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Microwave spectroscopy of the Yb 6s(n + 3)d → 6sng, 6snh, and 6sni transitions
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Using a microwave and radio frequency resonance approach we observe the transitions of ytterbium from the
6s(n + 3)d states to the 6sn� states for 4 � � � 6 and 28 � n � 33. The energies of the 6sn� states of � � 4 are
determined from the observed intervals and the known values of the 6snd energies. We use a nonadiabatic core
polarization model to analyze the energy levels to determine the dipole (αd ) and quadrupole (αq) polarizabilities
of the ground state of Yb+. We find the values αd = 60.51(10)a3

0 and αq = 672(28)a5
0.
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I. INTRODUCTION

The Yb+ ion is of great interest for use in an optical fre-
quency standard, the study of parity nonconservation (PNC),
and the study of the violation of Lorentz symmetry [1–15]. For
these applications it is critical to know the electric multipole
moments connecting the Yb+ ground state to its first few
excited states. In a 171Yb+ optical frequency standard [1–12]
the leading contribution to the systematic uncertainty of the
frequency is the blackbody radiation (BBR) shift [13]. At an
operating temperature of 300 K, the BBR shift is measured to
be −0.36(7) Hz [5]. The 2S1/2(F = 0)-2D3/2(F ′ = 2) transi-
tion frequency is realized with an uncertainty of 1.1 × 10−16

that is mainly from the BBR shift uncertainty [13]. The BBR
shift is proportional to the difference in the dipole polarizabili-
ties of the ionic 2S1/2 and 2D3/2 states. The largest contribution
to the uncertainty of the BBR shift is the uncertainty of
the polarizabilities of the ionic states [13]. Therefore, it is
essential to determine accurate values of the polarizabilities
of the ionic states. In the study of PNC, the Yb+ ion is one
of the candidates for testing the standard model. The dipole
(E1) matrix elements of Yb+6s1/2-6p1/2 and 6s1/2-6p3/2 and
the quadrupole (E2) matrix elements of Yb+ 6s1/2-5d3/2 and
6s1/2-5d5/2 are important in the calculation of PNC in the Yb+

ion [15]. Since these matrix elements are the most important
contributions to the dipole and quadrupole polarizabilities αd

and αq of the ground state of Yb+, measurements of these
polarizabilities constrain the possible values of these matrix
elements.

We have determined the ground-state Yb+ polarizabilities
by measuring energies of the high-�, � � 5, 6sn� states of Yb.
When the Rydberg electron is in a high-�, � � 5, state, there
is no core penetration [16,17], but the n� Rydberg electron
produces a quasistatic electric field at the ion core, which
polarizes the Yb+ ion core and depresses the 6sn� Rydberg
state energy from the hydrogenic n� level [18]. Hence, the
polarizabilities of the ion core can be measured by measuring
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the depression of the energies of the Yb Rydberg 6sn� states
below the n� hydrogenic level.

Here we report the 6s(n + 3)d1D2 → 6sn�, 4 � � � 6,
intervals observed by microwave spectroscopy. Using the
known 6s(n + 3)d energy levels [19], we determine the
energy levels of the 6sn� states and their quantum defects. We
use a nonadiabatic core polarization model to analyze the 6sn�

energy levels of � = 5 and 6 to determine the Yb+ 6s dipole
and quadrupole polarizabilities. In the sections that follow
we describe the experimental approach, our observations, and
the data analysis. Finally, we compare our polarizabilities to
those obtained previously.

II. EXPERIMENTAL APPROACH

In this experiment atoms in a thermal beam of neutral Yb
are excited to Rydberg states using two pulsed dye lasers at a
20 Hz repetition rate. We use natural Yb, and for the analysis
we assume that we have the most common isotope, 174Yb.
The first laser, fixed at 398.91 nm, drives the ground-state
6s2 1S0 atoms to the 6s6p 1P1 state, and a tunable laser at
about 396 nm drives the atoms to 6s(n + 3)d 1D2 states. The
atoms in the 6s(n + 3)d 1D2 states are further excited by
microwave and radio frequency (RF) photons to the higher
angular momentum 6sn� states. The relevant energy levels
of Yb are shown in Fig. 1(a). The Yb beam and the two
copropagating laser beams cross at a right angle between two
horizontal plates 1.5 cm apart, defining the region in which
the Yb Rydberg atoms interact with the microwave and RF
pulses. As shown by Fig. 1(b), a 1 μs long microwave pulse
starts 50 ns after the second laser pulse to excite the atoms to
the nearby 6sng state by a two-photon transition. For the three-
photon transitions 6s(n + 3)d → 6snh, a 1 μs long RF pulse
is added at the same time as the microwave pulse. The 6s(n +
3)d → 6sni transition is driven by adding a bias field of
100–200 mV/cm in addition to the microwave and RF pulses.

The microwave power is generated by an Agilent 83620A
synthesized sweep generator that produces a continuous
wave (CW) output from 10 MHz to 20 GHz. A General
Microwave DM862D switch is then used to produce the
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FIG. 1. (a) Energy levels and (b) timing of the experiment.

microwave pulses. Several frequency multipliers—a Narda
DBS2640X220 active doubler, a Narda DBS4060X410 active
quadrupler, a Pacific Millimeter V2WO passive doubler, a
Pacific Millimeter W3WO passive tripler, and a custom-made
Pacific Millimeter D3WO passive tripler—are used to multi-
ply the synthesizer frequency to the desired frequency. The
microwave pulse propagates from the frequency multiplier
through a WR28 waveguide feedthrough to a WR28 horn
inside the vacuum chamber. The RF frequency source is a
swept signal generator of the Agilent Technologies 8360B
series that is used to generate a pulsed output of ∼20 mW
over a range of 3–8 GHz and is delivered to a WR 187 horn
inside the vacuum chamber by coaxial cable.

We nulled the stray electric field in the vertical direction
by applying a bias voltage to the lower plate defining the
interaction region. A typical applied voltage is 100 mV,
corresponding to a 67 mV/cm field. We have measured the
horizontal stray field by replacing the upper plate with a split
plate, allowing the application of a horizontal field. Using
this approach we determined the horizontal stray fields to be
<10 mV/cm. For all the measurements the vertical field was
nulled, and the horizontal field leads to a shift of at most
170 kHz in the worst case, the 6s36d-6s33i transition. In all
cases the shifts are less than the measurement uncertainties.

As shown in Fig. 1(b), 50 ns after the microwave pulse,
a large negative voltage pulse is applied to the bottom plate
to field-ionize the Rydberg atoms. The amplitude of the
field pulse is chosen to allow the temporal separation of the
ionization signals from the initial and final states of the tran-
sitions. The final states of the transitions are lower in energy
than the initial 6s(n + 3)d states and ionize at higher fields.
Since the high-� 6sn� states lie energetically between the ini-
tial and final states of the microwave transitions, it is straight-
forward to separate the two field ionization signals [20]. The
freed electrons pass through a hole in the top aluminum plate

and are detected by a microchannel plate (MCP) detector. The
MCP signal is recorded by a gated integrator as one of the
synthesizers is swept over the resonance frequency over many
shots of the lasers. The frequency sweeps are repeated until an
acceptable signal-to-noise ratio is obtained.

III. EXPERIMENTAL OBSERVATIONS

A. Two-photon 6s(n + 3)d → 6sng intervals

We observed the two-microwave-photon 6s(n + 3)d →
6sng transitions for 28 � n � 33. Figure 2 shows a typi-
cal resonance, the 6s34d → 6s31g transition at the relative
microwave power of 0.008. At relative power 1 the power
output of the source is 15 dBm (31 mW). Its linewidth is
1 MHz, which is the transform limited linewidth. There was
no attempt to eliminate the earth’s magnetic field. However,
the states 6s(n + 3)d 1D2 and 6sng 1G4 are singlet states, and
they have the same Landé g j factors. Therefore, all the �mj =
0 transitions occur at the same frequency, yielding narrow
lines [21]. Since there is an AC Stark shift, we observed
the microwave resonances at different microwave powers and
extrapolated to zero power as shown in Fig. 3. The largest
AC shift we observed was ∼0.5 MHz. The observed intervals,
twice the two-photon frequencies extrapolated to zero power,
are given in Table I.

B. Three-photon 6s(n + 3)d → 6snh intervals

The three-photon transitions were driven by two mi-
crowave photons and one RF photon. To observe the three-
photon resonances, the microwave frequency was swept near
the two-photon (n + 3)d-ng transitions and the RF frequency
was fixed approximately 100–500 MHz from the expected
6sng-6snh interval. The RF frequency was in the range of 3–6
GHz for the n states of interest. To verify that the transitions
observed were three-photon 6s(n + 3)d → 6snh transitions,
we varied the RF frequency over a range of ±5 MHz. At each

FIG. 2. Two-photon 6s34d → 6s31g resonance at the relative
microwave power of 0.008. The linewidth of the resonance is 1 MHz,
which is the transform limited linewidth of a 1 μs microwave pulse.
At the peak of the resonance we estimate that ∼100 atoms undergo
the microwave transition on each laser shot.
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FIG. 3. Extrapolation of the two-photon 6s35d → 6s32g
resonance to zero microwave power.

RF frequency, the microwave frequency was scanned, and we
verified that the difference of twice the microwave frequency
and the RF frequency was constant over the RF range used.
A typical resonance, the 6s32d-6s29h transition, is shown in
Fig. 4. The resonance is not as narrow as that shown in Fig. 2,
possibly because the 6snh state is not a singlet state, with the
result that the resonance is broadened by the earth’s field.

We expected to observe doublets of approximately equal
intensity, due to the K splitting, as observed in Ca, Sr, and
Ba [16,17,22]. Using the adiabatic expansion method we
estimated the K splittings for the Yb 6s30h and 6s30g states
to be 60 and 10 MHz, respectively [23]. In spite of a thorough
search we only observed one strong feature, as shown in
Fig. 4. The small feature at 79 305 MHz in Fig. 4 is due to
�m �= 0 transitions, which occur due to the presence of both
parallel and perpendicular microwave and RF fields. Since
both features extrapolate to the same zero-power interval, we
ignore the weaker feature.

There are AC Stark shifts due to both the microwave and
RF fields, leading to maximum shifts of about 20 MHz. We
verified that the AC Stark shifts due to the RF and microwave
fields were additive, and we then employed the following
approach. We observed the resonances at different RF powers
while the microwave power was kept constant. The zero RF
power resonance frequency at that microwave power was
determined by extrapolating the observed resonances linearly
as shown in Fig. 5(a). We then varied the microwave power
to find the zero RF power resonances at different microwave
powers. The zero RF power data were extrapolated to zero
microwave power to obtain the resonance frequency at zero

TABLE I. 6s(n + 3)d-6sng observed intervals.

n Interval (MHz)

28 93 198.90(5)
29 83 854.12(8)
30 75 730.23(12)
31 68 628.92(6)
32 62 392.36(7)
33 56 891.84(7)

FIG. 4. Three-photon 6s32d → 6s29h resonances at relative mi-
crowave power and relative RF power of 0.562 and 0.126, respec-
tively. The RF frequency is 4730 MHz and the microwave frequency
is scanned as shown by the scale at the top of the figure. The
linewidth of the resonance is 2.1 MHz. The subsidiary feature at
79 305 MHz is due to a �m �= 0 transition driven by perpendicular
RF and microwave fields.

RF and microwave powers, as shown in Fig. 5(b). In Table II
we present the approximate RF and microwave frequencies
used and the 6s(n + 3)d-6snh intervals extrapolated to zero
RF and microwave powers.

C. Three-photon and static-field 6s(n + 3)d → 6sni intervals

We could not produce enough microwave and RF power to
drive the four-photon 6s(n + 3)d → 6sni transitions. Hence,
these transitions were driven by three photons in the presence
of a static field in the z direction. For these transitions the
microwave frequency was kept constant near the two-photon
6s(n + 3)d → 6sng resonances, and the RF frequency was
swept to observe the 6s(n + 3)d → 6sni transitions. As for
the 6snh states, we do not observe a K splitting, rather
a single resonance, typified by the 6s32d-6s29i resonance
shown in Fig. 6, which was taken at a static field of 121.8
mV/cm, with relative microwave and RF powers of 0.9 and
0.1, respectively. The linewidth of the resonance is 5.3 MHz.
The minimum linewidth of the 6s(n + 3)d-6sni transitions
was 3 MHz, presumably due to the earth’s field. Since the
Rabi frequency for the transition is proportional to the static

TABLE II. 6s(n + 3)d-6snh observed intervals.

n
Approx. RF

frequency (MHz)
Approx. MW

frequency (MHz)

6s(n + 3)d →
6snh interval

(MHz)

29 4730 42 010 79 298.88(24)
30 4490 38 050 71 613.62(30)
31 4200 34 550 64 895.66(37)
32 4190 31 600 58 999.46(38)
33 4200 29 000 53 788.98(38)
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(a)

(b)

FIG. 5. Extrapolation of the three-photon 6s34d → 6s31h reso-
nance to zero microwave power and zero RF power. (a) The relative
microwave power was kept at 0.316; the resonances were observed at
different RF powers. The observed data were extrapolated to find the
resonance at zero RF power. (b) The same process as (a) was repeated
at several microwave powers. The zero RF power data at different
microwave powers were extrapolated to obtain the resonance at zero
RF and microwave powers.

field, the resonances broaden with increasing static field. The
static field was varied over the range of 0–150 mV/cm, which
causes a frequency shift as large as 40 MHz. To eliminate the
AC Stark shift of a 6s(n + 3)d to 6sni transition at a given
value of static field we followed the same procedure we used
for the three-photon 6s(n + 3)d → 6snh transitions, resulting
in the 6s(n + 3)d → 6sni intervals at zero microwave and RF
powers for that static field. The RF and microwave power ex-
trapolations are shown in Figs. 7(a) and 7(b). Both microwave
and RF powers lead to frequency shifts of up to ∼5 MHz.
The zero-power intervals were then extrapolated to zero static
field, as shown by Fig. 8, a linear plot of the 6s(n + 3)d →
6sni interval versus the square of the static field. In Table III
we give the typical RF and microwave frequencies and the
6s(n + 3)d-6sni intervals extrapolated to zero static field.

IV. ENERGIES AND QUANTUM DEFECTS

Using the 6snd 1D2 quantum defects extracted from the
multichannel quantum defect theory analysis of Ref. [19] and
the ionization limit of 50 443.07041(25) cm−1 [19] yields the
6s(n + 3)d binding energies of Table IV.

FIG. 6. Four-photon 6s32d → 6s29i resonance at static field of
121.8 mV/cm, relative microwave power 0.891, and relative RF
power 0.1. The microwave frequency is 41 940 MHz, and the RF
frequency is scanned as shown by the upper scale. With the same
microwave and RF powers the linewidth is 3 MHz at low static field,
but at this static field the resonance is power broadened to 5.3 MHz
since the Rabi frequency is proportional to the static field.

Combining these energies with the intervals given in the
previous section we find the 6sn� binding energies given in
Table V, where we also give the hydrogenic binding energies
of 28 � n � 33, calculated using the Rydberg constant for
174Yb, RY b = 3 289 831 526.526 MHz.

The binding energies of Table V can be used to determine
the quantum defects of the 6sn� states. The energy of a 6sn�

state is given by

W6sn� = −RY b

(n − δ�)2
. (1)

The quantum defect δ� of an unperturbed Rydberg series can
be expressed using a Ritz expansion.

Explicitly,

δ� = δ�0 + δ�1

(n − δ�0)2
. (2)

Fitting the 6sng, 6snh, and 6sni energies of Table V to Eqs. (1)
and (2) leads to the quantum defects of the 6sn� states and
the quantum defect parameters shown in Tables VI and VII,
respectively.

TABLE III. 6s(n + 3)d-6sni observed intervals.

n
Approx. RF

frequency (MHz)
Approx. MW

frequency (MHz)

6s(n + 3)d →
6sni interval

(MHz)

29 6010 41 940 77 866.0(28)
30 5440 37 880 70 318.78(36)
31 4930 34 330 63 726.60(85)
32 4490 31 210 57 934.35(55)
33 4080 28 460 52 836.4(25)
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(a)

(b)

FIG. 7. Extrapolation of the three-photon 6s36d → 6s33i reso-
nance in the static field of 83.33 mV/cm to zero microwave power
and zero RF power. (a) The relative microwave power was kept at
0.0631; the resonances were observed at different RF powers. The
observed data were extrapolated to find the resonance at zero RF
power. (b) The same process as (a) was repeated at a few different
microwave powers. The zero RF power data at different microwave
powers were extrapolated to obtain the 6s36d → 6s33i interval at
zero RF and microwave powers.

V. CORE POLARIZATION ANALYSIS

The energy depression below the hydrogenic energy and
quantum defects of nonhydrogenic Rydberg states arise from
penetration and polarization of the ion core by the Rydberg
electron. Penetration only occurs for Rydberg states of low
�; for high-� states the quantum defects are only due to the
polarization of the ion core by the electric field and field
gradient from the Rydberg electron. The polarization energy

TABLE IV. Quantum defects and binding energy of 6s(n + 3)d
states.

(n + 3) Quantum defects Binding energy (MHz)

31 2.710792 4 110 837.1(2.4)
32 2.710816 3 834 998.7(2.4)
33 2.710879 3 586 003.7(2.4)
34 2.710960 3 360 484.1(2.4)
35 2.711049 3 155 582.3(2.4)
36 2.711141 2 968 861.1(2.4)

FIG. 8. Frequency of the 6s34d → 6s31i interval vs squared
bias field applied in the z direction. The zero-field frequency is
63 726.60(85) MHz.

is given by

Wpol,n� = W6sn� − WnH , (3)

where Wpol,n� is the polarization energy, W6sn� is the energy
level of the n� Rydberg state, and WnH is the hydrogenic
energy level of the n state. If the Rydberg electron moves
slowly relative to the electrons in the ion core (the adiabatic
approximation) the polarization energy can be written in
atomic units as [18]

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2αq〈r−6〉n�, (4)

where αd and αq are the dipole and quadrupole polarizabilities
of the Yb+ 6s core, respectively. The expectation values of r−4

and r−6 are the squares of the field and the field gradient at
the core from the Rydberg electron in the n� state. Assuming
the Rydberg n� electron to be hydrogenic, we can use known
analytic expressions for the expectation values 〈r−4〉n� and
〈r−6〉n�. Therefore, by measuring Wpol,n� for several nonpene-
trating high-� states we can determine the polarizabilities αd

and αq of the ion core.
We can rewrite Eq. (4) in the experimentally convenient

form as [24]

Wpol,n� = −αd Pn� − αqPQn�, (5)

where

Pn� = RYb〈r−4〉n� (6)

and

Qn� = 〈r−6〉n�

〈r−4〉n�

. (7)

We can express Eq. (5) as

−Wpol,n�

Pn�

= αd + αqQn�. (8)

From Eq. (8), we can extract the values of αd and αq from a
graph of −Wpol,n�/Pn� vs Qn�; αd and αq are the intercept and
slope of a line through the data points.

As pointed out by Van Vleck and Whitelaw, the adiabatic
core polarization model is a limiting case of a more general
model. The polarization energy shift of the n� state from the
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TABLE V. Binding energies of 6sn� states and the hydrogenic energy.

n 6sng (MHz) 6snh (MHz) 6sni (MHz) Hydrogenic (MHz)

28 4 204 036.0(2.4) 4 196 213.7
29 3 918 852.8(2.4) 3 914 297.6(2.4) 3 912 864.7(3.7) 3 911 809.2
30 3 661 733.9(2.4) 3 657 617.3(2.4) 3 656 322.4(2.4) 3 655 368.4
31 3 429 113.0(2.4) 3 425 379.7(2.4) 3 424 210.7(2.6) 3 423 341.9
32 3 217 974.6(2.4) 3 214 581.7(2.4) 3 213 516.6(2.5) 3 212 726.1
33 3 025 752.9(2.4) 3 022 650.1(2.4) 3 021 697.5(3.5) 3 020 965.6

hydrogenic level is the second-order shift due to the multipole
expansion of the Coulomb interaction between the ion core
and the n� Rydberg electron [25]. The adiabatic equation,
Eq. (4), is the limiting case of the second-order shift when
the energies of the excited ion core are much greater than
the spread in energies of the relevant Rydberg states. To
make this notion more concrete we use the dipole polarization
energy of the 6s30h state of Yb as an example. Consider the
simple picture of the Yb energy levels shown in Fig. 9. For
each energy level of the Yb+ core (NL, bold line), there are
Rydberg series (NLn�) converging to the ionic level from
below and the continua (NLε�) above the ionic level. The
dipole polarization energy of the 6s30h state comes from
the dipole coupling of the 6s30h state to the N png, N pεg,
N pni, and N pεi states. The total dipole shift due to the levels
associated with the ionic N p state is calculated by using
the dipole coupling in second-order perturbation theory and
summing over all n and integrating over the continua ε. The
summation and integration span the energy range � in Fig. 9.
In the limit where the span of energy is much less than the
ionic energy level separation, � � �, the adiabatic equation,
Eq. (4), is recovered.

The adiabatic core polarization model works well for the
alkali metals where the energies of the excited ionic states are
much greater than the spread in energy of the relevant Rydberg
states. However, the adiabatic core polarization model breaks
down when applied to the alkaline-earth metals and Yb, where
the energies of the ionic excited states are comparable to the
spread in energy of the relevant Rydberg states. For example,
the energies of the low-lying excited states of Li+ and Na+

exceed 30 eV while the energy span of the relevant Rydberg
states is less than 1 eV. In contrast, the low-lying ionic states of
Yb+ have energies less than 4 eV, while the relevant Rydberg
states still span an energy range approaching 1 eV. Therefore,
we must take the nonadiabatic effect into account. It can be
done in several ways. One is the adiabatic expansion method,
in which expectation values of higher inverse powers of r

TABLE VI. Quantum defects of 6sn� states.

n 6sng 6snh 6sni

28 0.026 062(8)
29 0.026 074(9) 0.009 219(9) 0.003 912(14)
30 0.026 087(10) 0.009 224(10) 0.003 914(10)
31 0.026 097(11) 0.009 223(11) 0.003 933(12)
32 0.026 107(12) 0.009 237(12) 0.003 936(12)
33 0.026 117(13) 0.009 196(13) 0.003 997(19)

are used [26]. An alternative, which we have used here, is to
introduce the nonadiabatic factors kd and kq so that Eq. (4)
becomes [27]

Wpol,n� = − 1
2αd kd〈r−4〉n� − 1

2αqkq〈r−6〉n�. (9)

The numerical factors kd and kq are the ratios of the per-
turbation theory sums to the expectation values 〈r−4〉n� and
〈r−6〉n�. Yb is similar to alkaline earth atoms in that the largest
radial matrix elements connecting the Yb+ ground state to
the N p and Nd states are the 〈6s|r|6p〉 and 〈6s|r2|5d〉 matrix
elements. Accordingly, the largest contributions to αd and αq

come from the dipole and quadrupole couplings to the 6pn′�
and 5dn′� states. To a good approximation αd and αq are only
due to these couplings, so we assume this to be the case,
although it introduces the need for small corrections to the
values we obtain for αd and αq. With the assumption that only
the 6pn′� and 5dn′� states contribute to the kd and kq sums,
they are given by [27]

kd = (W6p − W6s)

〈n�| 1
r4

2
|n�〉

⎡
⎣ �

2� + 1

∑
n′

∣∣〈n�| 1
r2

2
|n′� − 1〉∣∣2

W6pn′�−1 − W6sn�

+ � + 1

2� + 1

×
∑

n′

∣∣〈n�| 1
r2

2
|n′� + 1〉∣∣2

W6pn′�+1 − W6sn�

⎤
⎦ (10)

and

kq = 5(W5d − W6s)

〈n�| 1
r6

2
|n�〉

⎧⎨
⎩

3

10(4�2 − �)(2� + 3)

×
⎡
⎣(2� − 1)(� + 1)(� + 2)

∑
n′

∣∣〈n�| 1
r3

2
|n′� + 2〉∣∣2

W5dn′�+2 − W6sn�

+ 2(�2 + �)(2� + 1)

3

∑
n′

∣∣〈n�| 1
r3

2
|n′�〉∣∣2

W5dn′� − W6sn�

+ (2� + 3)(�2 − �)
∑

n′

∣∣〈n�| 1
r3

2
|n′� − 2〉∣∣2

W5dn′�−2 − W6sn�

⎤
⎦

⎫⎬
⎭. (11)

TABLE VII. Quantum defect parameters of the 6sn� series.

Series δ0 δ1

6sng 0.026 257 4(25) −0.153 3(22)
6snh 0.009 305(33) −0.073(31)
6sni 0.004 062(36) −0.128(34)
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FIG. 9. Schematic Yb energy levels. For each level of the Yb+

core NL (bold line), there are Rydberg series (NLn�) converging to
the ionic level from below and continua (NLε�) converging to the
ionic level from above. The 6s30h state is dipole coupled to the N png
and N pni states and the N pεg and N pεi continua by the Rydberg
electron and the ion core interaction. The total dipole shift of the
6s30h state due to the Rydberg states associated with the ionic N p
levels is calculated by using the second-order perturbation of the
dipole coupling and summing over all n and integrating over the
continua ε. The summation and integration span the energy range
�. In the limit where the span of energy is much less than the ionic
energy level, � � �, the adiabatic equation, Eq. (4), is valid.

In the adiabatic limit, � � �, the energy denominators in
the summations of Eqs. (10) and (11) can be removed from
the summations and cancel the energy differences in the
prefactors. Thus, the summations contain only squared radial
matrix elements, and it is straightforward to show that in this
limit kd = kq = 1. In Table VIII and Table IX we present the
calculated values for kd and kq. These values were calculated
numerically using hydrogen wave functions and a Numerov
algorithm. We checked our numerical calculation using [25]

∑
n′

〈n′�′|rs|n�〉2 = 〈n�|r2s|n�〉. (12)

The errors in calculation were determined to be less than
0.1%. The kd values have no n dependence to four signifi-
cant digits and the kq values have no n dependence to three
significant digits.

For simplicity of notation we introduce the following adap-
tations of Pn� and Qn�:

P′
n� = RYbkd〈r−4〉n� (13)

and

Q′
n� = kq〈r−6〉n�

kd〈r−4〉n�

. (14)

With these definitions we can rewrite Eq. (9) as

−Wpol,n�

P′
n�

= αd + αqQ′
n�. (15)

TABLE VIII. kd calculated values.

� = 4 � = 5 � = 6

0.9375 0.9576 0.9733

TABLE IX. kq calculated values.

� = 4 � = 5 � = 6

0.947 0.894 0.921

The polarization energies Wpol,n� are determined from
Table V. Combining the analytically known values of 〈r−4〉
and 〈r−6〉 with the values of kd and kq from Tables VIII and
IX we can calculate P′

n� and Q′
n�. Using Wpol,n�, P′

n�, and Q′
n�

we plot a graph of −Wpol,n�

P′
n�

vs Q′
n� as shown in Fig. 10. From

the intercept and slope of the line through the data points in
Fig. 10, we determine the dipole and quadrupole polarizabil-
ities of Yb+ 6s to be αd = 60.31(10)a3

0 and αq = 659(28)a5
0,

respectively. We ignore the ng series due to the possibilities
of core penetration and interseries interactions with low-lying
states converging to higher limits, and we exclude the n = 33�

states as these data exhibit an inconsistent n scaling.
As mentioned earlier, assuming that αd and αq arise solely

from coupling to the 6pn′� and 5dn′� states introduces small
errors. For αd the largest error is due to the contribution of
the Yb++ polarizability, which is calculated to be 6.4a3

0. It is
not subject to the nonadiabatic correction; i.e., kd = 1 for this
part of αd , not 0.97. Accordingly, the value of αd obtained
from Fig. 10 is too low by 0.2a3

0, and the correct value is

αd = 60.51(10)a3
0. (16)

For Yb+ there has been no calculation of αq. However, we
have estimated that the contributions to αq from couplings to
the Ndn′� states of N � 6 represent 20% of αq. This fraction
is similar to those calculated for Ca+ and Sr+ [17,22]. Since
these contributions are not subject to as large a nonadiabatic
correction, they should have kq ≈ 1, not kq = 0.9. Accord-
ingly, we raise the value of αq obtained from Fig. 10 by 2%,

FIG. 10. Plot of −Wpol,n�/P′
n� vs Q′

n�. From the nonadiabatic
treatment of the ion core, Eq. (15), the plot can be fitted linearly.
The intercept of the graph is αd , and the slope of the graph is αq. We
determine αd and αq to be 60.31(10)a3

0 and 659(28)a5
0, respectively.

Note that the ng data are omitted in the fit due to the core penetration
of the ng states, and we omit n = 33 states as they are already
inconsistent.
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to yield

αq = 672(28)a5
0. (17)

There are theoretical predictions for the value of αd . Ref-
erence [28] predicts the value of αd to be 62.04a3

0. Refer-
ence [29] extracts the Yb+ electric dipole matrix elements
E1 〈6s1/2|r|6p3/2,1/2〉 from the lifetime measurements of the
6p1/2,3/2 levels in the Yb+ ion of Refs. [30] and [31] to
calculate αd , yielding αd = 59.3(8)a3

0. Our direct measure-
ment value of αd falls between the two predictions. To our
knowledge, there is no measurement or theoretical prediction
of αq for the Yb+ 6s state.

VI. CONCLUSION

We have measured the microwave and RF transitions of
ytterbium from the 6s(n + 3)d states to the 6sng, 6snh, and

6sni states for 28 � n � 33. From the observed measure-
ments, we use the precise values of the nd quantum defects to
determine the precise energy levels and the quantum defects
of the measured n� states. We apply the nonadiabatic core
polarization model to these energy levels to determine the
Yb+ 6s ionic dipole (αd ) and quadrupole (αq) polarizabilities.
We determine the values of αd and αq to be αd = 60.51(10)a3

0
and αq = 672(28)a5

0, respectively. Our αd agrees well with the
theoretical predictions.
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