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Theoretical study of the electron structure of superheavy elements with an open 6d shell:
Sg, Bh, Hs, and Mt
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We use recently developed efficient versions of the configuration interaction method to perform ab initio
calculations of the spectra of superheavy elements seaborgium (Sg, Z = 106), bohrium (Bh, Z = 107), hassium
(Hs, Z = 108), and meitnerium (Mt, Z = 109). We calculate energy levels, ionization potentials, isotope shifts,
and electric dipole transition amplitudes. Comparison with lighter analogs reveals significant differences caused
by strong relativistic effects in superheavy elements. Very large spin-orbit interaction distinguishes subshells
containing orbitals with a definite total electron angular momentum j. This effect replaces Hund’s rule holding
for lighter elements.
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I. INTRODUCTION

Theoretical study of the electron structure of superheavy
elements (SHE, nuclear charge Z > 103) is an important area
of research closing the gaps in relevant experimental data.
While all SHE up to oganesson (Og, Z = 118) have been
synthesized and named [1–3], experimental data on their
spectra are absent.

The heaviest elements for which experimental spectro-
scopic data are available are nobelium (No, Z = 102) [4,5]
and lawrencium (Lr, Z = 103) [6]. Ionization potential (IP)
has been measured for both atoms and the frequency of
the strong 7s2 1S0 → 7s7p 1Po

1 electric dipole transition is
measured for No. For heavier SHE, the data come only from
theory. There are many accurate calculations for atoms with
relatively simple electronic structure, which includes atoms
and ions with few electrons above closed shells (usually not
more than four; see, e.g., Refs. [7–17]). This constitutes less
than half of the SHE in the range 104 � Z � 118. Most of the
SHE have an open 6d or 7p shell with more than four elec-
trons. Until recently, the only available tool to perform cal-
culations for such systems was the multiconfiguration Dirac-
Fock method (MCDF; see, e.g., review [18]). We discuss
some of the MCDF results in Sec. VI. There are some model
calculations of the basic parameters of the atoms, such as IP
[15] and polarizabilities [19]. Accurate ab initio calculations
of the spectra are practically absent. This is an unfortunate
situation since, from the study of relatively simple SHE, we
know that strong relativistic effects often bring a significant
difference in properties of SHE compared to their lighter
analogs. Similar effects are expected for all SHE, including
those with open shells. To address the problem, we have
developed efficient versions of the configuration interaction
(CI) approach, which allows study of atoms with any number
of valence electrons. This includes the so-called configuration
interaction with perturbation theory [20] (CIPT) method and
its fast version, the fast configuration interaction [21] (FCI)

method. Both methods are based on the idea that off-diagonal
matrix elements between highly excited states can be ne-
glected in the CI matrix. This allows one to reduce the prob-
lem to a much smaller matrix with modified matrix elements.
The methods were tested on such open-shell systems as Yb
and No (including states with excitations from the 4 f and 5 f
subshells) [20,21], Ta [22], W and I [20], and superheavy ele-
ments Db [22] and Og [23]. Db is the first SHE with an open
6d shell that has been studied using the CIPT method [20,24].
Its ground-state configuration is [Rn]5 f 147s2 5d3, i.e., it has
five valence electrons above closed shells, which makes it
difficult to use other methods. Lighter neighbors of Db, Rf
(four valence electrons), and Lr (three valence electrons) were
studied with the use of the powerful CI+all-order method
[25,26]. The use of the latter approach for Db is very prob-
lematic and is practically impossible for heavier elements.
Following the successful use of the CIPT for Db, we apply it
in the present work to the heavier elements Sg, Bh, Hs, and Mt
(106 � Z � 109).

In this work, we present the low-lying odd and even states
of SHE, Z = 106–109, including the allowed E1 transition
amplitudes and rates from the ground state to odd-parity
states. We also calculate the ionization potential and isotope
shift parameters for these elements.

The paper progresses as follows: in Sec. II, we give a brief
overview of the CIPT technique and how we implement it for
the SHE. In Sec. III, we discuss the accuracy of the calcula-
tions. In Sec. IV, we give a brief discussion on the calculation
of E1 transitions and corresponding isotope shift parame-
ters between synthesized and predicted metastable SHE. In
Secs. V A, V B, V C, and V D, we discuss the results of the
CIPT on Sg I, Bh I, Hs I, and Mt I atoms, respectively. For
reference, we present the low-lying spectrum for Sg I and
Bh I in Table III and Hs I and Mt I in Table IV, and the E1
transitions and isotope shift parameters in Table V. In Sec. VI,
we present the ionization potentials of the four elements and
compare them with other calculations.
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II. CIPT METHOD

As mentioned above, an open 6d shell with more than three
valence electrons makes established many-body methods too
computationally expensive to be viable. This computational
cost is reduced using a combination of configuration interac-
tion (CI) and perturbation theory (PT) which was introduced
in [20] and used in [22,23] for calculating the spectra of SHE
Db (Z = 105) and Og (Z = 118). In this work, we give a
brief outline of the CIPT method and its implementation for
the elements we calculate. For an in-depth discussion, please
refer to [20]. A fast version of this method has been developed
in [21].

To generate the single-electron wave functions for all the
elements, we use the V Ne−1 approximation (where Ne is the
total number of electrons) [27,28] where the Hartree-Fock
calculations are performed for the singly charged open-shell
atom with a 6dn7s configuration, where n = 4, 5, 6, and 7 for
Sg, Bh, Hs, and Mt, respectively. The single-electron basis
states are calculated in the field of the frozen atomic core. The
basis sets are generated using a B-spline technique [29] with
40 B-spline states in each partial wave of order 9 in a box with
radius 40 aB (where aB is the Bohr radius) with partial waves
up to lmax = 4 (where l is the orbital angular momentum), and
the many-electron basis states |i〉 = �i(r1, . . . , rNe ) (where r j

is the radial position of the jth electron) for the CI calculations
are formed by making all possible single and double excita-
tions from reference low-lying nonrelativistic configurations
of the atom. This set of many-body electron wave functions
is ordered from lowest to highest energy and divided into two
sets:

(i) P: A small set of low-energy wave functions (i � NEff,
where NEff is the number of wave functions in the low-energy
set) that give dominant contributions to the CI wave function.

(ii) Q: A large set of high-energy wave functions (NEff <

i � Ntotal) that are corrections to the wave functions from P.
The CI wave function is written as an expansion over

single-determinant many-electron states |i〉 from these two
sets,

|�〉 =
NEff∑

i=1

ci|i〉 +
Ntotal∑

i=NEff+1

ci|i〉, (1)

where ci are coefficients of the expansion. The CI Hamiltonian
is truncated by neglecting the off-diagonal matrix elements
of the CI Hamiltonian between terms in Q (〈i|HCI| j〉 = 0 for
|i〉, | j〉 ∈ Q), which reduces the problem of finding the wave
function and corresponding energy to a matrix eigenvalue
problem of the size P with modified CI matrix

(HCI − EI )X = 0, (2)

where I is unit matrix, the vector X = {c1, . . . , cNeff }, and the
low-energy matrix elements of HCI are modified to include
perturbative contributions between states in P and Q,

〈i|HCI| j〉 → 〈i|HCI| j〉 +
∑

k

〈i|HCI|k〉〈k|HCI| j〉
E − Ek

, (3)

where |i〉, | j〉 ∈ P, |k〉 ∈ Q, Ek = 〈k|HCI|k〉, and E is the
energy of the state of interest.

Both the Breit interaction (magnetic interaction and retar-
dation) [30,31] and quantum electrodynamic (QED) radiative
corrections (Ueling potential and electric and magnetic form
factors) [32] are included in the calculations as described in
our earlier works (see, e.g., [16]). As both the Breit and QED
radiative corrections scale with atomic charge, i.e., Z faster
than the first power [16], their contribution to the energy
levels of SHE is non-negligible. It was shown in [22] that the
magnitude of the combined correction to the energy levels of
Db is, at most, 200 cm−1. A similar correction is expected for
the SHE in this work.

For each level, we calculate the Landé g factor and compare
it to the nonrelativistic expression,

gNR = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
. (4)

Where possible, for each level, we use gNR to find an anal-
ogous state in the lighter element to obtain an approximate
label in the LS coupling scheme. In fact, LS notations do
not make sense for the highly relativistic SHE states due to
very large spin-orbit interaction (so the eigenvectors will look
strongly mixed in LS notation); we only use LS notations for
comparison with lighter elements. Otherwise, we label the
nth sequential state of total angular momentum J and parity
by nparity

J .

III. ESTIMATION OF THE ACCURACY

Theoretical uncertainty is dominated by incomplete treat-
ment of interelectron correlations. These correlations can
be further separated into core-valence and valence-valence
correlations. We will discuss each of these separately. For
the SHE calculations, the core includes all states in closed
shells from 1s to 5 f containing one-hundred electrons oc-
cupying one-hundred states. All other states, including states
of the 6d and 7s shells, are treated as valence states. Only
valence states are used in calculation of the CI matrix. This
means that we neglect core-valence correlations. To estimate
the corresponding uncertainties, we perform calculations of
the energy levels of gold and roentgenium (Rg, Z = 111).
Both of these elements have one external electron above a
closed 5d or 6d shell. We perform the calculations using the
correlation potential method [33,34]. In this method, core-
valence correlation corrections are obtained using the electron
self-energy operator (correlation potential) �1 calculated by
summation of the diagrams in the many-body perturbation
theory. The operator � is defined by the correlation correction
to the energy of the valence electron on the orbital n, δEn =
〈n|�|n〉. For the Au and Rg calculations, the upper complete
d shell (5d or 6d) is attributed to the core, and the correlation
interaction of the external electron with the core is described
by a correlation potential �.

1Do not confuse this with the QED self-energy operator which we
included using the radiative potential method [32]. This is the many-
body self-energy operator, which, for example, has been defined
in Ref. [35]. We calculate this operator using a Feynman diagram
technique with relativistic Hartree-Fock Green’s functions [33].
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TABLE I. Removal energies (cm−1) for states of external elec-
tron of Au and Rg calculated in different approximations. RHF is
relativistic Hartree-Fock, and �(nd) are Brueckner orbital energies
calculated with correlation potential �, in which summation over
core states is limited to 5d or 6d shell only. �(all) are the energies
calculated with full summation over core states.

Au

RHF �(5d) �(all) Expt. [36]

6s1/2 60 179 75 539 77 878 74 409
6p1/2 29 303 36 508 37 322 37 051
6p3/2 26 664 32 314 32 785 33 324
6d3/2 11 929 12 423 12 439 12 457
6d5/2 11 875 12 344 12 357 12 376

Rg

RHF �(6d) �(all)
7s1/2 83 436 101 901 106 780
7p1/2 38 006 49 996 52 269
7p3/2 26 550 33 659 34 685
7d3/2 11 859 12 594 12 656
7d5/2 11 738 12 383 12 428

Calculation of � involves a summation over all core states
from 1s to 5d for Au or 6d for Rg. This summation is strongly
dominated by the upper d shell. For example, the 5d shell
gives about 90% of the correlation correction to the energies
of the 6s and 6p valence states of Au, and more than 80%
of the correlation correction to the energies of the 7s and 7p
valence states of Rg (see Table I). This is because of the small
energy interval between the energies of the 5d (or 6d) state
and the energies of the lowest valence states. Since correlation
correction to the energy of the s and p valence states is about
20%, the effect of neglecting inner-core contributions to the
core-valence correlations is about 1 to 2% of the energy of
valence states.

It is interesting to note that in the second order of many-
body perturbation theory, the correlation potential � always
overestimates the value of the correlation correction. This
is because it does not include the effect of screening of
interelectron interaction by other atomic electrons. This effect
appears in higher orders of perturbation theory. Its proper
inclusion leads to very accurate results (see, e.g., [33,37]).

Since in the present work we do not go beyond the sec-
ond order, we have the fortunate situation where neglecting
inner-core contributions to � has a similar affect on its
value as the screening would do. In other words, the effect
of neglecting the higher-order perturbative contributions on
the calculated energies partially compensates the effect of
neglecting screening of interelectron interactions. The data in
Table I show that this is the case at least for the 6s state of
Au (and probably for the 7s state of Rg) where the correlation
correction is the largest in value. Therefore, it is reasonable
to assume that the theoretical uncertainty is dominated by
valence-valence correlations. The main source for it is the
perturbative treatment of the excited configurations. The best
way to estimate the uncertainty is to compare the theoretical
and experimental energies for lighter elements. We did this in
detail for W [20], which is the lighter analog of Sg, and for

pairs Ta and Db [22], and Rn and Og [23]. As follows from
this comparison and from the analysis in Secs. V A and V B,
the theoretical uncertainty for the energies is on the level of
∼1000 cm−1, and sometimes a little higher (e.g., ∼2000 cm−1

for odd states of Bh). The uncertainty for ionization potentials
is on the level of a few percent (see Sec. VI).

IV. ELECTRIC DIPOLE TRANSITIONS
AND ISOTOPE SHIFTS

In the spectroscopic measurements, the frequencies
of strong electric dipole (E1) optical transitions (ω <

40 000 cm−1) are likely to be measured first as it has been
done for the 1S0 → 1Po

1 transition in No (Z = 102) [4].
Broad-spectrum scans for strong lines are unfeasible and
therefore a priori estimates of both a transition frequency and
its strength from theoretical calculations will aid the experi-
ments on SHE. Calculation of frequencies will be considered
in Sec. V. In this work, we also calculate the E1 transition
amplitudes and rates for the major optical transitions between
the ground state and the lowest states of opposite parity (odd
states) for each of the four SHE of interest. To calculate the
E1 transition amplitude DE1 between two states |a〉 and |b〉,
we use a self-consistent random-phase approximation (RPA)
to simulate the atom in an external electromagnetic field.
This results in an effective dipole field for the electrons that
includes direct and exchange core polarization. An in-depth
discussion of this method can be found in Refs. [38,39]. The
results in the RPA approximation are gauge invariant [38].
However, when you calculate correlation corrections beyond
RPA, the length form of the E1 operator usually gives better
results for low-frequency transitions. Indeed, the calculation
of the correlation corrections can be made explicitly gauge
invariant in the case of one electron above closed shells
[34,40]. However, in the velocity form, some correlation
corrections are proportional to 1/ω and become very large for
small frequencies ω [34,40]. This is the reason why we prefer
to perform all calculations using the length form of the E1
operator.

Note that comparison of results in different gauges is
not always a good test of accuracy. For example, in the
RPA approximation and in the correlation potential approach
described in Refs. [34,40], velocity and length forms give
exactly the same results though the error is still finite. There-
fore, to estimate the accuracy of the calculations, we use
comparison with available experimental data (see Table II).

The E1 transition rates, AE1, are calculated using (in atomic
units)

AE1 = 4

3
(αω)3 D2

E1

2J + 1
, (5)

where J is the angular momentum of the upper state, α is
the fine-structure constant, and ω is the frequency of the
transitions in atomic units. All calculated amplitudes, DE1,
obey the selection rules for E1 transitions. The accuracy of
these calculations cannot be tested directly due to the lack
of experimental data on SHE and therefore we must rely on
comparisons in lighter elements. Using the above method,
we calculated the E1 transition amplitudes and transition
rates for the lighter analogs and compared them to available
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TABLE II. Comparison of E1 transition amplitudes and rates between experimental and CIPT values for the lighter analogs of SHE,
W I, Re I, Os I, and Ir I. Here, DE1, AE1, and gf are the transition amplitude, rate, and oscillator strength, respectively. The experimental E1
amplitudes were calculated using the experimental energies, transition rates from experimental sources, and Eq. (5). To calculate oscillator
strengths for comparison with Re I transitions from Ref. [41], we use the formula gf = 3.062 × 10−6ωD2

E1, where ω is in cm−1 and DE1 is
in a.u.

Expt. CIPT

E a DE1 AE1 E DE1 AE1

State (cm−1) (a.u.) (106 s−1) (cm−1) (a.u.) (106 s−1)

W I

13o
1 39 183.19 2.09(9) 178(15)b 39 606 3.07 400

Os I

4o
4 32 684.61 2.00(7) 31.53(221)c 32 576 2.36 43

3o
4 30 591.45 0.96 5.8d 30 359 1.37 12

2o
5 30 279.95 1.40(5) 10.05(70)c 31 904 2.15 28

Ir I

3o
11/2 39 940.37 1.72(22) 32(8)e 41 083 1.49 26

4F o
9/2 37 871.69 2.07(26) 47(12)e 39 227 1.52 28

4Do
7/2 37 515.32 1.73(22) 40(10)e 40 106 1.55 39

6Go
9/2 35 080.70 1.59(20) 22(6)e 36 703 2.72 74

6Go
11/2 34 180.46 1.45(7) 14.2(14)e 36 358 1.51 18

E a DE1 gf E DE1 gf
State (cm−1) (a.u.) (cm−1) (a.u.)

Re I
6Po

3/2 28 961.55 1.22(17) 0.132(36)f 29 303 1.80 0.29
6Po

7/2 28 889.72 2.26(27) 0.45(11)f 29 247 3.32 0.98
6Po

5/2 28 854.18 1.70(19) 0.254(56)f 29 505 2.51 0.57

aRef. [36]; bRef. [42]; cRef. [43]; dRef. [44]; eRef. [45]; fRef. [41].

experimental data in Table II. The accuracy for the E1 am-
plitudes is ∼50%, which is sufficient to identify the strongest
transitions. The calculated rates are ab initio using the ampli-
tudes and energies calculated in the CIPT method.

Along with the excitation spectrum and E1 transitions, we
also calculate the isotope shift (IS) for each transition.

The IS is the difference in the transition frequency between
two different isotopes. The IS is important for at least two
reasons. First, it can be used to find the difference in nuclear
radius between two isotopes. Second, it can be used to predict
the spectra of heavier, metastable neutron-rich isotopes from
the spectra of short-lived, neutron-deficient isotopes created
and measured in the laboratory. These predictions can be
compared to astronomical data [46–49] and could lead to the
discovery of isotopes in the “island of stability” where it is
expected that metastable, neutron-rich isotopes are created in
cosmological events [50–53]. The IS of SHE is strongly dom-
inated by the volume shift (also known as “field shift” in the
literature [54]), while the mass shift is negligible. Using CIPT,
we calculate the excitation spectrum of the each isotope by
varying the nuclear radius in the Hartree-Fock (HF) procedure
described in the previous section. In the zero approximation,
only s1/2 and p1/2 electron waves penetrate the nucleus and,
for these, the dependence of IS on the nuclear radius RN is
R2γ

N , where γ =
√

1 − (Zα)2; see details in Ref. [55]. Higher
waves undergo isotopic shifts due to change of the s1/2 and

p1/2 wave functions and corresponding changes in the atomic
Hartree-Fock potential—the core relaxation effect. Therefore,
the dependence of the field IS on the nuclear radius in any
atomic transition in multielectron atoms is always R2γ

N . Using
the large-scale trend for nuclear radii RN ∝ A1/3, the isotopic
volume shift can also be approximated by δν ∝ A2γ /3 [46,55]
as nuclear shell fluctuations are suppressed [56]. The first
form of the IS we present is given by

δν = E2 − E1 = a
(
A2γ /3

2 − A2γ /3
1

)
, (6)

where A1 and A2 are atomic numbers for two isotopes (A2 >

A1), E1 and E2 are the excitation energy for A1 and A2,
respectively, and a is a parameter which should be calculated
for each transition. This form of the IS is convenient for non-
neighboring isotopes and predicting the spectra of metastable
isotopes because there is a significant difference in the values
of A for isotopes synthesized in laboratory and hypothetical
metastable isotopes (
A ∼ 10). The RN ∝ A1/3 trend is based
on the constant nuclear density approximation due to finite-
range nuclear interactions. Variation of the nuclear shape and
charge density may lead to significant deviations. Specific
theoretical information about expected density distributions in
SHE is presented in [57].

A more common form of isotope shift is the standard
formula relating the change of atomic frequency to the change
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FIG. 1. Comparison of low-energy excitations of SHE and their respective lighter analogs. For each element, the states are split between
odd and even parities. The solid (blue) lines represent states with 6s2 or 7s2 in the electronic configuration for the lighter elements and SHE,
respectively. The dashed (red) lines are all other states where an s electron has been excited from the filled 6s or 7s shell. Experimental energies
were used for W I, Bh I, Hs I, and Ir I [36].

of nuclear charge radius,

δν = Fδ〈r2〉, (7)

where the square of the nuclear charge radius is calculated us-
ing the Fermi distribution for the nuclear density. This formula
(neglecting the mass shift) is convenient for extraction of the
nuclear charge radius change from isotope shift measurements
of nearby isotopes. Lastly, we introduce a form of the IS which
should be valid for all isotopes. Using the root-mean-squared
(rms) nuclear radius, Rrms =

√
〈r2〉, and δν ∝ δR2γ

rms [55], we
can write the equation

δν = F̃
R2γ

rms,A2
− R2γ

rms,A1

fm2γ
, (8)

where F̃ is an IS parameter to be calculated for each
transition.

V. CALCULATION OF ENERGY LEVELS, E1 TRANSITION
RATES, AND ISOTOPE SHIFT

Energy levels of SHE are calculated by solving the matrix
eigenvalue problem (2) separately for states of given value of
the total angular momentum J and parity. The specific details
for each considered SHE are presented below. Most previous
theoretical works on these SHE present the calculation of
the first ionization potential, which we discuss in Sec. VI.
Figure 1 compares the calculated spectra of low-lying states
of SHE with experimental data on their lighter analogs. One
can see a significant difference in the spectra of SHE and their
lighter analogs, which is common for all considered atoms.
Almost all low-lying odd states of lighter atoms correspond
to the 6s − 6p excitation from the ground state. In contrast to
that, in SHE the 7s state is significantly lower on the energy
scale than the 6d state due to relativistic effects. Therefore,

dominant excitations occur from the 6d state, i.e., low-lying
odd states correspond to the 6d − 7p excitations from the
ground state. Since the 6d − 7p energy interval is smaller
than the 6s − 6p one, the density of odd states is higher for
the SHE.

A. The seaborgium atom

Seaborgium was first experimentally detected in 1974 [58].
Since the initial discovery, there has been continued interest
and study into its physical and chemical properties, including
the discovery of isotopes with longer lifetimes. There exist
some experimental results for Sg I in the field of chemistry
[59]. However, there are no spectroscopic results available.
The ground-state configuration of Sg I is expected to be
[Rn]5 f 146d47s2, similar to the ground state of its lighter
homologue (W I, ground configuration: [Xe]4 f 145d46s2).

We calculated the first six even-parity states and the ground
state was found to be the [Rn]5 f 146d47s2 5D0 state. To cal-
culate the even states, we use three reference configurations,
6d47s2, 6d5 7s, and 6d6 to make states in the effective CI
matrix [first terms in the expansion (1) and in the CI effec-
tive Hamiltonian (3)]. All other states, which are treated as
corrections to the states from reference configurations [second
terms in the expansion (1) and in the CI Hamiltonian (3)], are
obtained by exciting one or two electrons from the reference
configurations. Similarly, for odd-parity states, we use the
reference states from the 6d47s7p, 6d37s27p, and 6d57p
configurations. All calculated even- and odd-energy levels are
presented in Table III. Similar calculations were performed for
W I using analogous reference states and the same parameters.
Comparing these results to the experimental spectrum [36],
we found a maximum discrepancy of |
| ≈ 600 cm−1 and
expect a similar accuracy for our Sg I calculations. Note that
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TABLE III. Low-energy spectrum of even- and odd-parity states for Sg I and Bh I. We present the energy and Landé g factor for each state
Jparity. We present LS notations only for comparison with lighter analogs. For SHE states where an analogous state cannot be found in the
lighter analog, the term is labeled according to the sequential number of the state (n) for the given Jparity group, nparity

J .

Sg I Bh I

Major configuration Term Energy (cm−1) Landé g factor Major configuration Term Energy (cm−1) Landé g factor

Even-parity states
(1) 6d4 7s2 5D0 0 0.00 6d5 7s2 6S5/2 0 1.78
(2) 6d4 7s2 5D1 4 834 1.50 6d5 7s2 4P3/2 13 062 1.32
(3) 6d4 7s2 5D2 7 614 1.44 6d5 7s2 4G7/2 13 828 1.15
(4) 6d4 7s2 5D3 9 607 1.39 6d5 7s2 4G11/2 14 981 1.19
(5) 6d4 7s2 5D4 10 335 1.27 6d5 7s2 4P1/2 15 659 1.90
(6) 6d4 7s2 52P0 13 592 0.00 6d5 7s2 4G9/2 16 447 1.17

Odd-parity states
(7) 6d3 7s2 7p 1o

2 14 717 0.57 6d4 7s2 7p 2So
1/2 12 792 0.72

(8) 6d3 7s2 7p 1o
1 17 043 0.71 6d4 7s2 7p 6Do

1/2 17 781 1.66

(9) 6d3 7s2 7p 2o
2 20 444 1.13 6d4 7s2 7p 6Do

3/2 19 483 1.09

(10) 6d3 7s2 7p 1o
3 20 628 0.97 6d5 7s 7p 8Po

5/2 22 228 2.08

(11) 6d4 7s 7p 7F o
0 20 979 0.00 6d4 7s2 7p 6Po

3/2 22 533 1.74

(12) 6d3 7s2 7p 2o
1 22 041 2.02 6d4 7s2 7p 6Do

5/2 22 930 1.26

(13) 6d3 7s2 7p 1o
4 24 132 1.11 6d5 7s 7p 8Po

7/2 24 020 1.67

(14) 6d3 7s2 7p 3o
1 24 382 1.19 6d4 7s2 7p 6Do

7/2 25 171 1.28

(15) 6d4 7s 7p 1So
0 25 362 0.00 6d4 7s2 7p 6Do

9/2 26 587 1.21

(16) 6d3 7s2 7p 2o
3 25 966 1.29 6d4 7s2 7p 6F o

5/2 28 060 1.57

(17) 6d3 7s2 7p 1o
5 26 271 1.17 6d4 7s2 7p 3o

1/2 29 823 0.44

(18) 6d3 7s2 7p 3o
2 26 420 1.22 6d4 7s2 7p 3o

3/2 29 885 1.55

(19) 6d4 7s 7p 7F o
1 27 030 1.40 6d4 7s2 7p 3o

7/2 31 078 1.24

(20) 6d3 7s2 7p 4o
2 27 416 1.74 6d4 7s2 7p 4o

5/2 31 253 1.30

(21) 6d4 7s 7p 7F o
2 29 976 1.41 6d4 7s2 7p 4o

7/2 32 814 1.37

(22) 6d3 7s2 7p 3o
0 30 055 0.00 6d4 7s2 7p 4o

3/2 33 459 1.40

(23) 6d3 7s2 7p 2o
4 30 372 1.25 6d4 7s2 7p 2o

9/2 33 575 1.06

(24) 6d3 7s2 7p 3o
3 30 753 1.09 6d4 7s2 7p 5o

5/2 33 738 1.04

(25) 6d3 7s2 7p 5o
1 30 868 0.92 6d4 7s2 7p 4o

1/2 35 408 2.22

(26) 6d3 7s2 7p 4o
3 31 647 1.34 6d4 7s2 7p 5o

3/2 35 447 1.00

(27) 6d3 7s2 7p 6o
2 32 040 1.13 6d4 7s2 7p 6o

5/2 35 774 1.34

(28) 6d3 7s2 7p 3o
4 32 073 1.00 6d4 7s2 7p 5o

7/2 36 251 1.00

(29) 6d3 7s2 7p 4o
0 32 381 0.00 6d4 7s2 7p 6o

3/2 36 333 1.02

(30) 6d3 7s2 7p 6o
1 32 520 1.21 6d4 7s2 7p 7o

5/2 36 875 1.25

(31) 6d4 7s 7p 5Do
3 32 885 1.47 6d4 7s2 7p 1o

11/2 37 542 1.10

(32) 6d3 7s2 7p 4o
4 33 339 1.23 6d4 7s2 7p 6o

7/2 37 910 1.32

(33) 6d3 7s2 7p 7o
2 33 602 1.08 6d4 7s2 7p 7o

3/2 37 954 1.05

(34) 6d3 7s2 7p 8o
2 34 147 1.45 6d5 7s 7p 8Po

9/2 37 972 1.62

(35) 6d3 7s2 7p 2o
5 34 380 1.12 6d4 7s2 7p 4o

9/2 38 336 1.23

(36) 6d3 7s2 7p 6o
3 34 538 1.13 6d4 7s2 7p 8o

5/2 39 454 1.19

(37) 6d3 7s2 7p 7o
1 35 110 1.42 6d4 7s2 7p 7o

7/2 39 602 1.33

(38) 6d3 7s2 7p 7o
3 35 897 1.31 6d4 7s2 7p 5o

1/2 40 273 1.76

(39) 6d3 7s2 7p 5o
4 36 629 1.29

(40) 6d3 7s2 7p 9o
2 36 695 1.24

(41) 6d3 7s2 7p 8o
3 36 846 1.18

(42) 6d3 7s2 7p 8o
1 37 169 1.30
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TABLE III. (Continued.)

Sg I Bh I

Major configuration Term Energy (cm−1) Landé g factor Major configuration Term Energy (cm−1) Landé g factor

(43) 6d3 7s2 7p 6o
4 37 218 1.25

(44) 6d3 7s2 7p 3o
5 37 542 1.26

(45) 6d3 7s2 7p 5o
0 38 322 0.00

(46) 6d3 7s2 7p 9o
3 38 547 1.12

(47) 6d3 7s2 7p 10o
2 38 915 1.22

(48) 6d3 7s2 7p 7o
4 39 138 1.30

(49) 6d3 7s2 7p 4o
5 39 337 1.23

(50) 6d3 7s2 7p 10o
3 39 725 1.23

(51) 6d3 7s2 7p 9o
1 40 073 1.62

this accuracy is slightly better than what was reported in
Ref. [20] due to inclusion of a larger number of states into
the effective CI matrix.

Comparing the spectrum of Sg I in Table III to the spectrum
of W I [36], we can see the manifestation of relativistic effects.
As discussed above, relativistic effects cause the 7s orbital
in Sg I to be strongly contracted and more tightly bound in
comparison to the 6s orbital in W I. The same effects also
push out the 6d orbital of Sg I in comparison to the 5d
orbital in W I. In the W I spectrum, there are low-lying states
corresponding to the 6s → 5d excitation from the ground
state (e.g., the 5d56s 7S3 state at 2951.29 cm−1). In contrast,
in the Sg I spectrum, all low-lying even states belong to
the 6d4 7s2 configuration. The relativistic effects are more
apparent in the low-lying odd-parity states of Sg I. In W I,
all odd states correspond to the 6s → 6p excitation from the
ground state, while in Sg I, most of the low-lying odd states
correspond to the 6d → 7p excitation. Only a few of the Sg I

predicted in the optical region correspond to the 7s → 7p
excitation.

We calculate rates of electric dipole transitions from the
ground state to excited states of the opposite parity using the
approach described in Sec. IV. The results are presented in
Table V. There are not many such transitions due to the zero
value of the total angular momentum J in the ground state.
Because of that, the transitions are only allowed to the odd
states with J = 1. A few transitions are good candidates for
the detection. The transition with the highest transition rate is
5D0 → 9o

1 (ω = 40 073 cm−1).
We also present the isotopic shift parameters F and a, from

Eqs. (6) and (7), in Table V for each respective E1 transition.
The two isotopes we use are 269Sg and 290Sg (Rrms,269 =
5.8814 fm and Rrms,290 = 6.0145 fm, respectively), where
290Sg is the theoretically metastable (N = 184) isotope
of Sg.

B. The bohrium atom

Bohrium was first discovered in 1981 [60]. No atomic
spectra have been measured or calculated for any Bh isotopes
or ions. When calculating the energy spectrum of Bh I, we use

a similar approach as with Sg I. For the low-lying even-parity
spectrum, we use an effective CI matrix built from the states
of the 6d5 7s2, 6d6 7s, and 6d7 reference configurations. For
the odd-parity spectrum, we use the states from the 6d5 7s 7p,
6d4 7s2 7p, and 7d6 7p reference configurations. The lowest
six even-parity states and low-lying odd-parity states are pre-
sented in Table III. For an estimate of accuracy, we calculated
the low-lying spectrum of Re I (the lighter analog of Bh) with
similar parameters. Comparing the CIPT calculated spectrum
to the experimental spectrum [36], the energy discrepancy
(with respect to the ground state) was 
 ≈ 900 cm−1 for
the even-parity states, while for the odd-parity states, it was

 ≈ 2000 cm−1.

The calculated Bh I ground state is 6d57s2 6S5/2. As with
Sg I, we see the relativistic effect of the tightly bound 7s
electron which results in the primary excitation of the 6d
electron. Comparing the spectrum of Bh I with that of Re I

in Fig. 1, we see that there are several low-lying states in
Re I corresponding to 6s → 5d excitations (the lowest is at
11 754.52 cm−1), while there are no similar low-lying states
in Bh I. The density of low-energy odd-parity states is much
larger in Bh I than in Re I. The Bh I low odd-parity states
are completely dominated by the 6d → 7p excitations in the
calculated spectrum and there are no 7s → 7p excitations.
The odd-parity state comparison between Bh I and Re I is
similar to that of Sg I and W I in Sec. V A. In the spectrum
of Re I [36], there do exist states corresponding to 5d → 6p
transitions from the ground state; however, they occur much
higher in the spectrum compared to Bh I where the 6d → 7p
excitations dominate. It should be noted that the number of
low-lying odd-parity states is larger in Bh I than in Re I. The
lowest odd state of Bh I occurs at 12 792 cm−1, whereas in Re
I the lowest odd state is at 18 950 cm−1.

Bh I has a large number of allowed low-energy optical
E1 transitions from the ground state, which are presented in
Table V. The isotope shift parameters, a and F , are calcu-
lated using formulas (6) and (7) after calculating the atomic
spectra for the theoretically metastable isotope of 270Bh using
the CIPT method. We use the values of RMS nuclear radii
Rrms,270 = 5.8879 fm for 291Bh and Rrms,291 = 6.0207 fm for
291Bh.
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TABLE IV. Low-lying spectrum of even- and odd-parity states for Hs I and Mt I. We present the energy and Landé g factor for each state
Jparity. We present LS notations only for comparison with lighter analogs. For SHE states where an analogous state cannot be found in the
lighter analog, the term is labeled according to the sequential number of the state (n) for the given Jparity group, nparity

J .

Hs I Mt I

Major configuration Term Energy (cm−1) Landé g factor Major configuration Term Energy (cm−1) Landé g factor

Even-parity states
(1) 6d6 7s2 5D4 0 1.37 6d7 7s2 4F9/2 0 1.265
(2) 6d6 7s2 5D2 2 102 1.38 6d7 7s2 4F3/2 5 047 1.214
(3) 6d6 7s2 5D0 7 400 0.00 6d7 7s2 4F5/2 7 996 1.222
(4) 6d6 7s2 5D3 8 270 1.43 6d7 7s2 4F7/2 12 628 1.213
(5) 6d6 7s2 5D1 9 285 1.41 6d7 7s2 2G3/2 17 368 0.931
(6) 6d6 7s2 3H5 15 816 1.11 6d7 7s2 2G5/2 18 467 1.409

Odd-parity states
(7) 6d5 7s2 7p 1o

2 13 093 1.98 6d6 7s2 7p 1o
7/2 21 879 1.44

(8) 6d5 7s2 7p 1o
3 15 600 1.58 6d6 7s2 7p 1o

9/2 24 388 1.33

(9) 6d5 7s2 7p 2o
2 23 708 1.30 6d6 7s2 7p 1o

3/2 24 524 1.51

(10) 6d5 7s2 7p 2o
3 26 492 1.16 6d6 7s2 7p 1o

5/2 25 990 1.25

(11) 6d6 7s 7p 7Do
4 27 394 1.58 6d6 7s2 7p 2o

5/2 31 975 1.54

(12) 6d5 7s2 7p 1o
1 29 444 1.17 6d6 7s2 7p 1o

1/2 32 851 0.81

(13) 6d5 7s2 7p 3o
2 29 794 1.34 6d7 7s 7p 6Do

9/2 33 505 1.40

(14) 6d6 7s 7p 7Do
5 30 863 1.37 6d6 7s2 7p 2o

1/2 34 665 1.51

(15) 6d5 7s2 7p 3o
3 30 908 1.32 6d6 7s2 7p 2o

7/2 35 117 1.29

(16) 6d5 7s2 7p 4o
2 31 165 1.33 6d6 7s2 7p 2o

3/2 36 159 1.13

(17) 6d5 7s2 7p 2o
4 31 295 1.40 6d7 7s 7p 6F o

11/2 38 027 1.31

(18) 6d5 7s2 7p 1o
0 31 552 0.00 6d6 7s2 7p 3o

7/2 38 450 1.17

(19) 6d5 7s2 7p 3o
4 32 522 1.26 6d6 7s2 7p 3o

9/2 39 296 1.13

(20) 6d5 7s2 7p 5o
2 33 694 1.44 6d6 7s2 7p 2o

11/2 41 310 1.33

(21) 6d5 7s2 7p 4o
3 33 920 1.03

(22) 6d5 7s2 7p 2o
1 34 076 1.52

(23) 6d5 7s2 7p 2o
5 34 739 1.20

(24) 6d5 7s2 7p 5o
3 34 812 1.41

(25) 6d5 7s2 7p 4o
4 35 689 1.23

(26) 6d6 7s 7p 7Do
3 35 705 1.56

(27) 6d5 7s2 7p 3o
1 35 990 1.81

(28) 6d6 7s 7p 7Do
2 37 036 1.40

(29) 6d6 7s 7p 7Po
3 37 237 1.33

(30) 6d5 7s2 7p 5o
4 37 443 1.18

(31) 6d5 7s2 7p 7o
2 38 519 1.34

(32) 6d6 7s 7p 7Po
4 39 025 1.29

(33) 6d5 7s2 7p 3o
5 39 268 1.27

(34) 6d6 7s 7p 7Do
1 39 512 2.11

(35) 6d5 7s2 7p 8o
3 39 652 1.38

(36) 6d5 7s2 7p 9o
3 40 783 1.19

C. The hassium atom

Hassium (Z = 108) was first synthesized in 1984 [61]. We
present the low-lying levels and the first ionization energy of
Hs I in Table IV. For the low-lying even spectrum, effective
CI reference states belong to the 6d5 7s2, 6d6 7s, and 6d7

configurations. For the odd spectrum, we use reference states
of the 6d5 7s 7p, 6d4 7s2 7p, and 7d6 7p configurations. Note
that the half-filled 6d subshell makes computational methods
particularly expensive. However, using the CIPT method, the
computation becomes tractable.
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TABLE V. Strong electric dipole transitions and isotopic shift parameters for Sg I, Bh I, Hs I, and Mt I. Only direct optical transitions to
the ground state satisfying the E1 transition selection rules are shown. Here, DE1 is the transition amplitude in a.u., AE1 is the transition rate,
and a, F , and F̃ are the calculated isotopic shift parameters for the charge radius discussed in Sec. IV. The numbers in parentheses correspond
to the numbered states in Tables III and IV for the respective element.

State DE1 (a.u) AE1 (106 s−1) a (cm−1) F
(

cm−1

fm2

)
F̃ (cm−1) State DE1 (a.u) AE1 (106 s−1) a (cm−1) F

(
cm−1

fm2

)
F̃ (cm−1)

Sg I (Ground state: 5D0) Bh I (Ground state: 6S5/2)

(8) 1o
1 0.639 1.36 9.41 2.04 11.9 (9) 6Do

3/2 −0.172 0.107 18.1 3.74 22.8

(12) 2o
1 −0.160 0.192 −2.95 −0.639 −3.73 (10) 8Po

5/2 −0.474 0.812 83.4 17.2 105

(14) 3o
1 1.17 13.4 4.90 1.06 6.18 (11) 6Po

3/2 −0.494 1.38 −101 −20.7 −127

(19) 3Po
1 −0.163 0.353 −19.7 −4.25 −24.8 (12) 6Do

5/2 −0.0391 0.00611 −120 −24.6 −151

(25) 5o
1 0.592 6.97 6.58 1.42 8.30 (13) 8Po

7/2 0.500 0.858 84.5 17.4 107

(30) 6o
1 −0.412 3.95 7.01 1.52 8.85 (14) 6Do

7/2 0.345 0.471 −63.3 −13.0 −79.7

(37) 7o
1 −0.302 2.67 1.66 0.36 2.10 (16) 6F o

5/2 1.51 16.6 −160 −33.0 −202

(42) 8o
1 0.148 0.761 3.55 0.768 4.48 (18) 3o

3/2 1.50 30.0 −64.9 −13.4 −81.7

(51) 9o
1 0.524 11.9 −4.77 −1.03 −6.01 (19) 3o

7/2 1.75 23.3 44.0 9.06 55.4

(20) 4o
5/2 −0.433 1.90 −101 −20.7 −127

(21) 4o
7/2 1.88 31.2 −380 −78.4 −479

(22) 4o
3/2 −0.998 18.6 −41.3 −8.51 −52

(24) 5o
5/2 −0.101 0.131 −105 −21.6 −132

(26) 5o
3/2 0.438 4.27 −135 −27.9 −170

(27) 6o
5/2 −1.06 17.1 −364 −74.9 −458

(28) 5o
7/2 0.0665 0.0361 −34.7 −7.15 −43.7

(29) 6o
3/2 0.160 0.615 −70.6 −14.5 −88.9

(30) 7o
5/2 −0.539 4.86 −335 −69.0 −422

(33) 6o
7/2 −0.674 6.18 −129 −26.6 −163

(34) 7o
3/2 0.387 4.09 −513 −106 −647

(37) 8o
5/2 0.232 1.10 −561 −116 −707

(38) 7o
7/2 0.516 4.13 −364 −75.1 −459

Hs I (Ground state: 5D4) Mt I (Ground state: 4F9/2)

(8) 1o
3 0.501 0.276 22.7 4.45 28.9 (7) 1o

7/2 0.0537 0.00765 27.5 5.10 34.5

(10) 2o
3 0.224 0.269 22.9 4.49 28.8 (8) 1o

9/2 0.432 0.550 27.6 5.13 34.7

(11) 7Do
4 −1.11 5.66 −29.1 −5.70 −36.6 (13) 6Do

9/2 1.27 12.3 −51.7 −9.60 −64.9

(14) 7Do
5 0.999 5.41 −26.2 −5.15 −33.0 (15) 2o

7/2 −0.294 0.946 33.3 6.18 41.8

(15) 3o
3 0.208 0.370 16.2 3.18 20.4 (17) 6F o

11/2 −1.89 33.3 −47.9 −8.89 −60.1

(17) 2o
4 0.0934 0.0603 5.54 1.09 6.98 (19) 3o

9/2 0.0954 0.112 19.0 3.53 23.9

(19) 3o
4 0.120 0.112 18.5 3.62 23.2 (20) 2o

11/2 0.170 0.344 25.7 4.78 32.3

(21) 4o
3 −0.150 0.253 20.7 4.05 26.0

(23) 2o
5 −1.13 9.88 12.3 2.42 15.5

(24) 5o
3 1.70 35.5 12.3 2.41 15.5

(25) 4o
4 0.798 6.52 7.84 1.54 9.87

(26) 7Do
3 −0.493 3.20 −33.3 −6.53 −41.9

(29) 7Po
3 −0.511 3.91 −15.8 −3.11 −19.9

(30) 5o
4 −0.297 1.04 1.95 0.382 2.45

(32) 7Po
4 0.425 2.41 −9.56 −1.87 −12.0

(33) 3o
5 2.64 77.5 5.16 1.01 6.49

(35) 7o
3 2.10 80.0 −2.30 −0.451 −2.89
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Once again, it is interesting to compare the spectra of
Hs I with the analog Os I in the period above. In the even
states of Os I, there are states corresponding to the 6s → 5d
excitations from the ground state. In the Hs I spectrum, all
low-lying even states belong to the 6d5 7s2 configuration. No
states with the 7s → 6d excitation were found. The odd states
are similar to those of Sg and Bh, with the primary excitation
6d → 7p in Hs I, while there are no 5d → 6s excitations
in the low Os I spectrum. The odd states of Hs I also lie
much lower than those in Os I. The lowest odd state of Hs I

is 13 949 cm−1, while the first odd state of Os I occurs at
22 615.69 cm−1 [36].

The allowed strong optical E1 transitions from the low-
lying odd states to the ground state (5D4) are presented in
Table V. As with Bh I, there is a large number of strong optical
transitions. The transition with the largest rate is 3o

5 → 5D4

(ω = 39 268 cm−1). Other possibly detectable transitions
include 5o

3 → 5D4 (ω = 34 812 cm−1) and 2o
5 → 5D4 (ω =

34 739 cm−1).
We also present the isotopic shift parameters for the Hs

E1 optical transitions in Table V. These were calculated from
the theoretical spectra (calculated with the CIPT method) with
isotopes 270Hs and 292Hs with rms nuclear radii Rrms,270 =
5.8879 fm for 292Hs and Rrms,292 = 6.0207 fm for 270Hs.

D. The meitnerium atom

Meitnerium (Z = 109) was first synthesized in 1982 [62].
The ground state of Mt I is expected to follow that of the
element in the above period (Ir) with [Rn]5 f 146d77s2 4F9/2,
which we confirm in the calculated spectrum presented in
Table IV.

We use the same method as for previous elements to cal-
culate the low-lying spectrum of Mt I. We present the lowest
six even states using the 6d7 7s2, 6d8, 7s, and 6d9 reference
configurations. We also present the first 12 odd-parity states
for which the 6d7 7s 7p, 6d6 7s2 7p, and 6d87p configurations
were used. The results are in Table IV. Comparison with
lighter analog Ir I shows a similar trend as for the other SHE
Sg, Bh, and Hs.

We also present the allowed E1 transitions for Mt and
the respective isotope shift parameters in Table V. The high
energy of the odd states in Mt I results in a small number of al-
lowed E1 transitions within the optical region from the ground
state compared to Bh and Hs. Promising transitions for future
measurement include 6F o

11/2 → 4F9/2 (ω = 38 027 cm−1) and
6Do

9/2 → 4F9/2 (ω = 33 505 cm−1). All other rates are two
or more orders of magnitude smaller. For the synthesized
and metastable isotopes, we use the rms nuclear radii values,
Rrms,276 = 5.9265 fm and Rrms,293 = 6.0330 fm.

VI. IONIZATION POTENTIALS AND
COMPARISON WITH OTHER DATA

As well as calculating the spectrum of neutral Sg, Bh, Hs,
and Mt, we also calculated their first ionization potentials
(IPs). To calculate the IP for each atom, we use the same
single-electron basis set for a neutral atom and an ion. The
ionization potential is found as a difference between ground-
state energies of the atom and its ion. The effective CI matrix

TABLE VI. Theoretical and experimental ionization potentials
of open 5d shell elements. The CIPT energies are the results of the
present work.

IP (eV)

Atom Ionic state J Expt. [36] CIPT MCDF

Ta 5d3 6s 1 7.549 7.57
W 5d4 6s 1/2 7.864 7.90 6.97 [63]
Re 5d5 6s 3 7.833 7.85 6.84 [64]
Os 5d6 6s 9/2 8.438 8.69 7.45 [64]
Ir 5d7 6s 5 8.967 9.27

was built from all states of the 6dn7s, 6dn−17s2, and 6dn+1 ref-
erence configurations (n = 4–7 for Sg through to Mt). States
that were treated perturbatively were obtained by exciting
one or two electrons from the reference configurations and
generating all single-determinant states from these configura-
tions. We start from calculating the IPs of lighter analogs of
the SHE to compare them with experiment. The results are
in Table VI. We also include in the table the results of the
multiconfiguration Dirac-Fock (MCDF) calculation [63,64].
We do this because similar MCDF calculations have been
used for the SHE (see Tables VII and VIII). The CIPT values
of the IPs agree with experiment within a few percent (error
<1% for Ta, W, and Re, and ∼3% for Os and Ir). We expect
similar accuracy for the first IPs of SHE analogs presented
in Table VIII. For comparison, the difference between MCDF
values of IPs of W, Re, and Os and experimental IPs is larger
than 10% (Table VI).

Table VII shows some resonance (corresponding to strong
electric dipole transitions from the ground state) excitation
energies for SHE and their lighter analogs calculated in the
present work and by the MCDF method [63,64]. The energies
for lighter elements are compared to experiment. Our values
are taken from Tables III and IV; for the MCDF energies,
we present all results which can be found in [63,64]. There
is a significant difference in the excitation energies of SHE,
while for lighter atoms the difference is not so large. There
is a ∼10% difference from experiment in both calculations.
There are too little data on the MCDF calculations to come to
any conclusion about the reasons for the differences.

TABLE VII. Some excitation energies (cm−1) in open 6d shell
SHE and their lighter analogs. The CIPT energies are the results of
the present work.

Atom State Expt. [36] CIPT MCDF [63,64]

W 5d4 6s2 5D1 1670 1502 1162
5D2 3325 2664 2581

Re 5d5 6s6p 8Po
5/2 18950 14000

Os 5d6 6s6p 7Do
5 23463 26000 20500

Sg 6d4 7s2 5D1 4834 4186
5D2 7614 7211

Bh 6d5 7s7p 8Po
5/2 2220 15100

Hs 6d5 7s27p 5So
2 13100 5100

5Do
3 15600 8600

042509-10



THEORETICAL STUDY OF THE ELECTRON STRUCTURE … PHYSICAL REVIEW A 99, 042509 (2019)

TABLE VIII. Ionization potentials of open 6d-shell SHE, including ions. The CIPT energies are the results of the present work.

IP (eV)

Atom or ion Ground state J CIPT RHFa MCDF [63,64] Extrap. [63,64]

Db I 6d3 7s2 2 7.01 6.75

Sg I 6d4 7s2 0 8.22 7.70 7.03 7.85
Sg II 6d3 7s2 3/2 18.0 15.85 17.06
Sg III 6d2 7s2 2 24.8 24.61 25.74

Bh I 6d5 7s2 5/2 8.03 8.63 6.82 7.7
Bh II 6d4 7s2 0 19.0 16.55 17.5
Bh III 6d4 7s 1/2 26.2 25.64 26.6
Bh IV 6d4 0 36.8 36.33 37.3

Hs I 6d6 7s2 4 8.52 9.52 6.69 7.6
Hs II 6d5 7s2 5/2 19.7 16.62 18.2
Hs III 6d4 7s2 3 27.7 27.12 29.3
Hs IV 6d4 7s 1/2 40.5 36.59 37.7
Hs V 6d4 0 50.6 50.37 51.2

Mt I 6d7 7s2 9/2 9.86 10.4
Mt II 6d6 7s2 4 20.7
Mt III 6d5 7s2 5/2 28.4
Mt IV 6d5 7s 3 43.3
Mt V 6d5 5/2 50.3

aRelativistic Hartree-Fock with semiempirical core-polarization correction [19].

Finally, Table VIII shows IPs of SHE and their ions. We
included the result of our previous work on Db [22] together
with the relativistic Hartree-Fock (RHF) calculations, which
include semiempirical core-polarization correction [19] and
the MCDF results [63,64]. There are two sets of MCDF
results. One, in the column marked as MCDF, is what di-
rectly comes from the MCDF calculations. We also presented
prediction of MCDF IPs corrected by extrapolation of the
difference with experiment from lighter atoms (marked as
“Extrap.”). As one can see from Table VI, the MCDF method
tends to underestimate IPs by about 10%. Therefore, multiply-
ing the calculated IPs by a factor of ∼1.1 extrapolated from
lighter elements leads to better prediction of the IPs for SHE.
Indeed, the extrapolated values are in better agreement with
our CIPT calculations. Note, however, that the extrapolation
assumes similarities between involved elements. In fact, they
are significantly different. Ionization of lighter elements goes
via removal of the s electron (6s electron for W, Re, and
Os). In contrast, ionization of SHE goes via removal of the
6d electron. RHF calculations (see Ref. [19] and Table VIII)
used a different type of extrapolation. Instead of extrapolating
a final number, a term in the Hamiltonian was extrapolated. A
term, simulating the effect of core polarization, was added to
the RHF Hamiltonian in Ref. [19]. Its strength was chosen to
fit IPs of lighter atoms. Then the same term was used for SHE.

Studying IPs of SHE with open 6d shell shows a signif-
icant difference in trends compared to their lighter analogs.
These differences are convenient to discuss by looking at the
diagram in Fig. 2. The diagram shows trends in IPs of SHE
with open 6d shell from Db to Mt, together with the trends
for lighter atoms from Ta to Ir. IPs for doubly ionized ions
of lighter elements are also shown because they do not have
external s electrons, and further ionization of these ions goes

via removal of a d electron similar to what takes place for
SHE.

First, we note that the change of IPs from Ta to Ir is smooth
and almost monotonic, apart from a small local minimum at
the Re atom. It shows increasing of IP towards the fully filled
5d shell. The ionization occurs via removal of a 6s electron.
The 6s orbital is not very sensitive to the details of the energy
structure of other shells, which explains the smooth behavior
of the IP trend. In contrast, ionization of the SHE occurs via
removal of a 6d electron. Strong relativistic effects manifest
themselves in the trend of the IP change. A local maximum
of the IP occurs for an Sg atom that has four 6d electrons
in the fully occupied 6d4

3/2 subshell. Removing an electron
from a closed shell is difficult, and therefore there is a local
maximum. The next atom, Bh, has one more 6d electron,
which has to occupy the 6d5/2 state. Due to large relativistic
effects in SHE, there is a large fine-structure interval between
the 6d3/2 and 6d5/2 states and therefore a significantly smaller
IP for Bh (see Fig. 2 and Table VIII). A similar effect is known
for an open p shell, where it is more pronounced. For example,
the IP of Bi, which has three 6p electrons, is smaller than for
Pb, which has two 6p electrons corresponding to the closed
6p2

1/2 subshell. The effect is much more pronounced for SHE
with an open 7p shell [16]. The IP of Mc (Z = 115), which
has three 7p electrons, is about 1.5 times smaller than the IP
of Fl (Z = 114), which has two 7p electrons.

To see whether a similar effect can be found in lighter
atoms, we studied IPs of doubly ionized ions with an open d
shell (from 3d to 5d). The ions were chosen because they do
not have external s electrons, and further ionization goes via
removal of a d electron. The results are shown in Fig. 2. Most
IP values are taken from the NIST database [36]. However,
NIST data for ions from Ta III to Ir III have poor accuracy.
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FIG. 2. Plot of ionization trends for open d-shell elements. The
IP trend lines for the doubly ionized elements (blue) use the scale on
the right and the neutral IP trend lines (red) use the left. The IPs of
neutral SHEs and the doubly ionized lighter homologues Ta III, W III,
Re III, Os III, and Ir III were calculated using the CIPT method. All
other IPs are from Ref. [36].

Therefore, we recalculated the IPs using the CIPT method. IPs
of these ions show a different trend compared to the SHE. The

maximum binding energy and hence the maximum IP is for a
half-filled d shell, in agreement with the nonrelativistic Hund
rule, which states that the maximum energy corresponds to
the maximum possible value of the total spin. This holds even
for the heaviest of the three groups of ions. Thus, the SHE
elements with the open 6d shell represent the only known ex-
ample of a strong manifestation of relativistic effects, making
the energy difference between the 6d3/2 and 6d5/2 states more
important than Hund’s rule.

A similar manifestation of relativistic effects can be
found in the trends of further ionization of the SHE ions
(see Table VIII). In many cases (e.g., the Bh and Hs ions),
ionization from the 6d shell stops as soon as the fully filled
6d4

3/2 subshell is reached. Further ionization occurs from the
7s subshell.

VII. CONCLUSION

Here we calculate atomic spectra and optical E1 transi-
tions for the elements in the superheavy region with open d
shells. In spite of the extreme computational cost of existing
methods, by using perturbation theory we can calculate the
low-lying energy states and relevant E1 transitions with a
modest computational cost and with a small loss in accuracy
[20]. In this work, we presented the low-lying energy states
for Sg I, Bh I, Hs I, and Mt I, including the optical transitions
between the ground state and states of the opposite parity
and their ionization potentials. For all SHEs, we observed the
relativistic effects, which contract the spectrum compared to
their lighter analogs. This is advantageous as it results in a
large number of states in the allowed E1 optical region and
therefore enhances the likelihood of future measurements.
These calculations will help to facilitate future experimen-
tal measurements of atomic spectra of these elements. We
also presented the relevant isotopic field shift for optical E1
transitions for all four considered SHE. This may help the
interpretation of future measurements and contribute to our
understanding of the nuclear properties of elements in the
superheavy region and potentially identify the existence of
metastable superheavy isotopes in astronomical spectra.
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