2 du

(u2 + 1)2
= 1

2
h̄α2. (26)

Thus, in terms of α, the perturbation in result (14) is re-
covered. In the classical limit β → 0, only the K = 0 term
contributes, but since F0 = 0 the F vanishes in this limit, as
concluded below Eq. (14).

The study of the interaction between dielectric and mag-
netic media initiated by Boyer [12] has given rise to later
studies on the magnetodielectric interaction. In addition to the
papers [3,13,14] referred to above, we mention that of Zhao
et al. dealing with repulsive static Casimir forces in chiral
metamaterials [22] and that of Nesterenko and Nesterenko
dealing with Casimir friction [23].

V. CASIMIR FRICTION

Earlier, we have obtained results for the friction when
interactions are instantaneous like the electrostatic interac-
tion [1,15–19]. Also, some results have been obtained for
interactions that vary with time, but general results are less
worked out and the situation is less clear [20]. With the present
model where electric and magnetic dipole moments interact,
the situation is intermediate with quasistatic interactions. This
simplifies, and as we will find below, our results for static
interactions can be generalized. Details of explanations and
derivations can thus be found in our earlier works.

Earlier, we studied the friction for the basic system of
two harmonic oscillators with coordinates x1 and x2. They
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interacted via the energy

−Aq(t ) = ψ (r(t ))x1x2, (27)

as given by Eq. (I1) of Ref. [16]. Here and below, the numeral
I is used to designate the equations of this reference. The
ψ (r(t )) is the coupling strength which varies due to the
relative motion with velocity v. The A is an operator since
x1 and x2 are so in the quantum case while q(t ) is a classical
function that gives the time dependence.

In the present case, however, the Hamiltonian is given by
Eq. (16), and for small α the perturbing interaction is

−Aq(t ) = ψ (r(t ))S, S = 1

2

(
px

mx
y − x

py

my

)
,

ψ (r(t )) = 2α, (28)

when the oscillators have masses mx and my and also when
they are extended to have eigenfrequencies ωx and ωy. (For
small α, this expression is mainly the perturbation of the
Lagrangian too, since px/mx ≈ ẋ.) One sees that the x1x2

part of interaction (27) is replaced with the S given by (28).
However, further evaluations can still follow closely those of
Ref. [16]. Thus, Eqs. (I2)–(I6) of Ref. [16] will be the same.
The response function (I5) of Ref. [16] is needed to find the
friction force. It is given by the Kubo formula [21,24,25]

φBA(t ) = 1

ih̄
Tr{ρ[A, B(t )]}, (29)

where ρ is the density matrix. Only the time-dependent part
of the interaction −Aq(t ) = ∇ψ (r0)vt (�r = r − r0 = vt) is
needed. The B = ∇ψS is the force. Further, with Eqs. (I6) and
(I7) of Ref. [16],

φBA(t ) = Gφ(t ), G = (∇ψ )(v · ∇ψ ), φ = Tr{ρC(t)}.
(30)

But Eq. (I7) of Ref. [16] is modified into

C(t ) = 1

ih̄
[S, S(t )], (31)

where S(t ) = eiHt/h̄Se−iHt/h̄ is the Heisenberg operator with
H being the unperturbed Hamiltonian. The expression for the
friction force F f is given by Eq. (I9) of Ref. [16],

F f = −G
∫ ∞

0
φ(u)u du, (32)

which we will use here too. [Its Fourier-transformed version
is Eq. (I11) of Ref. [16]].

To evaluate the commutator C(t ), the harmonic oscillator
annihilation and creation operators ai and a†

i are used for
which

[ai, a†
i ] = 1, ai(t ) = aie

−iωit , a†
i (t ) = a†

i eiωit , (33)

with i = 1, 2, since below we will replace coordinates x and
y with x1 and x2. Besides Eq. (I12) from Ref. [16] for the
operator xi, we here will need the momentum operator pi

xi =
√

h̄

2miωi
(ai + a+

i ), pi = 1

i

√
h̄miωi

2
(ai − a+

i ). (34)

In addition to Eq. (I13) of Ref. [16],

L+
i = Li = 〈ni|aia

+
i (t ) + a+

i ai(t )|ni〉
= (2ni + 1) cos (ωit ) + i sin (ωit ), (35)

we need

L−
i = 〈ni|aia

+
i (t ) − a+

i ai(t )|ni〉
= cos (ωit ) + i(2ni + 1) sin (ωit ). (36)

For the thermal average of φ(t ), the result will be similar
to (I14) of Ref. [16]:

φ(t ) = 〈〈n1n2|C(t )|n1n2〉〉 = 1

ih̄

(
h̄

2
D

)
M,

D = h̄

2m1m2ω1ω2
. (37)

Based on interaction (27), Eq. (I14) of Ref. [16] is obtained
with M = L1L2 − L∗

1L∗
2 . With the present interaction (28),

there will be four similar terms:

M = 1

4

[(
ω2

1 + ω2
2

)
(L+

1 L+
2 − L+∗

1 L+∗
2 ) − 2ω1ω2(L−

1 L−
2 − L−∗

1 L−∗
2 )

]
= i

2

{(
ω2

1 + ω2
2

)
[(2〈n1〉 + 1) cos (ω1t ) sin (ω2t ) + (2〈n2〉 + 1) cos (ω2t ) sin (ω1t )

]
− 2ω1ω2[(2〈n1〉 + 1) cos (ω2t ) sin (ω1t ) + (2〈n2〉 + 1) cos (ω1t ) sin (ω2t )]}. (38)

Integral (I16) of Ref. [16] was needed to obtain the friction
force

∫ ∞

0
te−ηt cos (ω1t ) sin (ω2t ) dt → − π

2�
δ(�),

η → 0, (39)

where � = ω1 − ω2. The factor e−iηt is needed for conver-
gence. Since only � → 0 contributes for the case of small v at
finite temperature, a factor (ω1 − ω2)2 = �2 can be neglected

in (38), by which it simplifies to

M = iω1ω2[(2〈n2〉 + 1) − (2〈n1〉 + 1)] sin (�t ). (40)

With this, Eq. (39) is replaced by

∫ ∞

0
te−ηt sin (�t ) dt → π

�
δ(�), η → 0. (41)
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At thermal equilibrium 2〈ni〉 + 1 = coth (β h̄ωi/2) by
which Eq. (I18) of Ref. [16] will be as before:

coth

(
1

2
β h̄ω1

)
− coth

(
1

2
β h̄ω2

)
→

1
2β h̄�

sinh 2
(

1
2β h̄ω1

) ,

ω2 → ω1. (42)

Finally, for finite temperature, the friction force (32) is ob-
tained by multiplying Eq. (42) with (41), the factor −iω1ω2

from (40), the 1/(2i) and D from (37), and the G from (30).
By that result, (I19) of Ref. [16] multiplied with ω1ω2 → ω2

1
is obtained:

Ff = − πβ h̄2(∇ψ )(v · ∇ψ )

8m1m2 sinh 2
(

1
2β h̄ω1

)δ(ω1 − ω2). (43)

The extra factor with frequency squared reflects the difference
in dimension of the ψ in interactions (27) and (28).

VI. POLARIZABLE PARTICLES

Although interactions (6) and (7) give repulsive Casimir
force, the friction force (43) still has the proper sign for a
braking force. The magnitude of the force, however, has the
same form as for the attractive situation. The only modifica-
tion besides a different ψ is an extra ω2

1 factor that reflects the
ζ of expression (3). Now result (43) can be extended to a pair
of polarizable magnetic and dielectric particles following the
development of Ref. [17], whose equations will be designated
with the numeral II. The main change is the form of the
interaction that can be written in the form

−AF (t ) = ψi j ṡ1is2 j,

⎛
⎝∑

i j

⎞
⎠. (44)

With (28), there is also an s1i ṡ2 j term, but all weight can be
put on only one of them as concluded below Eq. (8).

By introducing magnetic and electric polarizabilities α1

and α2, respectively, one has for isotropic particles 1/mi =
ω2

i αi as mentioned in Eq. (II43) of Ref. [17]. [This is con-
sistent with the Fourier transform of the response function
(II21) used in Ref. [17]. Note that the meaning of α is here
and henceforth different from that in the previous sections.]
The friction force (43) in the l direction then gets the form

Ff l = −GlqvqH
πβω2

1

2
δ(ω1 − ω2), (45)

which is Eq. (II43) from Ref. [17] with the additional factor
ω2

1. The H is given by (II40) [17]

H = h̄2ω1ω2α1α2

4 sinh
(

1
2β h̄ω1

)
sinh

(
1
2β h̄ω2

) . (46)

The explicit form of the interaction follows from expression
(6)

ψi j ṡ1is2 j = − 1

cr2
(ṡ1 × r̂)s2 = 1

cr3
εki jxk ṡ1is2 j . (47)

(The symbol εki j equals 1 for ki j in cyclic order, −1 in
opposite order, and 0 otherwise.) The gradient Eq. (II26) of

Ref. [17] of the interaction is needed:

Tli j = ∂ψi j

∂xl
= 1

c

(
δlk

r3
− 3xl xk

r5

)
εki j . (48)

Since the various components of the dipole moments are
independent of each other (〈slisl j〉 = 0, i �= j, l = 1, 2), as
expressed by Eq. (II19) [17], one with Eq. (48) inserted
modifies Eq. (II28) [17] to

Glq = Tli jTqi j = 2

c2

(
δlq

r6
+ 3xl xq

r8

)
. (49)

This inserted in expression (45) gives the friction between the
two oscillators. It extends Eq. (II43) from Ref. [17] in a simple
way to the present situation.

VII. FRICTION BETWEEN A PARTICLE AND A
HALF-SPACE AND BETWEEN TWO HALF-SPACES

The result for a pair of particles can be extended in a
straightforward way to the situation with a particle and a half-
space and to two parallel half-spaces by use of the equations
of Ref. [17]. Low particle density is assumed in this section
by which forces are additive.

Assume that the half-space is located at z � z0 such that its
surface is parallel to the xy plane at vertical position z = z0.
The dielectric particle, located at z = 0, moves with constant
velocity v along the x axis. Only G11 is needed, and with
expression (49) one finds

Gh = ρ

∫
z>z0

G11 dxdydz = πρ

2c2z3
0

(50)

to replace result (II37) from Ref. [17]. Here, ρ is the number
density of particles.

For two parallel half-spaces with particle densities ρ1 and
ρ2 and separated by a distance d , the friction force per unit
area follows by use of Eq. (II38) from Ref. [17], which in the
present case gives

G = ρ2

∫ ∞

d
Gh dz0 = π

4c2d2
ρ1ρ2. (51)

Altogether with Eq. (45), the friction force between a
particle and a half-space becomes

Fh = −Ghvω2
1H

πβ

2
δ(ω1 − ω2), (52)

and likewise between two half-spaces the friction force per
unit area becomes

F = −Gvω2
1H

πβ

2
δ(ω1 − ω2). (53)

These results are the extension of results (II44) and (II45)
from Ref. [17]. (The v by mistake is missing in the reference.)
Compared with the results of Ref. [17], factors 1/z2

0 or 1/d2

are replaced by the factor (ω1/c)2 besides a slightly different
numerical factor.

VIII. GENERAL POLARIZABILITY

For a pair of oscillators with sharp frequencies ω1 and ω2,
the result (45) along with results (49), (52), and (53) are rather
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singular due to the δ function. However, for realistic oscilla-
tors with frequency spectra, this singular behavior disappears.
With Eqs. (II46)–(II48) from Ref. [17], a polarizability αaK =
h(K2) (a = 1, 2, K = ih̄ω) has a frequency spectrum αa(m2)
such that [17,26]

h(K2) =
∫

αa(m2)m2

K2 + m2
d (m2), (54)

αa(m2)m2 = − 1

π
Im[h(−m2 + iγ )],

m = h̄ω, γ → 0 + . (55)

Integrations over the frequencies give integrals (II49) and
(II50) from Ref. [17] with an extra factor ω2 [

∫
δ(ω1 −

ω2) d (m2
2 )]d (m2

1 ) = 4(h̄ω1)2 dω1]:

H0 = πβ

2

∫
ω2 m4α1(m2)α2(m2)

sinh2
(

1
2βm

) dω. (56)

With this and Eqs. (45), (52), and (53), the various forces
(II51) from Ref. [17] are replaced by

Ff l = −GlqvqH0, Fh = −GhvH0, F = −GvH0. (57)

IX. FRICTION AT FINITE AND ZERO TEMPERATURE

At T = 0, the friction forces (57), linear in v, vanish.
However, for higher order in v, there will be nonzero friction
also in this case as energy excitations with ω2 �= ω1 become
possible. To obtain it, we follow the development of Ref. [19]
where energy dissipation is utilized with basis in the response
function (29). There, this method was used both for finite
and zero temperatures, and we do the same here to first
recover the friction force (57) with (56) inserted for two
half-spaces. Further, to obtain explicit answers, we use the
frequency distribution for a metal for the dielectric half-space
and assume it to be of the same form also for the magnetic one
as a specific case.

The situation with two half-spaces is considered where
Fourier transform is utilized in the x and y directions. Then,
∇ → −ik⊥, dk⊥ = dkxdky, v||k⊥. With the present interac-
tion (47), one has (k → p)

ψi j = −1

c

∂

∂xp

(
1

r

)
εpi j (58)

with Fourier transform (in three dimensions)

cψ̃i j = ikpψ̃εpi j, ψ̃ = 4π

k2
. (59)

Likewise, the transform of (48) is

cT̃li j = klkpψ̃εpi j . (60)

The Glq of (49) is integrated over r-space. This can be
converted to k-space with use of both k and −k in the product
of the two T̃ . With (60), this gives

c2G̃lq = c2T̃li j T̃qi j = kl kqkpkmψ̃2εpi jεmi j = 2klkqk2ψ̃2.

(61)

Now the transform should be limited to the xy plane by which
[19]

ψ̃ → ψ̂ (z0, k⊥) = 2πe−q|z0|

q
, (62)

where q = k⊥, k2
⊥ = k2

x + k2
y , z0 = z2 − z1. This is

Eq. (III37), where the numeral III here and below designates
the equations of Ref. [19]. With ±ikz = q for z > 0 and
±ikz = −q for z < 0 one finds Eq. (III40)

−ik j ik j = k2
x + k2

y + (±q)2 = k2
⊥ + q2 = 2q2, (63)

by which we can write

c2Ĝ11 = c2Ĝxx = 1
2 q2Ĝ(z0, q), Ĝ(z0, q) = 4q2ψ̂2, (64)

since by integration over orientations the average is 〈k2
x 〉 =

(k2
x + k2

y )/2 = q2/2. In the present case, integrals (III43) and
(III44) from Ref. [19] are modified to (dkxdky = 2πq dq)

Ĝ(q) =
∫

z1>d,

∫
z2<0

Ĝ(z0, q) dz1dz2 = 1

c2q2
(2π )2e−2qd ,

(65)

G = ρ1ρ2

(2π )2

∫ ∞

0

1

2
q2Ĝ(q)2πq dq = πρ1ρ2

4c2d2
, (66)

by which result (51) is recovered.
To have an explicit result, we may assume the Drude model

for a metal to represent the dielectric half-space. Then with
Eqs. (III49)–(III51) from Ref. [19]

ε = 1 + ω2
p

ζ (ζ + ν)
, 2πρ1α → ε − 1

ε + 1
,

m2α1(m2) = D1m, D1 = h̄ν

ρ1(π h̄ωp)2
(67)

for small m. The ω2
p is the plasma frequency and ν is a constant

related to the resistivity of the metal. The relation between
polarizability α and ε, also valid for large ε, was established
in Ref. [18]. Now, we here assume the magnetic half-space
has a similar frequency spectrum

m2α2(m2) = D2m. (68)

With expression (56) for H0 instead of (III35), integral (III57)
from Ref. [19] is modified into

H0 = πβ

2h̄
D1D2

∫ ∞

0

m4 dm

sinh2
(

1
2βm

) = 2π

β4h̄
D1D2I, (69)

I =
∫ ∞

0

x4e−x dx

(1 − e−x )2
=

∫ ∞

0

∞∑
n=1

x4ne−nxdx

= 4!
∞∑

n=1

1

n4
= 4π4

15
. (70)

With (57) and (66), this gives the friction force

F = −2π6

15

(
d

βch̄

)2
ρ1ρ2D1D2

β2d4
h̄v. (71)

Compared with result (III59) from Ref. [19], the main differ-
ence is the factor in parentheses, and this factor is very small
for reasonable values of d and β.
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To obtain the T = 0 friction, the response function (37) can
be written in the form of (III21) from Ref. [19] since ω1 �= ω2

is needed for T = 0. With (38), we find

φ(t ) = C− sin(ω−t ) + C+ sin(ω+t ), ω± = |ω1 ± ω2|,

C± =
(

ω∓
2

)2 H

h̄
sinh

(
1

2
β h̄ω±

)
, (72)

with H given by (46). The C− term determines the T > 0
contribution just found above. For T → 0, one finds (III47)
from Ref. [19] modified into

C+ = 1

2

(
ω−
2

)2

h̄ω1ω2α1α2. (73)

This modifies integral (III48) from Ref. [19] to

J (ωv ) = 2πτ |ωv|h̄3

×
∫ |ωv |

0

(
ω−
2

)2

ω1ω2m1m2α1
(
m2

1

)
α2

(
m2

2

)
dω1

(74)

with ω1 + ω2 = ω+ = |ωv|, ωv = k⊥v. The τ is half the time
for energy dissipation at velocity v. With frequency spectra
(67) and (68), integral (III52) from Ref. [19] is replaced by

J (ωv ) = 2πτ |ωv|h̄3D1D2
1

4

∫ |ωv |

0
(ω1 − ω2)2ω1ω2 dω1

= 2τω6
vHP, HP = π

120
h̄3D1D2. (75)

By integration over orientations in the xy plane, the integral
above (III53) from Ref. [19] is modified to (ωv = kxv)

∫
k6

x dφ = k6
⊥

∫ 2π

0
cos6 φ dφ = 2πq6 5

16
, (q = k⊥),

(76)

such that k6
x can be replaced by 5q6/16 by which

J (ωv ) = 2τv6HP
5

16 q6. (77)

With Eq. (65) for Ĝ(q) integral (III54) from Ref. [19] is
now modified to

GP = ρ1ρ2

(2π )2

∫ ∞

0

5

16
q6Ĝ(q)2πq dq = 75π

64c2d6
ρ1ρ2. (78)

In the present case, the energy dissipation (III55) becomes
�EP = 2τHPv6GP by which the friction force per unit area

at temperature T = 0 now replaces result (III56) with

FP = −�E

2τv
= − 5π2

512d6

(
v

c

)2

ρ1ρ2D1D2(h̄v)3. (79)

Here the main difference from result (III56) from Ref. [19]
is the very small factor (v/c)2. This is similar to the fi-
nite temperature result (71), where another very small factor
appeared for the same system with a magnetic half-space
moving parallel to a dielectric one.

X. CONCLUDING REMARKS

The basic microscopical system that we have analyzed is an
oscillating electric dipole transversely oriented with respect to
an analogous magnetic dipole. This is extended to isotropic
polarizable particles. In the quasistatic approximation, the
magnetic field created by an electric current according to Biot-
Savart’s law is used. The quasistatic approximation implies
that the static approximation used in most of our earlier
works in this area [14–21] can be generalized and extended to
the magnetodielectric case in a natural way. A characteristic
property of the calculated force expressions is that they are
heavily truncated relative to the ordinary friction forces valid
for purely dielectric media.

The very small friction relative to the case with both half-
spaces dielectric can be understood from the magnetic field
(4). Compared with the electric field created by the same
dipole moment, it is reduced by a factor rζ . The characteristic
length of the system is r ∼ d , and at finite temperature the
excitation energies to be transferred between the oscillators
are h̄ω ∼ 1/β (ζ = iω/c). Thus, rζ ∼ d/(βch̄), the square
of which appears in result (71). Likewise for T = 0, energy
transfer can take place by excitations from the ground state
with energies h̄ω ∼ h̄ωv, ωv = k⊥v, i.e., ω ∼ k⊥v. Further,
rk⊥ ∼ dk⊥ ∼ 1 by which rζ ∼ v/c, the square of which
appears in result (79).

The corresponding results with both half-spaces dielec-
tric have earlier been shown to be consistent with other
approaches with full agreement or with some deviations re-
stricted to numerical prefactors [1,18,19].

We have made use of quantum mechanical statistical meth-
ods throughout, as in our earlier works. These methods turn
out to be compact and effective.
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