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Higher-order corrections to the dynamic hyperfine structure of muonic atoms
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A method is presented for precise calculation of the energy corrections due to second-order electric-
quadrupole interactions, as well as mixed electric quadrupole-vacuum polarization in the framework of the
dynamic hyperfine structure in heavy muonic atoms. For this, a multipole expansion of the Uehling potential
is performed. The approach is applicable for an arbitrary nuclear electric charge distribution. By performing
these calculations for muonic rhenium and uranium using a deformed Fermi distribution, it is shown that both
corrections contribute on a level presumably visible in upcoming experiments.
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I. INTRODUCTION

A muon is an elementary particle which is similar to the
electron in many aspects; in particular, it has the same electric
charge. Bound states between a muon and an atomic nucleus
are commonly referred to as muonic atoms. The muon, how-
ever, is about two hundred times heavier than the electron [1]
and the Bohr radius of muonic atoms is correspondingly
downsized by the same factor. If compared with electronic
bound states, the wave functions of muonic bound states
therefore have a much bigger overlap with the nucleus [2], and
it has been recognized early that muonic transition energies
enable the extraction of information about the nuclear charge
distribution [3]. In a typical experimental setting, atomic
electrons are also present and the electron-muon interaction
has to be taken into account in principle. However, it was
shown that the screening effect due to atomic electrons is
small for low-lying muonic states [4–6] and therefore muonic
atoms can essentially be considered as hydrogen-like systems.
In contrast to electronic atoms, where the magnetic-dipole
splitting dominates over the electric-quadrupole splitting, the
muonic magnetic-dipole splitting is suppressed because the
magnetic moment of the muon is smaller than the electron’s
one by a factor of the electron-muon mass ratio. Therefore, the
hyperfine splitting in muonic atoms is mainly due to electric-
quadrupole interaction, providing an ideal environment for
testing electric interactions. Experiments on muonic atoms
have already provided nuclear parameters such as rms radii [7]
and quadrupole moments [8,9], as well as knowledge about
the distribution of electric charge inside the nuclei; see, e.g.,
Refs. [10,11], for a wide range of charge numbers. Also,
experiments on muonic and electronic hydrogen resulted in
a different value of the proton radius [12]. For the extraction
of nuclear parameters, a thorough understanding of the muon
spectrum for a given nuclear model is indispensable [13]. This
includes, among others, the influence of a spatially extended
distribution of electric charge and quadrupole moment inside
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the nucleus. Especially for heavy nuclei, the quadrupole inter-
action between muon and nucleus beyond first order can be
important [11,14–16], which is called the dynamic hyperfine
structure in muonic atoms. As a consequence, transition ener-
gies have to be calculated by diagonalizing the quadrupole in-
teraction in a small model space. A nonrelativistic estimation
of the residual second-order electric-quadrupole interaction
with states outside of this model space has been presented
earlier in Ref. [17].

The contributions from bound-state quantum electrody-
namics also significantly influence muonic atoms. In par-
ticular, the vacuum polarization (VP) by virtual electron-
positron pairs modifies the electric interaction between muon
and nucleus at short distances. Due to the small electron-
muon mass ratio, the electronic loop is far less suppressed
compared with electronic bound states and leads to sizable
corrections of the energy levels in muonic atoms. VP in-
fluences multipole interactions of all orders. In the past,
however, the corresponding correction to the quadrupole in-
teraction between muon and nucleus has at most been con-
sidered with a power-series expansion [18,19] or for spe-
cific forms of the nuclear charge distribution [20], which
does not enable precision calculations for heavy muonic
atoms.

With upcoming experiments on high-Z muonic atoms [21]
and anticipating increasing experimental precision, an ac-
curate treatment of the quadrupole interactions including
leading-order VP and second-order terms is desirable. To
tackle this shortcoming, we derive the VP correction in the
Uehling approximation for multipole interactions of any order
and for arbitrary charge distributions. Thereby, a numerical
treatment of quadrupole interactions in heavy muonic atoms
up to second order including nuclear finite-size effects and
VP is presented, using relativistic muon states. It is shown
that it can lead to energy shifts potentially important for the
extraction of nuclear parameters from future experiments.

Muonic relativistic units with h̄ = c = mμ = 1 are used
throughout this work, where mμ is the muon’s mass, along
with the Heaviside charge unit with α = e2/4π , where α is
the fine-structure constant and the elementary charge e is
negative.
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II. ROTATIONAL NUCLEAR MODEL FOR
MUONIC ATOMS

The typical energy scale for nuclear transitions is a few
orders of magnitude larger than for an electronic transitions in
atoms. Therefore, the electrons essentially interact only with
the nuclear ground state. In muonic atoms, however, the en-
ergy scale of the hyperfine structure can be of the same order
as low-lying nuclear rotational states. Therefore, in muonic
atoms a high degree of mixing between muonic and nuclear
states is present and the excitation energies and quadrupole
moments of several nuclear states are needed for the de-
scription of the level structure. Nuclear parameters can be
taken from experimental data or, if not available, obtained by
theoretical models. The rotational nuclear model for muonic
atoms has been very successful in describing the level struc-
ture of heavy muonic atoms with large electric-quadrupole
interactions between muon and atomic nucleus [11,14–16,22].
The low-lying nuclear rotational states are described by an
intrinsically deformed nucleus, which rotates in the laboratory
frame [23,24]. The muon is described as a Dirac particle
coupled to such a nucleus. Thereby, the Hamiltonian of the
coupled muon-nucleus system reads

H = HN + Hμ + Vel + Vuehl, (1)

where HN is the nuclear Hamiltonian, and Hμ = �α · �p + βmμ

is the free Dirac Hamiltonian for the muon with momentum �p,
and �α and β are the four Dirac matrices. The interaction be-
tween muon and nucleus is described by including the electric
interaction potential Vel and additionally the VP correction in
the Uehling approximation Vuehl in the Hamiltonian.

The degrees of freedom of the nuclear model are the
three Euler angles φ, θ , and ψ describing the position of
the nuclear body fixed frame in the laboratory frame. The
corresponding normalized wave functions for the rotational
part are proportional to the complex-conjugated Wigner D
functions and are written in bra-ket notation as [22,25]

|IMK〉 =
√

2I + 1

8π2
DI∗

MK (φ, θ, ψ ). (2)

I is the total nuclear angular momentum, and M and K are
the projections on the z axis of the laboratory and nuclear
body-fixed system, respectively. Throughout this work, the
conventions and notation of the angular-momentum algebra,
like Wigner D functions, Clebsch–Gordan coefficients, and 6 j
symbols, correspond to Ref. [26]. The energies of the nuclear
rotational states

HN|IMK〉 = EI |IMK〉 (3)

are typically taken from the literature [27]. The electric inter-
action in terms of the nuclear charge distribution ρ(�r ) reads

Vel(�r ′
μ) = −Zα

∫
d3r′

N

ρ(�r ′
N )

|�r ′
μ −�r ′

N | , (4)

where primed coordinates belong to the nuclear system and
unprimed to the laboratory system, and �rμ = (rμ, ϑμ, ϕμ) are
the muonic coordinates. A multipole expansion of Eq. (4) in
the laboratory frame has been demonstrated, e.g., in Ref. [28],

so we refer to Appendix A for derivations and explicit expres-
sions, and denote the result as

Vel(�rμ, φ, θ ) =
∞∑

l=0

V (l )
el (�rμ, φ, θ ). (5)

For a nuclear charge distribution with axial and reflection
symmetry, the terms with odd l vanish, thus the first two
nonvanishing terms are the monopole (l = 0) and quadrupole
(l = 2) term.

Radiative corrections for light muonic atoms have been
studied in detail, e.g., in Refs. [29–36] in connection with
the proton radius determination in muonic hydrogen. To first
order in α and Zα, VP due to a virtual electron-positron pair
can be expressed explicitly in position space for an arbitrary
nuclear charge distribution and is referred to as the Uehling
potential, which reads in the chosen system of units as [37]

Vuehl(�r ′
μ) = −Zα

2α

3π

∫
d3r′

N

ρ(�r ′
N )

|�r ′
μ −�r ′

N |K1(2me|�r ′
μ −�r ′

N |),

(6)

where me is the electron mass and K1(x) belongs to the family
of functions

Kn(x) =
∫ ∞

1
dte−xt

(
1

t3
+ 1

2t5

)√
t2 − 1t n. (7)

To obtain the VP corrections to the quadrupole interaction, a
multipole expansion of Eq. (6) has to be performed in a similar
way, whereas the dependence on |�r ′

μ −�r ′| now is also present
in the argument of K1(x). The result in the laboratory frame
can be written similar to Eq. (5) as

Vuehl(�rμ, φ, θ ) =
∞∑

l=0

V (l )
uehl(�rμ, φ, θ ), (8)

where the l = 0 term is the well-known Uehling potential for
a spherically symmetric charge distribution, given in Eq. (A9),
and the l = 2 term is the corresponding correction of the
quadrupole interaction. The derivation and expressions for
V (l )

uehl(�rμ, φ, θ ) in Eq. (8) can be found in Appendix A.
The monopole terms V (0)

el (rμ) and V (0)
uehl(rμ) depend only on

the muonic radial coordinate and thus were included in this
work in the unperturbed muonic states as(

Hμ + V (0)
el + V (0)

uehl

)|nκm〉 = Enκ |nκm〉, (9)

where |nκm〉 are the solutions of the spherical Dirac equation
in terms of the well-known spherical spinors and radial func-
tions Gnκ (rμ) and Fnκ (rμ) with energy Enκ [38]. n, κ , m are the
principal quantum number, the relativistic angular quantum
number, and the z component of the total angular momentum
of the muon, respectively. In this way, the monopole Uehling
potential and all iterations thereof are included in the muonic
wave functions [4].

III. ELECTRIC-QUADRUPOLE INTERACTION

A. Dynamic hyperfine structure

The hyperfine splitting due to electric-quadrupole interac-
tions is considered in the coupled basis, where a state with
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total angular momentum F and its projection on the z axis M
is formed for a given muonic and nuclear state as

|FMnκIK〉 =
∑
m,M ′

CFM
jmIM ′ |nκm〉 ⊗ |IM ′K〉, (10)

with the Clebsch–Gordan coefficients C jm
j1m1 j2m2

. The matrix
elements of the electric-quadrupole interaction are written as

�E (2)
el = 〈FMn1κ1I1K|V (2)

el |FMn2κ2I2K〉, (11)

where the diagonal elements correspond to the first-order
electric hyperfine splitting [4]. The explicit expressions are
given in Eqs. (B1) and (A4) in the Appendix.

For heavy, deformed nuclei, the fine structure as well as the
first-order quadrupole hyperfine structure of muonic energy
levels is similar to the energies of the low-lying nuclear
rotational states. Therefore, the total Hamiltonian has to be
rediagonalized in finite subspaces of a muonic fine-structure
multiplet and the first few nuclear rotational states. Since
multipole interactions are diagonal in F and M, there is no
mixing of states with different total angular momentum. Thus,
if d is the dimension of the subspace, new states

|FMk〉 :=
d∑

i=1

a(k)
i |FMniκiIiK〉, (12)

with k ∈ 1, . . . , d , may be defined, in which the coefficients
a(k)

i have to be chosen such that the matrix representation of
the total Hamiltonian (1) in the subspace is diagonal. The
corresponding eigenenergies are written as E (F,k)

quad . This leads
to a rich and complex level structure and to hyperfine structure
also for nuclei with zero ground-state angular momentum and
is know as the dynamic hyperfine structure [15,16].

B. Higher-order contributions

In this work, the VP in the Uehling approximation is
included in the dynamic hyperfine structure, considering the
finite nuclear size. For this, the matrix elements of the
quadrupole Uehling interaction

�E2)
uehl = 〈FMn1κ1I1K|V (2)

uehl|FMn2κ2I2K〉, (13)

are added to the matrix elements from Eq. (11). The explicit
formulas for Eq. (13) are given in Eqs. (B1) and (A8) in the
Appendix. The matrix elements of the quadrupole part of the
Uehling potential from Eq. (13) have the same sign as the cor-
responding matrix elements of the quadrupole potential from
Eq. (11). Therefore, the Uehling potential slightly increases
the absolute value of the quadrupole matrix elements. By
including the monopole Uehling potential in the unperturbed
muonic states in Eq. (9) and calculating the matrix elements
of the quadrupole Uehling potential from Eq. (13), all con-
tributions of the Uehling potential to the electric-quadrupole
interaction are included.

After a subspace has been chosen and rediagonalization
has been performed, the quadrupole interaction with states
outside of the subspace leads to residual second-order cor-
rections to the energy levels [17]. For the total second-order
correction, a summation over the complete (discrete and con-
tinuous) spectrum for both nuclear and muonic states has to

be performed. For the complete nuclear spectrum, sophisti-
cated models or numerous experimental data are required,
causing the nuclear polarization corrections of the energy
levels [17,41,42]. In this work, we calculate the second-order
corrections, where the nucleus stays in the rotational ground
state, but the complete muonic spectrum is considered. The
second-order energy shift is

�E (F,k)
2.ord. =

∑
i

∣∣〈FMk|V (2)
el +V (2)

uehl|FMniκiIiK〉∣∣2

EF,k − Ei
, (14)

where the sum is to be taken over all states not considered
in the rediagonalization, including continuum states of the
muon, and the unperturbed energy of the state i is Ei =
Eniκi + EIi .

IV. NUMERICAL EVALUATION

Calculations have been performed for muonic rhenium
and uranium, assuming a deformed Fermi nuclear charge
distribution which reads

ρcaβ (�r ) = N

1 + exp
( r−c[1+βY20(ϑ )]

a

), (15)

where c is the half-density radius, a is the skin thickness, β is
the deformation parameter, and N is a normalization constant
determined by the condition∫

d3rρcaβ (�r ) = 1. (16)

The use of the deformed Fermi distribution has proved to
be very successful in the description of the level structure
of heavy muonic atoms; see, e.g., Refs. [10,11,14]. Values
for the parameters can be estimated by using a value a =
2.3 fm/(4 ln 3), which has proved to be a sufficiently accu-
rate value for most nuclei [43]. Then, c and β are chosen
such that the quadrupole moment and rms value of the dis-
tribution are in agreement with the literature values from
Refs. [39,40]. For the nuclear states involved in the dynamic
hyperfine structure, also the excitation energies are needed
from the literature [27]. The parameters used are summarized
in Table I. With these parameters, the electric and Uehling
potentials, both monopole and quadrupole parts, can be calcu-
lated numerically. The muon wave functions are obtained by
solving the Dirac equation (9) with the dual-kinetic-balance
method [44]. Thereby, a complete set of muonic bound and
continuum states is obtained. An overview for the binding
energies of muon states important for the dynamic hyperfine
splitting are shown in Table II.

The quadrupole matrix elements from Eq. (11) can be
calculated both for the rediagonalization in the dynamic hy-
perfine structure and for the evaluation of the residual second-
order terms (14), using Eq. (B1). As the next step, the total
Hamiltonian (1) is diagonalized in finite subspaces or model
spaces consisting of the muonic (2p1/2, 2p3/2) or (3d3/2, 3d5/2)
doublet states and nuclear ground-state rotational band. For
rhenium, the first six states with IN ∈ {5/2, . . . , 15/2} are
considered, and for uranium with IN ∈ {7/2, . . . , 17/2}. The
excitation energies of the nuclear states are summarized, along
with other nuclear parameters, in Table I. Thereby, the com-
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TABLE I. Nuclear parameters used in the numerical calculations.
I0 is the nuclear ground state angular momentum. The parame-
ters rms and Qspec are the nuclear rms radius and spectroscopic
quadrupole moment of the nuclear ground state from Refs. [39,40],
respectively, and c, a, and β are the parameters of the deformed
Fermi distribution derived from rms and Qspec; see Sec. IV for details.
EI are the excitation energies of the nuclear rotational states with
angular momentum I in Eq. (3); the values are taken from Ref. [27].

185
75 Re 235

92 U

I0 5/2 7/2
rms [fm] 5.3596(172) 5.8337(41)
Qspec [b] 2.21(4) 4.936(6)
c [fm] 6.3517 6.9562
a [fm] 0.5234 0.5234
β 0.2322 0.2711
EI0+1 [keV] 125.3587(9) 46.108(8)
EI0+2 [keV] 284.2(3) 103.903(8)
EI0+3 [keV] 475.7(4) 171.464(13)
EI0+4 [keV] 697.1(5) 250.014(21)
EI0+5 [keV] 949.7(5) 339.976(24)

posite states and corresponding energies Equad from Eq. (12)
are obtained and, finally, for each of these states the residual
second-order quadrupole correction (14) is calculated. The
numerical uncertainty for a given set of nuclear parameters
was estimated to be below the digits shown in Table III. Here,
the intermediate sum goes over all nuclear and muonic states
not included in the model space. Note that, for the muonic

ground state, a rediagonalization is not necessary since the di-
agonal matrix elements of the quadrupole interactions vanish
for muonic states with j = 1/2. The quadrupole-Uehling con-
tribution to the binding energies can be obtained by perform-
ing the calculations for the dynamic hyperfine structure twice:
once with the matrix elements (11) and (13) containing both
the electric and Uehling interaction V (2)

el +V (2)
uehl and a second

time only with the electric part V (2)
el from Eq. (11). The dif-

ference between those two approaches gives the quadrupole-
Uehling corrections. Results for the residual second-order
quadrupole correction from Eq. (14) and for the quadrupole-
Uehling corrections can be found in Table III for a number
of states.

V. DISCUSSION AND SUMMARY

The quadrupole interaction in the framework of the dy-
namic hyperfine structure in heavy muonic atoms was an-
alyzed by an fully relativistic treatment of the quadrupole-
Uehling potential and of the residual second-order terms.
The quadrupole-Uehling interaction was obtained by using a
multipole expansion of the Uehling potential for an arbitrary
nuclear charge distribution without assuming a large distance
between muon and nuclear charge. Since it has the same
angular structure as the conventional quadrupole interaction,
the quadrupole-Uehling expectation value vanishes between
two muonic states with j = 1/2, thus it does not affect the
muonic ground state. The calculations for uranium show that
it can lead to energy corrections almost on the keV level
for very heavy nuclei with muonic 2p states and thus can

TABLE II. Binding energies of the low-lying, unperturbed muonic states due to the spherically symmetric parts of the electric and Uehling
potential for muonic rhenium and uranium. The first column shows the binding energies for a point-like nucleus, the second one for the
extended nuclear charge distribution. The third column shows the first-order energy correction due to the Uehling potential, which is obtained
by solving the Dirac equation only with the electric potential and then calculating the expectation value of the Uehling potential. The fourth
column shows the corresponding all-order energy correction which is obtained by solving Eq. (9) and subtracting the finite-size binding energy
from the second column. The positive value of the Uehling corrections indicates that the binding energy is increased. See Sec. IV for details.
All energies are in keV.

Uehling correction

State Point-like Finite size First order All orders

185
75Re 1s1/2 17229.12 9333.46 60.49 60.56

2s1/2 4398.85 3083.91 16.50 16.53
2p1/2 4398.85 4032.61 26.81 26.89
2p3/2 4033.07 3885.75 24.68 24.75
3s1/2 1912.97 1498.01 6.26 6.27
3p1/2 1912.97 1789.84 8.80 8.82
3p3/2 1804.01 1751.38 8.35 8.37
3d3/2 1804.01 1802.05 8.23 8.25
3d5/2 1773.14 1772.36 7.78 7.80

235
92U 1s1/2 27351.29 12100.56 74.87 74.95

2s1/2 7074.68 4308.67 23.42 23.46
2p1/2 7074.68 5901.35 39.93 40.04
2p3/2 6130.65 5674.78 37.01 37.11
3s1/2 3033.18 2148.86 9.43 9.45
3p1/2 3033.18 2645.58 13.65 13.68
3p3/2 2751.54 2588.19 13.05 13.08
3d3/2 2751.54 2739.69 14.32 14.37
3d5/2 2679.66 2674.77 13.29 13.33
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TABLE III. Overview of energy corrections in keV due to residual second-order electric-quadrupole splitting �E2.ord. and quadrupole-
Uehling interaction �Equad-uehl for 185

75Re and 235
92U. F is the total angular momentum of muon and nucleus, IN is the nuclear angular momentum,

and μ state is the muonic state in spectroscopic notation. For the muonic 2p and 3d states, these are mixed by the dynamic hyperfine structure,
thus IN (main) and μ state (main) show the states with the largest contribution. Equad is the binding energy without quadrupole Uehling and
residual second-order quadrupole interaction; see Sec. IV for details. The states are in descending order in total energy Etot. The numerical
uncertainty of the results for a given set of nuclear parameters is estimated below 10 eV.

F IN (main) μ state (main) Equad �E2.ord. �Equad-uehl Etot

185
75Re 2 5/2 1s1/2 9394.02 3.21 0.00 9397.23

6 13/2 1s1/2 8696.92 2.06 0.00 8698.98
8 15/2 1s1/2 8444.32 1.76 0.00 8446.08
2 5/2 2p1/2 4083.31 2.18 0.28 4085.77
3 5/2 2p1/2 4077.79 2.07 0.23 4080.09
3 9/2 2p3/2 3992.27 2.41 0.41 3995.09
4 7/2 2p1/2 3957.33 2.10 0.26 3959.69
3 5/2 2p3/2 3886.35 1.12 −0.22 3887.25
5 7/2 2p3/2 3814.27 2.08 0.28 3816.63
4 9/2 2p1/2 3734.93 1.03 −0.27 3735.69
6 9/2 2p3/2 3650.57 1.95 0.25 3652.77
5 9/2 2p3/2 3556.36 1.13 −0.24 3557.25
7 11/2 2p3/2 3458.14 1.85 0.23 3460.22
6 11/2 2p3/2 3344.35 0.93 −0.19 3345.09
8 13/2 2p3/2 3111.03 0.68 0.02 3111.73
7 15/2 2p3/2 2941.66 0.82 −0.15 2942.33
8 15/2 2p3/2 2938.52 0.67 −0.16 2939.03
3 5/2 3d3/2 1815.47 0.07 0.03 1815.57
1 5/2 3d3/2 1804.28 0.11 −0.03 1804.36
3 7/2 3d5/2 1783.72 0.05 0.02 1783.79
0 5/2 3d5/2 1772.11 0.11 −0.04 1772.18

235
92U 3 7/2 1s1/2 12175.51 6.83 0.00 12182.34

7 15/2 1s1/2 11925.50 4.66 0.00 11930.16
9 17/2 1s1/2 11835.54 3.54 0.00 11839.08
3 7/2 2p1/2 6019.06 5.99 0.85 6025.90
4 7/2 2p1/2 6015.01 5.96 0.83 6021.80
4 9/2 2p1/2 5979.31 6.02 0.86 5986.19
5 9/2 2p3/2 5928.94 6.06 0.88 5935.88
6 11/2 2p3/2 5868.85 6.00 0.89 5875.74
7 15/2 2p1/2 5798.66 5.30 0.91 5804.87
8 15/2 2p1/2 5745.59 4.71 0.87 5751.17
5 7/2 2p3/2 5673.10 3.12 −0.42 5675.80
6 9/2 2p3/2 5621.02 3.02 −0.46 5623.58
2 7/2 2p3/2 5620.12 2.78 −0.56 5622.34
9 17/2 2p1/2 5613.24 2.05 0.13 5615.42
3 9/2 2p3/2 5586.28 2.81 −0.54 5588.55
7 13/2 2p1/2 5556.38 2.60 −0.50 5558.48
9 15/2 2p3/2 5493.59 2.44 0.24 5496.27
8 15/2 2p1/2 5479.30 2.14 −0.53 5480.91

10 17/2 2p3/2 5393.16 1.77 0.13 5395.06
9 17/2 2p3/2 5315.81 1.73 −0.44 5317.10
3 7/2 3d3/2 2767.16 0.44 0.09 2767.69
1 7/2 3d5/2 2663.35 0.61 −0.13 2663.83

be potentially relevant for comparison between theoretical
predictions and experiments. Being a short-ranged potential,
it falls off quickly for states further away from the nucleus.
For states with n � 3, we find values below 0.15 keV, even for
high Z . The generalization to Uehling corrections for higher-
order multipoles is straightforward. In the case of muonic
atoms, since the influence of higher-order multipoles is al-
ready small, we expect that this correction will not contribute
significantly.

The residual second-order quadrupole corrections in the
dynamic hyperfine structure were calculated numerically by
using a basis of relativistic wave functions including nu-
clear finite-size correction and Uehling correction due to the
monopole part of the nuclear potential. In contrast with the
first-order terms, the muonic ground-state energy is affected
by the second-order corrections. Here, the energy correction
amounts to several keV. Also for muonic 2p states, it is of
similar size. For the 3d levels, we find the energy corrections
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below half a keV, both for rhenium and uranium. If a more
complete nuclear model instead of the rotational model is
used, the additional nuclear states appear as intermediate
states in the second-order corrections, leading to the nuclear
polarization corrections. Therefore, the approach presented
in this work provides a basis for an accurate treatment of
the muonic spectrum for the nuclear polarization effect in
deformed muonic atoms.

APPENDIX A: MULTIPOLE EXPANSION OF ELECTRIC
AND UEHLING POTENTIAL

With the multipole expansion of the Coulomb poten-
tial [45]

1

|�r ′
μ −�r ′

N | =
∞∑

l=0

rl
<

rl+1
>

l∑
m=−l

C∗
lm(ϑ ′

N , ϕ′
N ) Clm(ϑ ′

μ, ϕ′
μ), (A1)

where r< := min(rμ, rN ), r> := max(rμ, rN ), the electric
potential (4) can be written as

Vel(�r ′
μ) =

∑
l,m

−Zα

[∫
d3r′

N

rl
<

rl+1
>

C∗
lm(ϑ ′

N , ϕ′
N )ρ(�r ′

N )

]

× Clm(ϑ ′
μ, ϕ′

μ), (A2)

where Clm(ϑ, ϕ) = √
4π/(2l + 1)Ylm(ϑ, ϕ) are the normal-

ized spherical harmonics, and primed coordinates belong to
the nuclear body-fixed system. For axially symmetric charge
distributions, only the m = 0 terms are nonzero after inte-
grating over the charge distribution. The dependency on the
muonic angular variables can be transformed to the laboratory
system by

Pl (cos ϑ ′
μ) =

l∑
m=−l

C∗
lm(θ, φ)Clm(ϑμ, ϕμ). (A3)

Thereby, the potential as a function of the Euler angles and the
muon’s position in the laboratory frame reads

Vel(�rμ, φ, θ ) =
∞∑

l=0

−Zα

[∫
d3r′

N

rl
<

rl+1
>

Pl (cos ϑ ′
N )ρ(�r ′

N )

]

×
l∑

m=−l

C∗
lm(θ, φ)Clm(ϑμ, ϕμ)

=:
∞∑

l=0

Q(l )
el (rμ)

l∑
m=−l

C∗
lm(θ, φ)Clm(ϑμ, ϕμ)

=:
∞∑

l=0

V (l )
el (�rμ, φ, θ ), (A4)

where Q(l )
el (rμ) describe the radial distribution of the multipole

moments.

The Uehling potential can be expanded in multipoles in a
similar way, now with a different dependence on |�r ′

μ −�r ′
N |, as

K1(2me|�r ′
μ −�r ′ |)

|�r ′
μ −�r ′ | =

∞∑
l=0

cl (rμ, rN )

×
l∑

m=−l

C∗
lm(ϑ ′

N , ϕ′
N )Clm(ϑ ′

μ, ϕ′
μ).

(A5)

The expansion coefficients cl can be calculated, by using
the fact that rotations do not change the absolute value of
vectors, as

|�r ′
μ −�r ′

N | = |�rμ −�rN | =
√

r2
μ + r2

N − 2rμrN y, (A6)

with y = cos(��rμ�rN ) being the cosine of the angle between
the vectors �rμ and �rN . They read

cl (rμ, rN ) = 2l + 1

2

∫ 1

−1
dy

K1(2me|�rμ −�rN |)
|�rμ −�rN | Pl (y) (A7)

and are evaluated by numerical integration. Thereby, the
Uehling potential can be written, analogously to Eq. (A4), as

Vuehl(�rμ, φ, θ ) =
∞∑

l=0

−Zα
2α

3π

×
[∫

d3r′
N cl (rμ, rN )Pl (cos ϑ ′

N )ρ(�r ′
N )

]

×
l∑

m=−l

C∗
lm(θ, φ)Clm(ϑμ, ϕμ)

=:
∞∑

l=0

Q(l )
uehl(rμ)

l∑
m=−l

C∗
lm(θ, φ)Clm(ϑμ, ϕμ)

=:
∞∑

l=0

V (l )
uehl(�rμ, φ, θ ). (A8)

For l = 0, the expression for the Uehling potential of a
spherical charge distribution [37] which only depends on rμ

is recovered as

V (0)
uehl(rμ) = −2α(Zα)

3mer

∫ ∞

0
dr′ρ0(r′)

×{K0(2me|r − r′|) − K0[2me(r + r′)]}, (A9)

where the spherically averaged part of the charge distribu-
tion is

ρ0(r) =
∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ )ρ(�r )/(4π ). (A10)

APPENDIX B: MATRIX ELEMENTS OF
QUADRUPOLE INTERACTIONS

Both the electric and Uehling multipole interaction are
a scalar product of rank-l spherical tensors in the angular
variables of the muon and of the nucleus. Thus, their matrix
elements in states of defined total angular momentum can be
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reduced to a product of two reduced matrix elements [26] as

〈F1M1n1κ1I1K|V (l )(�rμ, φ, θ )|FMn2κ2I2K〉

= δF1F2
δM1M2

(−1)F1+ j2+I1

{
j1 j2 l

I1 I2 F1

}

×〈I1K||Cl (θ, φ)||I2K〉
× 〈n1κ1||Q(l )(rμ)Cl (ϑμ, ϕμ)||n2κ2〉. (B1)

Here, κi is related to the total angular momentum as ji =
|κi| − 1/2. The matrix elements for the nucleus, reduced in
M but not in K , read [46]

〈I1K||Cl (θ, φ)||I2K〉 = (−1)I2+K
√

(2I1 + 1)(2I2 + 1)

×
(

I1 I2 l

−K K 0

)
, (B2)

and the reduced matrix elements in the muonic variables
are [47]

〈n1κ1||Q(l )(rμ)Cl (ϑμ, ϕμ)||n2κ2〉
= (−1) j1+1/2

√
(2 j1 + 1)(2 j2 + 1)π (l1 + l2 + l )

×
(

j1 j2 l

− 1
2

1
2 0

) ∫
drr2

[
gn1κ1 (r)gn2κ2 (r)

+ fn1κ1 (r) fn2κ2 (r)
]
Q(l )(rμ), (B3)

where gnκ (r) and fnκ (r) are the two radial functions of the
solutions of the Dirac equation in the spherically symmetric
potential [38] from Eq. (9). The orbital angular-momentum
quantum number is li = |κi| + [sgn(κi ) − 1]/2, and the parity
selection rule is included by the function

π (x) =
{

1, x even
0, otherwise. (B4)
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